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a b s t r a c t 

An analytical formulation has been developed in this article for predicting the equivalent elastic proper- 

ties of irregular honeycombs with spatially random variations in cell angles. Employing unit-cell based 

approaches, closed-form expressions of equivalent elastic properties of regular honeycombs are available. 

Closed-form expressions for equivalent elastic properties of irregular honeycombs are very scarce in avail- 

able literature. In general, direct numerical simulation based methods are prevalent for this case. This pa- 

per proposes a novel analytical framework for predicting equivalent in-plane elastic moduli of irregular 

honeycombs using a representative unit cell element (RUCE) approach. Using this approach, closed-form 

expressions of equivalent in-plane elastic moduli (longitudinal and transverse Young’s modulus, shear 

modulus, Poisson’s ratios) have been derived. The expressions of longitudinal Young’s modulus, transverse 

Young’s modulus, and shear modulus are functions of both structural geometry and material properties of 

irregular honeycombs, while the Poisson’s ratios depend only on structural geometry of irregular honey- 

combs. The elastic moduli obtained for different degree of randomness following the proposed analytical 

approach are found to have close proximity to direct finite element simulation results. 

© 2015 Elsevier Ltd. All rights reserved. 
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. Introduction 

Honeycombs have gained considerable attention in recent years

s an advanced material due to its capability of meeting high per-

ormance requirements in various critically desirable application-

pecific parameters. These include specific strength and stiffness,

lectro-mechanical properties, acoustic properties, shock absorp-

ion, fatigue strength, corrosion and fire resistance. Such lattice

nd/or lattice-like structures are present in materials and struc-

ures across different length-scales. The use of honeycomb core in

everal applications of sandwich structures is an important area

f research ( Yongqiang and Zhiqiang, 2008; Zenkert, 1995 ). An in-

epth analysis of the structural behavior of honeycomb can be use-

ul in emerging research areas such as carbon nano-materials like

raphene, as these are generally idealized to have hexagonal peri-

dic structural forms ( Liu et al., 2012; Pantano et al., 2004; Scarpa

t al., 2009 ). 

Honeycombs are modeled as a continuous solid having an

quivalent elastic moduli throughout its domain. This approach
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liminates the need of detail finite element modeling of honey-

ombs in complex structural systems like sandwich structures. To

ate, extensive amount of research has been carried out to pre-

ict the equivalent elastic properties of regular honeycombs con-

isting of perfectly periodic hexagonal cells ( El-Sayed et al., 1979;

ibson and Ashby, 1999; Goswami, 2006; Zhang and Ashby, 1992 ).

onstitutive models for two-dimensional linear as well as non-

inear elastic foams have been developed in ( Warren and Kraynik,

987 ) and ( Warren et al., 1989 ) respectively considering an ap-

ropriate representative volume element to analyse periodic foam

tructure. Elasto-plastic yield limits and failure surfaces for large

eformations of transversely crushed honeycombs have been an-

lyzed using theoretical predictions in ( Klintworth and Stronge,

988 ). Recently numerical investigations of buckling and crushing

ehavior of expanded honeycomb are found to be carried out by

ang and Kyriakides (2015) , while Wilbert et al. (2011) have stud-

ed buckling and progressive crushing of laterally loaded honey-

ombs. Other important research areas concerning the study of dif-

erent responses related to periodic honeycombs include low veloc-

ty impact ( Hu and Yu, 2013 ) and buckling analysis ( Lopez Jimenez

nd Triantafyllidis, 2013 ) and wave propagation through lattices

 Schaeffer and Ruzzene, 2015 ). There is a substantial amount of

iterature available on the study of perfectly periodic hexagonal

uxetic honeycombs ( Critchley et al., 2013; Rossiter et al., 2014;

carpa et al., 20 0 0 ). Of late theoretical formulations for equivalent

lastic properties of periodic asymmetrical honeycomb have been
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developed in ( Chen and Yang, 2011 ), while the tailorable proper-

ties of hierarchical honeycombs, including spiderweb honeycombs

have been investigated in ( Ajdari et al., 2012; Mousanezhad et al.,

2015 ). Analysis of two dimensional honeycombs dealing with in-

plane elastic properties presented in the above survey are com-

monly based on unit cell approach, which is applicable only for

perfectly periodic cellular structures. 

A significant limitation of the aforementioned unit cell ap-

proach is that it cannot account for the spatial irregularity, which

is practically inevitable. Spatial irregularity in honeycomb may oc-

cur due to manufacturing uncertainty, structural defects, varia-

tion in temperature, pre-stressing and micro-structural variabil-

ity in honeycombs. To include the effect of irregularity, voronoi

honeycombs have been considered in several studies ( Li et al.,

20 05; Zhu et al., 20 01; 20 06 ). Dynamic crushing behavior of hon-

eycomb structures with irregularity in cell shapes and cell wall

thickness have been investigated in ( Li et al., 2007 ). Triantafyllidis

and Schraad (1998) have reported study on failure surface of alu-

minium honeycombs under general in-plane loading to compare

the theoretical results, obtained for the infinite, perfectly periodic

honeycomb model and the numerical results, obtained for the fi-

nite counterpart with micro-structural imperfections considering

uncertainties in manufacturing and fabrication. Jang and Kyriakides

(2015) ; Papka and Kyriakides (1994) ; 1998 ) carried out numer-

ical and experimental study of honeycomb buckling and crush-

ing behavior considering geometrical imperfections in the struc-

ture such as variation in length of bond line and over or under

expanded cells. Though these studies substantially explore the ef-

fect of imperfections as pioneering works, a further need is felt to

extend these works for spatially random imperfections to develop

more realistic model of the uncertainties associated with such ir-

regularities. Stochastic multi-scale analysis for the elastic proper-

ties of honeycombs have been presented in more recent studies

( Basaruddin et al., 2014 ). The effect of defects on the behavior

of regular as well as voronoi honeycombs ( Ajdari et al., 2008 ),

and the effect of manufacturing irregularity on auxetic honeycomb

( Liu et al., 2014 ) have been investigated. In the studies involv-

ing voronoi honeycombs, the shape of all irregular cells generated

using voronoi diagram may not be necessarily hexagonal, which

violates the presumption of hexagonal cell structure in many

applications. Published researches that explore the effect of dif-

ferent forms of irregularity on elastic properties and structural re-

sponses of honeycombs are based on either experimental investi-

gations or expensive finite element (FE) simulation. Experimental

investigations, being very expensive and time consuming, its prac-

tically not feasible to capture the effect of random irregularities in

honeycomb structure by testing huge number of samples. In finite

element approach, a small change in geometry of a single cell may

require completely new geometry and meshing of the entire struc-

ture. In general this makes the entire process time-consuming and

tedious. For quasi-static and dynamic analysis, finite element mod-

eling of the cellular core in a sandwich panel may increase the de-

gree of freedom of the entire structure up to huge extent, making

the overall process more complex and prohibitively expensive to

simulate. The problem becomes even worse for uncertainty quan-

tification of the responses associated with irregular honeycombs,

where the expensive finite element model is needed to be sim-

ulated for a large number of samples while using a Monte Carlo

based approach ( Dey et al., 2015a; 2015b; 2015c; Hurtado and Bar-

bat, 1998 ). Direct numerical simulation to deal with irregularity in

honeycombs may not necessarily provide proper understanding of

the underlying physics of the system. An analytical approach could

be a simple, insightful, yet an efficient way to obtain effective elas-

tic properties of honeycombs. 

This paper develops an analytical framework for predicting

equivalent in-plane elastic properties of irregular honeycomb hav-
ng spatially random variations in cell angle. Geometrical imper-

ections due to over or under expanded cells have been considered

y Papka and Kyriakides (1994) . However, random spatial distribu-

ion of over or under expanded cells has not been considered yet,

hich can be a realistic and logical extension of the previous work.

s this article proposes closed-form formulae for such irregulari-

ies, the responses can be investigated in a more robust but effi-

ient manner. Towards the development of explicit analytical for-

ulae of in-plane elastic moduli for addressing any such form of

rregularity in cellular structures, this is the first attempt of its kind

o the best of authors’ knowledge. closed-form formulae developed

ere can be a computationally efficient and less-tedious alterna-

ive to the expensive finite element modeling and simulation ap-

roach for many applications. This article is organized as follows.

erivations of formulae for five in-plane elastic moduli of irregu-

ar honeycombs are described in Section 2 . Development of finite

lement model to obtain the in-plane elastic moduli numerically

nd validation of the finite element code with available literature

 Gibson and Ashby, 1999 ) are discussed in Section 3 . Variations of

lastic moduli for different degree of random variations in the cell

ngle and comparison of results between the proposed analytical

pproach and finite element simulation are detailed in Section 4 .

inally, Section 5 summarises the main findings and draws conclu-

ions based on the results obtained in the paper. 

. Elastic properties of irregular honeycombs 

The key idea to obtain the effective in-plane elastic moduli of

he entire irregular honeycomb structure is that it is considered

o be consisted of several representative unit cell elements having

ifferent individual elastic moduli. Elastic properties of each repre-

entative unit cell element (RUCE) depends on its structural geom-

try and material properties. The irregularity is accounted implic-

tly by means of the RUCEs. The RUCE considered in this study for

eriving the expressions of different in-plane elastic moduli for an

rregular honeycomb structure is shown in Fig. 1 (b). The expres-

ions for elastic moduli of a RUCE is derived first and subsequently

he expressions for effective in-plane elastic moduli of the entire

rregular honeycomb are derived by assembling the individual elas-

ic moduli of these RUCEs using basic principles of mechanics as

iscussed in the preceding sections. These formulae are applicable

or both tensile as well as compressive stresses. 

.1. Longitudinal Young’s modulus ( E 1 ) 

To derive the expression of longitudinal Young’s modulus for a

UCE ( E 1 U ), stress σ 1 is applied in direction-1 (refer figure Fig. 1 )

s shown in Fig. 2 . The inclined cell walls having inclination an-

le α and β do not have any contribution in the analysis, as the

tresses applied on them in two opposite directions neutralise each

ther. The remaining structure except these two inclined cell walls

s symmetric. The applied stresses cause the inclined cell walls

aving inclination angle θ to bend. From the condition of equilib-

ium, the vertical forces C in the free-body diagram of these cell

alls (refer Fig. 2 (b)) need to be zero. In the present analysis the

ell walls are treated as beams of thickness t , depth b and Young’s

odulus E s . l and h are the lengths of inclined cell walls having

nclination angle θ and the vertical cell walls respectively. From

ig. 2 (b), 

 = 

P l sin θ

2 

(1)

here 

 = σ1 (h + l sin θ ) b (2)

rom the standard beam theory ( Roark and Young, 1976 ), the de-

ection of one end compared to the other end of the cell wall
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Fig. 1. Typical representation of regular and irregular honeycomb structure. 

Fig. 2. RUCE and free-body diagram used in the proposed analysis for E 1 . 
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hown in Fig. 2 (b) can be expressed as 

= 

P l 3 sin θ

12 E s I 
(3) 

here I is the second moment of inertia of the cell wall, that is

 = bt 3 / 12 . 

The component of δ parallel to direction-1 is δsin θ . The strain

arallel to direction-1 becomes 

1 = 

δ sin θ

l cos θ
(4) 

hus the Young’s modulus in direction-1 for a RUCE can be ex-

ressed as 

 1 U = 

σ1 

ε1 

= E s 

(
t 

l 

)3 cos θ

( h 
l 

+ sin θ ) sin 

2 θ
(5) 

To derive the expression of equivalent Young’s modulus in

irection-1 for the entire irregular honeycomb structure ( E 1 eq ), the

oung’s moduli for the constituting RUCEs ( E 1 U ) are assembled as

iscussed next. In the present analysis, the entire irregular honey-

omb structure ( Fig. 1 (b)) is assumed to have m and n number of

UCEs in direction-1 and direction-2 respectively. A particular cell

aving position at i th column and jth row is represented as ( i , j ),

here i = 1 , 2 , . . . , m and j = 1 , 2 , . . . , n . To obtain E 1 eq , stress σ 1

s applied in direction-1 as shown in Fig. 3 (a). If the deformation

ompatibility condition of j th strip (as highlighted in Fig. 1 (b)) is
onsidered, the total deformation due to stress σ 1 of that particu-

ar strip ( �1 ) is the summation of individual deformations of each

UCEs in direction-1, while deformation of each of these RUCEs in

irection-2 is same. Thus for the j th strip 

1 = 

m ∑ 

i =1 

�1 i j (6) 

he Eq. (6) can be rewritten as 

1 L = 

m ∑ 

i =1 

ε1 i j L i j (7) 

here ε1 and L represent strain and dimension in direction-1 of

espective elements. Eq. (7) leads to 

σ1 L 

ˆ E 1 j 
= 

m ∑ 

i =1 

σ1 L i j 

E 1 Ui j 

(8) 

rom Eq. (8) , equivalent Young’s modulus of j th strip ( ̂  E 1 j ) can be

xpressed as 

ˆ 
 1 j = 

∑ m 

i =1 l i j cos θi j ∑ m 

i =1 
l i j cos θi j 

E 1 Ui j 

(9) 

here θ ij is the inclination angle of the cell walls having length l ij 
n the RUCE positioned at ( i , j ). 
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Fig. 3. Free-body diagrams of idealized irregular honeycomb structure in the proposed analysis of E 1 . 

Fig. 4. RUCE and free-body diagram used in the proposed analysis for E 2 . 
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After obtaining the Young’s moduli of n number of strips, they

are assembled to achieve the equivalent Young’s modulus of the

entire irregular honeycomb structure ( E 1 eq ) using force equilibrium

and deformation compatibility conditions. 

σ1 Bb = 

n ∑ 

j=1 

σ1 j B j b (10)

where B j is the dimension of j th strip in direction-2 and B =∑ n 
j=1 B j . b represents the depth of honeycomb. As strains in

direction-1 for each of the n strips are same to satisfy the defor-

mation compatibility condition, Eq. (10) leads to ( 

n ∑ 

j=1 

B j 

) 

E 1 eq = 

n ∑ 

j=1 

ˆ E 1 j B j (11)

Using Eqs. (9) and (11) , equivalent Young’s modulus in direction-1

of the entire irregular honeycomb structure ( E 1 eq ) can be expressed

as 

E 1 eq = 

1 ∑ n 
j=1 B j 

n ∑ 

j=1 

( ∑ m 

i =1 l i j cos θi j ∑ m 

i =1 
l i j cos θi j 

E 1 Ui j 

) 

B j (12)

where Young’s modulus in direction-1 of a RUCE positioned at

( i , j ) is E 1 Uij , which can be obtained from Eq. (5) . 

2.2. Transverse Young’s modulus (E 2 ) 

To derive the expression of transverse Young’s modulus for a

RUCE ( E 2 U ), stress σ 2 is applied in direction-2 (refer Fig. 1 ) as

shown in Fig. 4 (a). Total deformation of the RUCE in direction-2

consists of three components, namely deformation of the cell wall

having inclination angle α, deformation of the cell walls having in-

clination angle θ and deformation of the cell wall having inclina-

tion angle β . All the cell walls are considered axially rigid in this
nalysis. If the remaining structure except the two inclined cell

alls having inclination angle α and β is considered, two forces

hat act at joint B are W and M 1 . For the cell wall having inclina-

ion angle α, effect of the bending moment M 1 generated due to

pplication of W at point D is only to create rotation ( φ) at the

oint B. 

Vertical deformation of the cell wall having inclination an-

le α has two components, bending deformation in direction-

 and rotational deformation due the rotation of joint B as

hown in Fig. 4 (b). The bending deformation in direction-2 can be

xpressed as 

2 v b = 

⎛ 

⎜ ⎝ 

W cosα
(

s 

sinα

)3 

3 E s I 

⎞ 

⎟ ⎠ 

cosα (13)

here W = 2 σ2 lb cos θ and I = bt 3 / 12 . 

From Fig. 4 (b), M 1 = W scotα. Cell walls BC and BA will share

alf of moment M 1 each as they have equal stiffness. Using the

tandard result of Euler–Bernoulli beam theory, deflection at one

nd due to application of moment at the other end ( δ = Ml 2 / 6 E s I),

he angle of rotation at joint B can be expressed as 

= 

M 1 

2 

l 

6 E s I 
(14)

he component of rotational deformation of the cell wall having

nclination angle α in direction-2 can be expressed as 

2 v r = φ
(

s 

sinα

)
cosα (15)

Thus from Eqs. (13) –(15) after replacing W = 2 σ2 lb cos θ, M 1 =
 scotα and I = bt 3 / 12 , total deformation in direction-2 of the cell
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Fig. 5. Free-body diagrams of idealized irregular honeycomb structure in the proposed analysis of E 2 . 
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all having inclination angle α can be expressed as 

v 2 = δ2 v b + δ2 v r = 

2 σ2 s 
2 l cos θ

E S t 3 

(
4 s 

cos 2 α

sin 

3 α
+ lcot 2 α

)
(16) 

eformation in direction-2 of the cell wall having inclination angle

can also be expressed in the similar way as 

˙ v 2 = 

2 σ2 s 
2 l cos θ

E S t 3 

(
4 s 

cos 2 β

sin 

3 β
+ lcot 2 β

)
(17) 

rom Fig. 4 (c), deformation of each of the cell walls having incli-

ation angle θ in direction-2 

¯v 1 = 

( W 

2 
cos θ ) l 3 

12 E s I 
cos θ (18) 

eplacing W = 2 σ2 lb cos θ and I = bt 3 / 12 from Eq. (18) , total defor-

ation in direction-2 of two cell walls having inclination angle θ
an be expressed as 

v 1 = 

2 σ2 l 
4 cos 3 θ

12 E s t 3 
(19) 

hus total deformation in direction-2 of the RUCE represented in

ig. 4 (a) due to application of stresses σ 2 is 

v = δv 2 + 

˙ δv 2 + δv 1 

= 

σ2 l cos θ

E s t 3 

(
2 l 3 cos 2 θ + 8 s 3 

(
cos 2 α

sin 

3 α
+ 

cos 2 β

sin 

3 β

)

+ 2 s 2 l(cot 2 α + cot 2 β) 

)
(20) 

train in direction-2 can be obtained as 

2 = 

δv 

h + 2 s + 2 l sin θ
(21) 

hus Young’s modulus in direction-2 of a RUCE can be expressed

s 

 2 U = 

σ2 

ε2 

= E s 

(
t 

l 

)3 ( h 
l 

+ 2 

s 
l 
+ 2 sin θ ) 

cos θ (2 cos 2 θ + 8( s 
l 
) 3 ( cos 2 α

sin 3 α
+ 

cos 2 β

sin 3 β
) + 2( s 

l 
) 2 
 α + cot 2 β)) 

(22) 

To derive the expression of equivalent Young’s modulus in

irection-2 for the entire irregular honeycomb structure ( E 2 eq ), the

oung’s moduli for the constituting RUCEs ( E 2 U ) are assembled

s discussed below. For obtaining E 2 eq , stress σ 2 is applied in

irection-2 as shown in Fig. 5 (a)). If the force equilibrium under

he application of stress σ 2 of jth strip (as highlighted in Fig. 5 (b))

s considered, 

2 

( 

m ∑ 

i =1 

2 l i j cos θi j 

) 

b = 

( 

m ∑ 

i =1 

σ2 i j 2 l i j cos θi j 

) 

b (23) 

y deformation compatibility condition, strains of each RUCE in

irection-2 of the j th strip are same. Eq.(23) , rewritten as 

ˆ 
 2 j 

( 

m ∑ 

i =1 

l i j cos θi j 

) 

ε = 

( 

m ∑ 

i =1 

E 2 Ui j l i j cos θi j εi j 

) 

(24) 

here εi j = ε, for i = 1 , 2 . . . m in the j th strip. ˆ E 2 j is the equivalent

lastic modulus in direction-2 of the j th strip. 

ˆ 
 2 j = 

∑ m 

i =1 E 2 Ui j l i j cos θi j ∑ m 

i =1 l i j cos θi j 

(25) 

otal deformation of the entire honeycomb in direction-2 ( �2 ) is

he sum of deformations of each strips in that direction, 

2 = 

n ∑ 

j=1 

�2 i j (26) 

he Eq. (26) can be rewritten as 

2 B = 

n ∑ 

j=1 

ε2 j B j (27) 

here ε2 , ε2 j and B j represent total strain of the entire honey-

omb structure in direction-2, strain of j th strip in direction-2 and
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dimension in direction-2 of j th strip respectively. Eq. (27) can be

rewritten as 

σ2 

∑ n 
j=1 B j 

E 2 eq 

= 

n ∑ 

j=1 

σ2 B j 

ˆ E 2 j 
(28)

From Eqs. (25) and (28) , the Young’s modulus in direction-2 of

the entire irregular honeycomb structure can be expressed as 

E 2 eq = 

1 

( 
∑ n 

j=1 B j 

∑ m 
i =1 l i j cos θi j ∑ m 

i =1 E 2 Ui j l i j cos θi j 
) 

∑ n 

j=1 
B j (29)

where Young’s modulus in direction-2 of a RUCE positioned at

( i , j ) is E 2 Uij , which can be obtained from Eq. (22) . 

It is worthy to mention here that the derived expressions of

Young’s moduli for irregular honeycombs ( Eqs. (12) and (29) ) can

be reduced to the formulae provided by Gibson and Ashby ( Gibson

and Ashby, 1999 ) in case of uniform honeycombs (i.e. B 1 = B 2 =
· · · = B n ; s = h/ 2 ; α = β = 90 ◦; l i j = l and θi j = θ, for all i and j ).

By applying the conditions B 1 = B 2 = · · · = B n ; l i j = l and θi j = θ,

Eqs. (12) and (29) reduce to E 1 U and E 2 U respectively. For s = h/ 2

and α = β = 90 ◦, E 1 U and E 2 U produce the same expressions for

Young’s moduli of uniform honeycomb as presented by Gibson and

Ashby ( Gibson and Ashby, 1999 ). In case of regular uniform honey-

combs ( θ = 30 ◦) 

E ∗1 
E s 

= 

E ∗2 
E s 

= 2 . 3 

(
t 

l 

)3 

(30)

where E ∗
1 

and E ∗
2 

denote the Young moduli of uniform regular hon-

eycombs in longitudinal and transverse direction respectively. 

2.3. Poisson’s ratio ν12 

Poisson’s ratios are calculated by taking the negative ratio of

strains normal to, and parallel to, the loading direction. Poisson’s

ratio of a RUCE for the loading direction-1 ( ν12 U ) is obtained as

(refer Fig. 2 (a)) 

ν12 U = −ε2 

ε1 

(31)

where ε1 and ε2 represent the strains of a RUCE in direction-1 and

direction-2 respectively due to loading in direction-1. ε1 can be ob-

tained from Eq. (4) . From Fig. 2 (b), ε2 can be expressed as 

ε2 = − 2 δ cos θ

h + 2 l sin θ + 2 s 
(32)

Thus the expression for Poisson’s ratio of a RUCE for the loading

direction-1 becomes 

ν12 U = 

2 cos 2 θ

(2 sin θ + 2 

s 
l 
+ 

h 
l 
) sin θ

(33)

To derive the expression of equivalent Poisson’s ratio for load-

ing direction-1 of the entire irregular honeycomb structure ( ν12 eq ),

the Poisson’s ratios for the constituting RUCEs ( ν12 U ) are assem-

bled as discussed below. For obtaining ν12 eq , stress σ 1 is applied

in direction-1 as indicated in Fig. 3 (a)). If the application of stress

σ 1 in the j th strip (as highlighted in Fig. 3 (b)) is considered, total

deformation of the j th strip in direction-1 is summation of indi-

vidual deformations of the RUCEs in direction-1 of that particular

strip. Thus from Eq. (7) , using the basic definition of ν12 , 

− ε2 

ˆ ν12 j 

L = −
m ∑ 

i =1 

ε2 i j L i j 

νU12 i j 

(34)

where ε2 and ε2 ij are the strains in direction-2 of j th strip and in-

dividual RUCEs of j th strip respectively. νU 12 ij represents the Pois-

son’s ratio for loading direction-1 of a RUCE positioned at ( i , j ). ˆ ν12 j 
enotes the equivalent Poisson’s ratio for loading direction-1 of the

j th strip. 

To ensure the deformation compatibility condition ε2 = ε2 i j for

 = 1 , 2 , . . . , m in the jth strip. Thus Eq. (34) leads to 

ˆ 12 j = 

L 
m ∑ 

i =1 

L i j 

ν12 Ui j 

(35)

otal deformation of the entire honeycomb structure in direction-

 under the application of stress σ 1 along the two opposite edges

arallel to direction-2 is summation of the individual deformations

n direction-2 of n number of strips. Thus 

2 B = 

n ∑ 

j=1 

ε2 j B j (36)

sing the basic definition of ν12 Eq. (36) becomes 

12 eq ε1 B = 

n ∑ 

j=1 

ν12 j ε1 j B j (37)

here ν12 eq represents the equivalent Poisson’s ratio for loading

irection-1 of the entire irregular honeycomb structure. ε1 and ε1 j 

enote the strain of entire honeycomb structure in direction-1 and

train of jth strip in direction-1 respectively. From the condition

f deformation comparability ε1 = ε1 j for j = 1 , 2 , . . . , n . Thus from

qs. (35) and (37) , 

12 eq = 

1 ∑ n 
j=1 B j 

n ∑ 

j=1 

( ∑ m 

i =1 l i j cos θi j ∑ m 

i =1 
l i j cos θi j 

ν12 Ui j 

) 

B j (38)

here ν12 Uij can be obtained from Eq. (33) . 

.4. Poisson’s ratio ν21 

Poisson’s ratio of a RUCE for the loading direction-2 ( ν21 U ) is

btained as (refer Fig. 4 (a)) 

21 U = −ε1 

ε2 

(39)

here ε1 and ε2 represent the strains of a RUCE in direction-1 and

irection-2 respectively due to loading in direction-2. ε2 can be

btained from Eqs. (20) and (21) as 

2 = 

σ2 l cos θ

E s t 3 (h + 2 s + 2 l sin θ ) 

×
(

2 l 3 cos 2 θ + 8 s 3 
(

cos 2 α

sin 

3 α
+ 

cos 2 β

sin 

3 β

)

+ 2 s 2 l(cot 2 α + cot 2 β) 

)
(40)

rom Fig. 4 (c) 

1 = −δ1 sin θ

l cos θ
(41)

here δ1 = 

(
W 

2 
cos θ

)
l 3 

12 E s I 
and W = 2 σ2 lb cos θ . Thus Eq. (41) reduces

o 

1 = −σ2 l 
3 sin θ cos θ

E s t 3 
(42)

hus the expression for Poisson’s ratio of a RUCE for the loading
irection-2 becomes 

21 U = 

sin θ ( h 
l 

+ 2 s 
l 
+ 2 sin θ ) 

2 cos 2 θ + 8( s 
l 
) 3 ( cos 2 α

sin 3 α
+ 

cos 2 β

sin 3 β
) + 2( s 

l 
) 2 ( cot 2 α + cot 2 β) 

(43)
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To derive the expression of equivalent Poisson’s ratio for load-

ng direction-2 of the entire irregular honeycomb structure ( ν21 eq ),

he Poisson’s ratios for the constituting RUCEs ( ν21 U ) are assem-

led as discussed below. For obtaining ν21 eq , stress σ 2 is applied

n direction-2 as shown in Fig. 5 (a)). If the application of stress

2 in the jth strip (as highlighted in Fig. 5 (b)) is considered, total

eformation of the jth strip in direction-1 is summation of indi-

idual deformations of the RUCEs in direction-1 of that particular

trip. Thus, 

1 L = 

m ∑ 

i =1 

ε1 i j L i j (44) 

sing the basic definition of ν21 Eq. (44) leads to 

ˆ 21 j ε2 L = 

m ∑ 

i =1 

ν21 Ui j ε2 i j L i j (45) 

here ˆ ν21 j represents the equivalent Poisson’s ratio for loading

irection-2 of the jth strip. ε2 and ε2 ij are the strains in direction-

 of jth strip and individual RUCEs of jth strip respectively. ν21 Uij 

epresents the Poisson’s ratio for loading direction-2 of a RUCE po-

itioned at ( i , j ). 

To ensure the deformation compatibility condition ε2 = ε2 i j for

 = 1 , 2 , . . . , m in the jth strip. Thus Eq. (45) leads to 

ˆ 21 j = 

∑ m 

i =1 ν21 Ui j l i j cos θi j ∑ m 

i =1 l i j cos θi j 

(46) 

otal deformation of the entire honeycomb structure in direction-

 under the application of stress σ 2 along the two opposite edges

arallel to direction-1 is summation of the individual deformations

n direction-2 of n number of strips. Thus 

2 B = 

n ∑ 

j=1 

ε2 j B j (47) 

y definition of ν21 Eq. (47) leads to 

ε1 

ν21 eq 

B = 

n ∑ 

j=1 

ε1 j 

ˆ ν21 j 

B j (48) 

rom the condition of deformation comparability ε1 = ε1 j for j =
 , 2 , . . . , n . Thus the equivalent Poisson’s ratio for loading direction-

 of the entire irregular honeycomb structure 

21 eq = 

1 

( 
∑ n 

j=1 B j 

∑ m 
i =1 l i j cos θi j ∑ m 

i =1 ν21 Ui j l i j cos θi j 
) 

n ∑ 

j=1 

B j (49) 

here ν21 Uij can be obtained from Eq. (43) . 
Fig. 6. RUCE and free-body diagram used
It can be noted here that following the similar way as dis-

ussed in Section 2.2 , the derived expressions of two Poisson’s

atios ( Eqs. (38) and (49) ) can be reduced to the formulae pro-

ided by Gibson and Ashby ( Gibson and Ashby, 1999 ) in case of

niform honeycombs (i.e. B 1 = B 2 = · · · = B n ; s = h/ 2 ; α = β = 90 ◦;

 i j = l and θi j = θ, for all i and j ), which follows E ∗
2 
ν∗

12 
= E ∗

1 
ν∗

21 
. For

egular uniform honeycombs ν∗
12 

= ν∗
21 

= 1 , where ν∗
12 

and ν∗
21 

de-

ote the Poisson’s ratios of uniform regular honeycombs. 

.5. Shear modulus (G 12 ) 

To derive the expression of shear modulus ( G 12 U ) for a RUCE,

hear stress τ is applied as shown in Fig. 6 (a). Lateral deforma-

ion of point D with respect to point H consists of three com-

onents, namely lateral deformation of the cell wall having incli-

ation angle α, lateral deformation of the vertical cell walls and

ateral deformation of the cell wall having inclination angle β . The

emaining structure except these two inclined cell walls having in-

lination angles α and β is symmetric. Thus points A, B, C (and

oints E, G, F) do not have any relative lateral movement under

he applied stresses. For this reason, the cell walls having incli-

ation angle θ do not have any contribution in the lateral defor-

ation of the RUCE. From Fig. 6 (b) M = F s, where F = 2 τ lb cos θ .

ue to equal bending stiffness of cell walls AB and BC, they will

hare half of moment M each. Using the standard result of Euler–

ernoulli beam theory, (deflection at one end due to application

f moment at the other end δ = Ml 2 / 6 E s I), the angle of rotation at

oint B can be expressed as 

= 

M 

2 

l 

6 E s I 
= 

F sl 

12 E s I 
(50) 

ateral deformation of the cell wall having inclination angle α has

wo components, bending deformation and rotational deformation

ue the rotation of joint B as shown in Fig. 6 (b). 

Thus the total lateral deformation of point D with respect to

oint B is 

L 1 = 

(
F sinα

3 EI 

(
s 

sinα

)3 

+ φ
s 

sinα

)
sinα

= 

F s 2 

12 EI 

(
l + 

4 s 

sinα

)
(51) 
 in the proposed analysis for G 12 . 
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Lateral deformation the cell wall having inclination angle β can

also be expressed in the similar way as 

δL 2 = 

F s 2 

12 EI 

(
l + 

4 s 

sinβ

)
(52)

In Fig. 6 (c), J is the midpoint of the member AE. Displacement of

point J with respect to point A is calculated in the similar way as

above considering the rotation of point A and bending deformation

of member AJ, 

δL 3 = 

F h 

2 

48 EI 
( l + 2 h ) (53)

Displacement of point J in direction-1 with respect to point E

( δL 4 ) is same as δL 3 . By replacing F = 2 τ lb cos θ and I = bt 3 / 12 in

Eqs. (51) –(53) total lateral movement of point D with respect to

point H 

δL = δL 1 + δL 2 + δL 3 + δL 4 

= 

2 τ l cos θ

Et 3 

(
2 ls 2 + h 

3 + 

h 

2 l 

2 

+ 4 s 3 
(

1 

sinα
+ 

1 

sinβ

))
(54)

The shear strain γ for a RUCE can be expressed as 

γ = 

δL 

2 s + h + 2 l sin θ

= 

2 τ l cos θ

Et 3 (2 s + h + 2 l sin θ ) 

(
2 ls 2 + h 

3 + 

h 

2 l 

2 

+ 4 s 3 
(

1 

sinα
+ 

1 

sinβ

))
(55)

Thus the expression for shear modulus of a RUCE becomes 

G 12 U = 

τ

γ

= E s 

(
t 

l 

)3 ( h 
l 

+ 2 s 
l 
+ 2 sin θ ) 

2 cos θ(2( s 
l 
) 2 + 4( s 

l 
) 3 ( 1 

sinα + 

1 
sinβ

) + ( h 
l 
) 3 + 

1 
2 
( h 

l 
) 2 ) 

(56)

To derive the expression of equivalent shear modulus of the en-

tire irregular honeycomb structure ( G 12 eq ), the shear moduli for

the constituting RUCEs ( G 12 U ) are assembled as discussed below.

For obtaining G 12 eq , shear stress τ is applied parallel to direction

direction-1 as shown in Fig. 7 (a)). If the equilibrium of forces for

application of stress τ in the jth strip (as highlighted in Fig. 7 (b))

is considered, 

τ L = 

m ∑ 

i =1 

τi j L i j (57)
s

Fig. 7. Free-body diagrams of idealized irregular honey
y definition of shear modulus Eq. (57) can be rewritten as 

ˆ 
 12 j γ L = 

m ∑ 

i =1 

G 12 Ui j γi j L i j (58)

here ˆ G 12 j represents the equivalent shear modulus of the jth

trip. γ and γ ij are the shear strains of jth strip and individ-

al RUCEs of the jth strip respectively. G 12 Uij represents the shear

odulus of a RUCE positioned at ( i , j ). 

To ensure the deformation compatibility condition γ = γi j for

 = 1 , 2 , . . . , m in the jth strip. Thus Eq. (58) leads to 

ˆ 
 12 j = 

∑ m 

i =1 G 12 Ui j l i j cos θi j ∑ m 

i =1 l i j cos θi j 

(59)

Total lateral deformation of one edge compared to the opposite

dge of the entire honeycomb structure under the application of

hear stress τ is the summation of the individual lateral deforma-

ions of n number of strips. Thus 

B = 

n ∑ 

j=1 

γ j B j (60)

y definition of G 12 Eq. (60) leads to 

τ

G 12 eq 

B = 

n ∑ 

j=1 

τ j 

ˆ G 12 j 

B j (61)

rom Eqs. (59) and (61) , equivalent shear modulus of the entire

rregular honeycomb structure can be expressed as 

 12 eq = 

1 

( 
∑ n 

j=1 B j 

∑ m 
i =1 l i j cos θi j ∑ m 

i =1 G 12 Ui j l i j cos θi j 
) 

n ∑ 

j=1 

B j (62)

here G 12 Uij can be obtained from Eq. (56) . 

It is worthy to note that the derived expression of shear modu-

us for irregular honeycombs ( Eq. (62) ) can be reduced to the for-

ulae provided by Gibson and Ashby ( Gibson and Ashby, 1999 )

n case of regular uniform honeycombs (i.e. B 1 = B 2 = · · · = B n ; s =
/ 2 ; α = β = 90 ◦; l i j = l and θi j = θ, for all i and j ) following the

imilar way as discussed in Section 2.2 . For a regular honeycomb

ith θi j = θ = 30 ◦

G 

∗
12 

E s 
= 0 . 57 

(
t 

l 

)3 

(63)

here G 

∗
12 

denotes the shear modulus of uniform regular honey-

ombs. The regular uniform honeycombs correctly obey the rela-

ion G = E/ 2(1 + ν) , where E , G and ν represent Young’s modulus,

hear modulus and Poisson’s ratio of isotropic solids respectively. 
comb structure in the proposed analysis of G 12 . 
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Fig. 8. Convergence study and validation of finite element model for obtaining elas- 

tic moduli (Ratio of the elastic moduli obtained using the finite element code and 

formulae provided by Gibson and Ashby for different elastic moduli have been plot- 

ted). 
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. Finite element modeling and validation 

A finite element code has been developed using Matlab

 MATLAB, 2013 ) to obtain the in-plane elastic moduli numerically

or honeycombs having spatially random structural variation. The

urpose of the finite element model in the present study is to val-

date the proposed analytical approach for obtaining in-plane elas-

ic moduli of irregular honeycombs. Each cell wall has been mod-

led as an Euler–Bernoulli beam element having three degrees of

reedom at each node. Axial and shear deformations have been ne-

lected in this study with the assumption of high axial rigidity and

ow cell wall thickness respectively. 

For obtaining E 1 and ν12 numerically, two opposite edges par-

llel to direction-2 of the entire honeycomb structure are con-

idered (refer 1). Along one of these two edges, uniform stress

arallel to direction-1 is applied while the opposite edge is re-

trained against translation in direction-1. Remaining two edges

parallel to direction-1) are kept free. Similarly, for obtaining E 2 
nd ν21 numerically, two opposite edges parallel to direction-1 of

he entire honeycomb structure are considered. Along one of these

wo edges, uniform stress parallel to direction-2 is applied while

he opposite edge is restrained against translation in direction-

. Remaining two edges (parallel to direction-2) are kept free.

o obtain G 12 numerically, uniform shear stress is applied along

ne edge keeping the opposite edge restrained against transla-

ion in direction-1 and 2, while the remaining two edges are kept

ree. 

The finite element model has been validated with results from

vailable literature ( Gibson and Ashby, 1999 ). The developed fi-

ite element code is capable of accepting the number of RUCEs

n direction-1 and 2 as input in addition to material properties

nd other geometrical features to obtain corresponding five elas-

ic moduli as output. Representative results for validation are fur-

ished in Fig. 8 for a regular honeycomb having cell angle 30 °
nd h / l ratio of 1.5. Convergence studies have been carried out

or the five in-plane elastic moduli with different number of RUCE

o ensure the average global behavior of the entire honeycomb by

voiding any localized deformation due to boundary effect. In the

resent study, the number of RUCE has been adopted as 1681 for

ll the subsequent analyses. 
. Results and discussions 

The analytical approach proposed in this study is capable of

btaining equivalent in-plane elastic properties for irregular hon-

ycombs from known spatial variation of cell angle and material

roperties of the honeycomb cells. Such irregularities in honey-

omb material can be characterized by using common techniques

ike digital image analysis. For the purpose of finding the range of

ariation in elastic moduli due to spatial uncertainty, cell angles

nd material properties can be perturbed following a random dis-

ribution within specific bounds. From the expressions of effective

lastic moduli derived in Section 2 , it is evident that all the five

lastic moduli depend on the ratios h / l , t / l , s / l and the angles θ , α,

(refer Fig. 4 (a)). In addition to these quantities, the two Young’s

oduli and shear modulus also depend on E s . In the present anal-

sis, results ( Figs. 10 –12 ) have been presented for three different

 / l ratios, namely: 1, 1.5 and 2 with a very small t / l value( ∼ 10 −2 ).

or each of these h / l ratios, three different cell angles have been

onsidered, namely: 30 °, 45 ° and 60 °. Only bending deformation

as been accounted in the present analysis as the effect due to

xial and shear deformation becomes negligible for very high ax-

al rigidity and small value of the ratio t / l respectively. In case of

arge deformation, the axial force that has been neglected in this

tudy, creates a beam-column effect leading to an additional mo-

ent in the inclined cell walls caused by the fact that the ax-

al loads no longer remain co-linear. The formulations presented

n Section 2 are valid for small strain allowing the non-linearity

ue to beam-column effect to be neglected. As the two Young’s

oduli and shear modulus of low density honeycomb are propor-

ional to E s ρ3 ( Zhu et al., 2001 ), the non-dimensional results for

lastic moduli E 1 , E 2 , ν12 , ν21 and G 12 have been obtained us-

ng Ē 1 = 

E 1 eq 

E s ρ3 , Ē 2 = 

E 2 eq 

E s ρ3 , ¯ν12 = ν12 eq , ¯ν21 = ν21 eq and 

¯G 12 = 

G 12 eq 

E s ρ3 re-

pectively, where ‘ .̄ ’ represents the non-dimensional elastic mod-

lus and ρ is the relative density of honeycomb (ratio of the planar

rea of solid to the total planar area of the honeycomb). Results

ave been presented for spatial irregularity in the cell angles only.

he maximum, minimum and mean values of non-dimensional in-

lane elastic moduli for different degree of spatially random vari-

tions in cell angles ( �θ = 0 ◦, 1 ◦, 3 ◦, 5 ◦, 7 ◦) are shown in Figs. 10 –

4 . For a particular cell angle θ , results have been obtained using

 set of uniformly distributed 10 0 0 random samples in the range

f [ θ − �θ, θ + �θ ] . The set of input parameter for a particular

ample consists of N number of cell angles in the specified range,

here N(= n × m ) is the total number of RUCEs in the entire ir-

egular honeycomb structure. In the present analysis t , s and E s 
ave been modeled to possess no spatial variation. The quantities

 and θ have been considered as the two random input param-

ters while α, β and l are dependent features. Typical statistical

istribution of cell angles for a randomly chosen sample is shown

n Fig. 9 (a). For that particular sample, the statistical distribution

f the inclination angle α is presented in Fig. 9 (b). The figures

ndicate that, even though the cell angles of an irregular honey-

omb sample have been drawn from an uniform distribution, in-

erestingly spatial distribution of the inclination angle α changes

o Gaussian. The numerical values shown in the right side of each

 I ’ shaped marks ( Figs. 10 –14 ) represent percentage errors in the

aximum and minimum values of elastic moduli calculated using

he proposed analysis compared to the finite element results. The

umerical values shown in the left side represent the same for

he mean values. Smaller values in the percentage errors would

ndicate that the proposed analytical approach is capable of ob-

aining in-plane elastic moduli for irregular honeycombs with high

recision and vice versa. Points on the Y-axis depicts the values

f elastic moduli corresponding to perfectly periodic cell structure

i.e. �θ = 0 ). 
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Fig. 9. Typical statistical distribution of cell angle ( θ ) and inclination angle α (number of RUCE: 1681). 

Fig. 10. Effect of structural irregularity on non-dimensional E 1 . 
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Fig. 11. Effect of structural irregularity on non-dimensional E 2 . 
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.1. Longitudinal elastic modulus ( E 1 ) 

Variation in the values of E 1 due to spatially random variations

n the cell angles is shown in Fig. 10 . From the figures it is clear

hat irregularity in the cell angles have negligible influence in the

ongitudinal elastic modulus. Fig. 10 also reveals that with the in-

rease of both the cell angle ( θ ) and h / l ratio, the mean values of

on-dimensional E 1 for the entire irregular honeycomb decrease.

his can be attributed to the fact that same trend is followed in

he non-dimensional E 1 of a single RUCE with the variation of cell

ngle and h / l ratio. 

.2. Transverse elastic modulus (E 2 ) 

Fig. 11 shows the effect of irregularity due to spatially random

ariations of cell angles in E 2 . From the figures it is evident that

he values of E 2 reduce considerably with increasing degree of ran-

om variations in cell angles. The highest rate of reduction in the

alues of E with the increase in degree of irregularity is noticed
2 
or mean cell angle of 60 °, followed by 45 ° and 30 °. Fig. 11 also

eveals that with the increase of both cell angle ( θ ) and h / l ratio,

ean values of non-dimensional E 2 for the entire irregular hon-

ycomb increase depending on the variation of non-dimensional

 2 of a single RUCE with cell angle and h / l ratio respectively. The

ange of variation of E 2 is found to increase with increasing degree

f irregularity in cell angles. 

.3. Poisson’s ratio ν12 

Variation of ν12 due to spatially random variations in cell an-

les is shown in Fig. 12 . The figures indicate that irregularity in

ell angles do not have much influence in ν12 . The highest reduc-

ion in the values of ν12 with the increase in degree of irregularity

s noticed for mean cell angle of 30 °. Fig. 12 also shows that with

he increase of both cell angle ( θ ) and h / l ratio, mean values of

12 for the entire irregular honeycomb decrease depending on the

ariation of ν12 of a single RUCE with cell angle and h / l ratio re-

pectively. 
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Fig. 12. Effect of structural irregularity on non-dimensional ν12 . 
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4.4. Poisson’s ratio ν21 

Fig. 13 shows the effect of irregularity due to spatially random

variations of cell angles in ν21 . From the figures it is evident that

the values of ν21 reduce considerably with increasing degree of

random variations in cell angles. The highest rate of reduction in

the values of ν21 with the increase in degree of irregularity is no-

ticed for mean cell angle of 60 °, followed by 45 ° and 30 °. Fig. 13

also reveals that with the increase of both cell angle ( θ ) and h / l

ratio, mean values of non-dimensional ν21 for the entire irregular

honeycomb increase depending on the variation of ν21 of a single

RUCE with cell angle and h / l ratio respectively. 

4.5. Shear modulus (G 12 ) 

The effect of irregularity due to spatially random variations

of cell angles in G 12 is depicted in Fig. 14 , which shows that

the values of G reduce considerably with increasing degree of
12 
andom variations in cell angles. Fig. 14 also reveals that with

he increase of both cell angle ( θ ) and h / l ratio, mean values

f non-dimensional G 12 for the entire irregular honeycomb de-

rease depending on the variation of G 12 of a single RUCE with

ell angle and h / l ratio respectively. The range of variation of non-

imensional G 12 is noticed to increase with increasing degree of

patially random variations in cell angle. 

.6. Discussion 

The results presented in Sections 4.1 −4.5 show that the elastic

oduli obtained using the analytical method and by finite element

imulation are in good agreement, establishing the validity of the

losed-form expressions derived here. Papka and Kyriakides (1994)

ave reported that under-expansion in honeycomb cells results in a

esponse which has a higher elastic moduli, while over-expansion

as the opposite effect. The present investigation shows the effects

f spatially random distribution of under and over expanded cells
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Fig. 13. Effect of structural irregularity on non-dimensional ν21 . 
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w  
f different degree on elastic moduli of the entire irregular honey-

omb structure. Fig. 10 –14 show that the variation in E 1 and ν12 

ue to spatially random variations in cell angles is very less, while

here is considerable amount of reductions in the values of E 2 , ν21 

nd G 12 with increasing degree of irregularity. In the analysis of ir-

egular honeycomb structure having spatially random variations in

ell angles, the cell walls having inclination angles α and β play a

ital role. As the range of random variation in cell angles ( �θ ) in-

reases, the inclination angle with respect to direction-2 of these

ell walls are also found to increase. Thus with the increase of

θ , component of axial stiffness of these cell walls in direction-

 increase, while that in direction-2 decrease. As the cell walls are

onsidered axially rigid in this analysis, component of axial stiff-

ess of these cell walls in direction-2 are much higher compared

o bending stiffness for small value of �θ . Thus with the increase

f �θ , stiffness in direction-2 decreases causing subsequent reduc-

ion in E 2 and ν21 . However for small �θ as considered in this

tudy, component of axial stiffness of these cell walls in direction-
 are much lesser compared to that of direction-2 resulting the

ending stiffness to be predominant in direction-1. Due to this rea-

on, the variations in E 1 and ν12 are found negligible for small �θ .

he reason for reduction in G 12 with the increase of �θ can be ex-

lained using the same analogy. Under the application of shearing

tresses (refer Fig. 7 (a)), as the component of bending stiffness in

irection-1 decreases with the increase with �θ , a subsequent re-

uction in reduction in G 12 is noticed. 

. Summary and conclusions 

A novel analytical approach for predicting equivalent in-plane

lastic moduli of honeycombs having spatial irregularities is pre-

ented in this article. Though there are few literature available

ealing with different forms of irregularity in honeycombs, those

re based on either experimental investigation or numerical simu-

ation approach. This study proposes an efficient analytical frame-

ork. The results obtained using the proposed analytical method
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Fig. 14. Effect of structural irregularity on non-dimensional G 12 . 
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for spatially random variation of cell angles have been compared

with those obtained from the direct finite element simulation. The

mean and range of variation for different elastic moduli are found

to be in good agreement. Equivalent elastic properties of irregular

honeycombs can be obtained using the proposed analytical frame-

work more efficiently compared to expensive finite element sim-

ulation approach without compromising the accuracy of results.

The closed-form formulae of elastic moduli for irregular honey-

combs have been summarized in Table 1 for ready reference to the

readers along with the expressions of elastic moduli for uniform

honeycombs. The quantities Z GA , Z U and Z eq represent the elas-

tic moduli of regular honeycomb provided by Gibson and Ashby

( Gibson and Ashby, 1999 ), elastic moduli of a single representative

unit cell element (RUCE) and elastic moduli of the entire irregu-

lar honeycomb respectively, where ‘ Z ’ denotes the in-plane elastic

modulus. 

It can be noticed that the expressions of longitudinal Young’s

modulus, transverse Young’s modulus and shear modulus are func-

tions of both structural geometry and material properties of the
rregular honeycomb (i.e. ratios h / l , t / l , s / l and angles θ , α, β and

 s ), while the Poisson’s ratios depend only on structural geometry

f irregular honeycombs (i.e. ratios h / l , t / l , s / l and angles θ , α, β)

refer Table 1 ). 

An important finding of this study is that, though the effect of

ariations in cell angle on E 1 and ν12 is small, E 2 , ν21 and G 12 re-

uce significantly with the increase in degree of random variation

f the cell angles. The highest reduction in the values of elastic

oduli is observed in case of E 2 and ν21 , when the mean cell an-

le is considered 60 °. This uncertainty in the elastic moduli of hon-

ycombs owing to random variations in cell angle would have sig-

ificant influence on the subsequent analysis and design process.

he formulae developed here can also be used to predict equiva-

ent in-plane elastic moduli of irregular honeycombs having spatial

ariation in material properties and thickness of cell wall. The pro-

osed conceptual analytical framework to efficiently deal with spa-

ial irregularities in honeycombs can be extended further to other

ellular structures considering appropriate representative unit cell

lement. 
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Table 1 

Summary of formulae for effective in-plane elastic properties of honeycombs. 
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