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An analytical formulation has been developed in this article for predicting the equivalent elastic proper-
ties of irregular honeycombs with spatially random variations in cell angles. Employing unit-cell based
approaches, closed-form expressions of equivalent elastic properties of regular honeycombs are available.
Closed-form expressions for equivalent elastic properties of irregular honeycombs are very scarce in avail-
able literature. In general, direct numerical simulation based methods are prevalent for this case. This pa-
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expressions of equivalent in-plane elastic moduli (longitudinal and transverse Young's modulus, shear
modulus, Poisson’s ratios) have been derived. The expressions of longitudinal Young’s modulus, transverse
Young’s modulus, and shear modulus are functions of both structural geometry and material properties of
irregular honeycombs, while the Poisson’s ratios depend only on structural geometry of irregular honey-
combs. The elastic moduli obtained for different degree of randomness following the proposed analytical

approach are found to have close proximity to direct finite element simulation results.
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1. Introduction

Honeycombs have gained considerable attention in recent years
as an advanced material due to its capability of meeting high per-
formance requirements in various critically desirable application-
specific parameters. These include specific strength and stiffness,
electro-mechanical properties, acoustic properties, shock absorp-
tion, fatigue strength, corrosion and fire resistance. Such lattice
and/or lattice-like structures are present in materials and struc-
tures across different length-scales. The use of honeycomb core in
several applications of sandwich structures is an important area
of research (Yonggiang and Zhigiang, 2008; Zenkert, 1995). An in-
depth analysis of the structural behavior of honeycomb can be use-
ful in emerging research areas such as carbon nano-materials like
graphene, as these are generally idealized to have hexagonal peri-
odic structural forms (Liu et al., 2012; Pantano et al., 2004; Scarpa
et al., 2009).

Honeycombs are modeled as a continuous solid having an
equivalent elastic moduli throughout its domain. This approach
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eliminates the need of detail finite element modeling of honey-
combs in complex structural systems like sandwich structures. To
date, extensive amount of research has been carried out to pre-
dict the equivalent elastic properties of regular honeycombs con-
sisting of perfectly periodic hexagonal cells (El-Sayed et al., 1979;
Gibson and Ashby, 1999; Goswami, 2006; Zhang and Ashby, 1992).
Constitutive models for two-dimensional linear as well as non-
linear elastic foams have been developed in (Warren and Kraynik,
1987) and (Warren et al., 1989) respectively considering an ap-
propriate representative volume element to analyse periodic foam
structure. Elasto-plastic yield limits and failure surfaces for large
deformations of transversely crushed honeycombs have been an-
alyzed using theoretical predictions in (Klintworth and Stronge,
1988). Recently numerical investigations of buckling and crushing
behavior of expanded honeycomb are found to be carried out by
Jang and Kyriakides (2015), while Wilbert et al. (2011) have stud-
ied buckling and progressive crushing of laterally loaded honey-
combs. Other important research areas concerning the study of dif-
ferent responses related to periodic honeycombs include low veloc-
ity impact (Hu and Yu, 2013) and buckling analysis (Lopez Jimenez
and Triantafyllidis, 2013) and wave propagation through lattices
(Schaeffer and Ruzzene, 2015). There is a substantial amount of
literature available on the study of perfectly periodic hexagonal
auxetic honeycombs (Critchley et al., 2013; Rossiter et al., 2014;
Scarpa et al., 2000). Of late theoretical formulations for equivalent
elastic properties of periodic asymmetrical honeycomb have been
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developed in (Chen and Yang, 2011), while the tailorable proper-
ties of hierarchical honeycombs, including spiderweb honeycombs
have been investigated in (Ajdari et al., 2012; Mousanezhad et al.,
2015). Analysis of two dimensional honeycombs dealing with in-
plane elastic properties presented in the above survey are com-
monly based on unit cell approach, which is applicable only for
perfectly periodic cellular structures.

A significant limitation of the aforementioned unit cell ap-
proach is that it cannot account for the spatial irregularity, which
is practically inevitable. Spatial irregularity in honeycomb may oc-
cur due to manufacturing uncertainty, structural defects, varia-
tion in temperature, pre-stressing and micro-structural variabil-
ity in honeycombs. To include the effect of irregularity, voronoi
honeycombs have been considered in several studies (Li et al.,
2005; Zhu et al., 2001; 2006). Dynamic crushing behavior of hon-
eycomb structures with irregularity in cell shapes and cell wall
thickness have been investigated in (Li et al., 2007). Triantafyllidis
and Schraad (1998) have reported study on failure surface of alu-
minium honeycombs under general in-plane loading to compare
the theoretical results, obtained for the infinite, perfectly periodic
honeycomb model and the numerical results, obtained for the fi-
nite counterpart with micro-structural imperfections considering
uncertainties in manufacturing and fabrication. Jang and Kyriakides
(2015); Papka and Kyriakides (1994); 1998) carried out numer-
ical and experimental study of honeycomb buckling and crush-
ing behavior considering geometrical imperfections in the struc-
ture such as variation in length of bond line and over or under
expanded cells. Though these studies substantially explore the ef-
fect of imperfections as pioneering works, a further need is felt to
extend these works for spatially random imperfections to develop
more realistic model of the uncertainties associated with such ir-
regularities. Stochastic multi-scale analysis for the elastic proper-
ties of honeycombs have been presented in more recent studies
(Basaruddin et al., 2014). The effect of defects on the behavior
of regular as well as voronoi honeycombs (Ajdari et al., 2008),
and the effect of manufacturing irregularity on auxetic honeycomb
(Liu et al., 2014) have been investigated. In the studies involv-
ing voronoi honeycombs, the shape of all irregular cells generated
using voronoi diagram may not be necessarily hexagonal, which
violates the presumption of hexagonal cell structure in many
applications. Published researches that explore the effect of dif-
ferent forms of irregularity on elastic properties and structural re-
sponses of honeycombs are based on either experimental investi-
gations or expensive finite element (FE) simulation. Experimental
investigations, being very expensive and time consuming, its prac-
tically not feasible to capture the effect of random irregularities in
honeycomb structure by testing huge number of samples. In finite
element approach, a small change in geometry of a single cell may
require completely new geometry and meshing of the entire struc-
ture. In general this makes the entire process time-consuming and
tedious. For quasi-static and dynamic analysis, finite element mod-
eling of the cellular core in a sandwich panel may increase the de-
gree of freedom of the entire structure up to huge extent, making
the overall process more complex and prohibitively expensive to
simulate. The problem becomes even worse for uncertainty quan-
tification of the responses associated with irregular honeycombs,
where the expensive finite element model is needed to be sim-
ulated for a large number of samples while using a Monte Carlo
based approach (Dey et al., 2015a; 2015b; 2015¢; Hurtado and Bar-
bat, 1998). Direct numerical simulation to deal with irregularity in
honeycombs may not necessarily provide proper understanding of
the underlying physics of the system. An analytical approach could
be a simple, insightful, yet an efficient way to obtain effective elas-
tic properties of honeycombs.

This paper develops an analytical framework for predicting
equivalent in-plane elastic properties of irregular honeycomb hav-

ing spatially random variations in cell angle. Geometrical imper-
fections due to over or under expanded cells have been considered
by Papka and Kyriakides (1994). However, random spatial distribu-
tion of over or under expanded cells has not been considered yet,
which can be a realistic and logical extension of the previous work.
As this article proposes closed-form formulae for such irregulari-
ties, the responses can be investigated in a more robust but effi-
cient manner. Towards the development of explicit analytical for-
mulae of in-plane elastic moduli for addressing any such form of
irregularity in cellular structures, this is the first attempt of its kind
to the best of authors’ knowledge. closed-form formulae developed
here can be a computationally efficient and less-tedious alterna-
tive to the expensive finite element modeling and simulation ap-
proach for many applications. This article is organized as follows.
Derivations of formulae for five in-plane elastic moduli of irregu-
lar honeycombs are described in Section 2. Development of finite
element model to obtain the in-plane elastic moduli numerically
and validation of the finite element code with available literature
(Gibson and Ashby, 1999) are discussed in Section 3. Variations of
elastic moduli for different degree of random variations in the cell
angle and comparison of results between the proposed analytical
approach and finite element simulation are detailed in Section 4.
Finally, Section 5 summarises the main findings and draws conclu-
sions based on the results obtained in the paper.

2. Elastic properties of irregular honeycombs

The key idea to obtain the effective in-plane elastic moduli of
the entire irregular honeycomb structure is that it is considered
to be consisted of several representative unit cell elements having
different individual elastic moduli. Elastic properties of each repre-
sentative unit cell element (RUCE) depends on its structural geom-
etry and material properties. The irregularity is accounted implic-
itly by means of the RUCEs. The RUCE considered in this study for
deriving the expressions of different in-plane elastic moduli for an
irregular honeycomb structure is shown in Fig. 1(b). The expres-
sions for elastic moduli of a RUCE is derived first and subsequently
the expressions for effective in-plane elastic moduli of the entire
irregular honeycomb are derived by assembling the individual elas-
tic moduli of these RUCEs using basic principles of mechanics as
discussed in the preceding sections. These formulae are applicable
for both tensile as well as compressive stresses.

2.1. Longitudinal Young’s modulus (E;)

To derive the expression of longitudinal Young’s modulus for a
RUCE (Eqy), stress o is applied in direction-1 (refer figure Fig. 1)
as shown in Fig. 2. The inclined cell walls having inclination an-
gle @ and B do not have any contribution in the analysis, as the
stresses applied on them in two opposite directions neutralise each
other. The remaining structure except these two inclined cell walls
is symmetric. The applied stresses cause the inclined cell walls
having inclination angle 0 to bend. From the condition of equilib-
rium, the vertical forces C in the free-body diagram of these cell
walls (refer Fig. 2(b)) need to be zero. In the present analysis the
cell walls are treated as beams of thickness t, depth b and Young’s
modulus Es. | and h are the lengths of inclined cell walls having
inclination angle 6 and the vertical cell walls respectively. From
Fig. 2(b),

Plsin®
2

M= (1)
where
P=o01(h+1sinf)b (2)

From the standard beam theory (Roark and Young, 1976), the de-
flection of one end compared to the other end of the cell wall
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(a) regular honeycomb
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Fig. 1. Typical representation of regular and irregular honeycomb structure.
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Fig. 2. RUCE and free-body diagram used in the proposed analysis for E;.

shown in Fig. 2(b) can be expressed as

PI3sinf
0= ——r 3
12E1 (3)
where I is the second moment of inertia of the cell wall, that is
I=bt3/12.

The component of § parallel to direction-1 is §sin6. The strain
parallel to direction-1 becomes
dsinf
= — 4
Icos@ )
Thus the Young's modulus in direction-1 for a RUCE can be ex-
pressed as

€1

£ 01 _ <£)3 cosf
U e T (¥+Sin9)sin29

To derive the expression of equivalent Young's modulus in
direction-1 for the entire irregular honeycomb structure (Eq¢q), the
Young’s moduli for the constituting RUCEs (E;y) are assembled as
discussed next. In the present analysis, the entire irregular honey-
comb structure (Fig. 1(b)) is assumed to have m and n number of
RUCEs in direction-1 and direction-2 respectively. A particular cell
having position at ith column and jth row is represented as (i, j),
where i=1,2,...,m and j=1,2,...,n. To obtain Ej., stress o
is applied in direction-1 as shown in Fig. 3(a). If the deformation
compatibility condition of jth strip (as highlighted in Fig. 1(b)) is

(5)

considered, the total deformation due to stress o ; of that particu-
lar strip (A1) is the summation of individual deformations of each
RUCEs in direction-1, while deformation of each of these RUCEs in
direction-2 is same. Thus for the jth strip

m

Ar =) Ay (6)
i=1

The Eq. (6) can be rewritten as
m

al=Y eyl (7)
i=1

where €; and L represent strain and dimension in direction-1 of
respective elements. Eq. (7) leads to

Li:
o1l :Zm ij (8)

Eij 5 B

From Eq. (8), equivalent Young’s modulus of jth strip (E; j) can be
expressed as

~ Z;i1 lij Cos 9,‘]‘
b= (9)
Zm lij cos 0
i=1 " Ey;

where 60 is the inclination angle of the cell walls having length I;
in the RUCE positioned at (i, j).
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Fig. 3. Free-body diagrams of idealized irregular honeycomb structure in the proposed analysis of E;.

B
LU

2

Fig. 4. RUCE and free-body diagram used in the proposed analysis for E,.

After obtaining the Young’s moduli of n number of strips, they
are assembled to achieve the equivalent Young’'s modulus of the
entire irregular honeycomb structure (E;,q) using force equilibrium
and deformation compatibility conditions.

n
U]Bb:ZO’Uij (10)
j=1
where B; is the dimension of jth strip in direction-2 and B =
Z?:l Bj. b represents the depth of honeycomb. As strains in
direction-1 for each of the n strips are same to satisfy the defor-
mation compatibility condition, Eq. (10) leads to

> Bj |Eieq =Y E1;B; (11)

Using Eqs. (9) and (11), equivalent Young’s modulus in direction-1
of the entire irregular honeycomb structure (E,4) can be expressed
as

1 n M Ljcos6;;
Eieg = —3 B; X:l_n: lii-COSGi'l] B; "
Y Biim\ xn, "y

where Young’s modulus in direction-1 of a RUCE positioned at
(i, j) is Eqyj, which can be obtained from Eg. (5).

2.2. Transverse Young's modulus (E,)

To derive the expression of transverse Young’s modulus for a
RUCE (E,y), stress o, is applied in direction-2 (refer Fig. 1) as
shown in Fig. 4(a). Total deformation of the RUCE in direction-2
consists of three components, namely deformation of the cell wall
having inclination angle «, deformation of the cell walls having in-
clination angle 6 and deformation of the cell wall having inclina-
tion angle B. All the cell walls are considered axially rigid in this

analysis. If the remaining structure except the two inclined cell
walls having inclination angle o and B is considered, two forces
that act at joint B are W and M. For the cell wall having inclina-
tion angle «, effect of the bending moment M; generated due to
application of W at point D is only to create rotation (¢) at the
joint B.

Vertical deformation of the cell wall having inclination an-
gle o has two components, bending deformation in direction-
2 and rotational deformation due the rotation of joint B as
shown in Fig. 4(b). The bending deformation in direction-2 can be
expressed as

s \3
Wcosoz(—A )
Ooup = — S/ cosa (13)

3EI

where W = 20,1bcos# and I = bt3/12.

From Fig. 4(b), M; = Wscote. Cell walls BC and BA will share
half of moment M; each as they have equal stiffness. Using the
standard result of Euler-Bernoulli beam theory, deflection at one
end due to application of moment at the other end (§ = MI2/6E;I),
the angle of rotation at joint B can be expressed as

M; |

¢= 2 GEI (14)

The component of rotational deformation of the cell wall having
inclination angle « in direction-2 can be expressed as

s
Sour :qb(%)cosa (15)

Thus from Eqgs. (13)-(15) after replacing W = 20,lbcos6, My =
Wscotae and I = bt3/12, total deformation in direction-2 of the cell
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Fig. 5. Free-body diagrams of idealized irregular honeycomb structure in the proposed analysis of E,.

wall having inclination angle « can be expressed as

2 2
812 = Bayp + Sour = 20,51 cos 6 (43 cos @, lc0t2a> (16)

Est3 sin’ o
Deformation in direction-2 of the cell wall having inclination angle
B can also be expressed in the similar way as

20,8%1cosO [ cos? B )
4s + lcot 17
Est3 ( sin’ B p (7

51/2 =

From Fig. 4(c), deformation of each of the cell walls having incli-
nation angle 6 in direction-2

w 3
L 5 cos6)l
Sy1 = “BEI cosb (18)

Replacing W = 20,1bcos® and I = bt3/12 from Eq. (18), total defor-
mation in direction-2 of two cell walls having inclination angle 6
can be expressed as

P 20514 cos3 0
1= TT12E3

Thus total deformation in direction-2 of the RUCE represented in
Fig. 4(a) due to application of stresses o, is

cos?
+ 73'8
sin” 8

+ 25%1(cot?a + cotzﬁ)> (20)

(19)

81/ = 81}2 + 81/2 + 51}1

oxlcosO (5 5 cos?
= —“—— (2P cos*6 +8s
Est3 < sin’ o

Strain in direction-2 can be obtained as
" h+2s+2lsin0d

Thus Young’s modulus in direction-2 of a RUCE can be expressed
as

€ (21)

(1 +2% 4+ 25sin6)

To derive the expression of equivalent Young’s modulus in
direction-2 for the entire irregular honeycomb structure (E;eq), the
Young's moduli for the constituting RUCEs (E,y) are assembled
as discussed below. For obtaining Ej.q, stress o, is applied in
direction-2 as shown in Fig. 5(a)). If the force equilibrium under
the application of stress o, of jth strip (as highlighted in Fig. 5(b))
is considered,

m m
(o] (Z 21,_, Ccos G,J)b = (ZO‘ZUZI,']‘ COS@[j)b (23)
i=1 i=1

By deformation compatibility condition, strains of each RUCE in
direction-2 of the jth strip are same. Eq.(23), rewritten as

m m
Ey; (Z lij cos@,-j>e = (Z Eyyijlij C059ij€ij) (24)
i=1 i=1

where €;; =€, fori=1,2...min the jth strip. Ezj is the equivalent
elastic modulus in direction-2 of the jth strip.

Ezj _ Z;ilmEZUfjlfj Ccos 9,‘1' (25)
Y1y lij cos By

Total deformation of the entire honeycomb in direction-2 (A;) is
the sum of deformations of each strips in that direction,

n
Ay = Z Ay (26)
j=1
The Eq. (26) can be rewritten as
n
6B = "¢B; (27)
j=1

where €;, €,; and B; represent total strain of the entire honey-
comb structure in direction-2, strain of jth strip in direction-2 and

% _p (Y
E2U—g—£s<l)

sin® o sin® 8

€os0(2c0s2 0 + 8(5)3 (252 1 5P 1 2(3$)2(cot2a + cot? B))

(22)
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dimension in direction-2 of jth strip respectively. Eq. (27) can be
rewritten as

n n
02 i Bj G 02B;

(28)
EZeq j=1 Ezj

From Egs. (25) and (28), the Young’s modulus in direction-2 of
the entire irregular honeycomb structure can be expressed as

1 Z::l B, (29)

M. ljcosO;;
where Young’'s modulus in direction-2 of a RUCE positioned at
(i, j) is Epyj, which can be obtained from Eq. (22).

It is worthy to mention here that the derived expressions of
Young’s moduli for irregular honeycombs (Egs. (12) and (29)) can
be reduced to the formulae provided by Gibson and Ashby (Gibson
and Ashby, 1999) in case of uniform honeycombs (i.e. B =B, =
<-=Bp; s=h/2; a =B=90° l;;=1and 6;; =6, for all i and j).
By applying the conditions By =By =---=Bpn; ljj =1 and 6;; =0,
Egs. (12) and (29) reduce to Eqy and E,y respectively. For s = h/2
and o = 8 =90°, Eyy and E,y produce the same expressions for
Young’s moduli of uniform honeycomb as presented by Gibson and
Ashby (Gibson and Ashby, 1999). In case of regular uniform honey-
combs (6 = 30°)

E; E; t\?
£=r=23(;) =

where Ej and E; denote the Young moduli of uniform regular hon-
eycombs in longitudinal and transverse direction respectively.

EZEq =

2.3. Poisson’s ratio v,

Poisson’s ratios are calculated by taking the negative ratio of
strains normal to, and parallel to, the loading direction. Poisson’s
ratio of a RUCE for the loading direction-1 (vqyy) is obtained as

(refer Fig. 2(a))
__©@
Viu = p (31)

where €1 and €, represent the strains of a RUCE in direction-1 and
direction-2 respectively due to loading in direction-1. €; can be ob-
tained from Eq. (4). From Fig. 2(b), €, can be expressed as
2§ cos O
h+2[sin6 + 2s

Thus the expression for Poisson’s ratio of a RUCE for the loading
direction-1 becomes

_ 2cos? 6
 (2sin€ +25 + 1)sing

€)= (32)

Viau (33)

To derive the expression of equivalent Poisson’s ratio for load-
ing direction-1 of the entire irregular honeycomb structure (Vqeq),
the Poisson’s ratios for the constituting RUCEs (vqyy) are assem-
bled as discussed below. For obtaining viyq, stress o is applied
in direction-1 as indicated in Fig. 3(a)). If the application of stress
o1 in the jth strip (as highlighted in Fig. 3(b)) is considered, total
deformation of the jth strip in direction-1 is summation of indi-
vidual deformations of the RUCEs in direction-1 of that particular
strip. Thus from Eq. (7), using the basic definition of vy,
€yl (34)
V1i2j i1 Vu12ij

€2

where €, and €,;; are the strains in direction-2 of jth strip and in-
dividual RUCEs of jth strip respectively. vy, represents the Pois-
son’s ratio for loading direction-1 of a RUCE positioned at (i, j). Dyy;

denotes the equivalent Poisson’s ratio for loading direction-1 of the
jth strip.

To ensure the deformation compatibility condition €, = €,;; for
i=1,2,..., m in the jth strip. Thus Eq. (34) leads to

Dins = _ 35

2= L (35)
i—1 V12uij

Total deformation of the entire honeycomb structure in direction-

2 under the application of stress o along the two opposite edges

parallel to direction-2 is summation of the individual deformations
in direction-2 of n number of strips. Thus

n
€B=)€;B, (36)
j=1
Using the basic definition of v, Eq. (36) becomes
n
V12eq€1B = Z Vipj€1jB; (37)
j=1

where vy, represents the equivalent Poisson’s ratio for loading
direction-1 of the entire irregular honeycomb structure. €; and €y;
denote the strain of entire honeycomb structure in direction-1 and
strain of jth strip in direction-1 respectively. From the condition
of deformation comparability €; = €;; for j=1,2,..., n. Thus from
Egs. (35) and (37),

n m

1 Zi:1 I,'j Cos 91']'
n ) I cos0;:

Zj:1 BJ j=1 23'11 e

V12uij
where vq,y; can be obtained from Eq. (33).

Vi2eq = Bj (38)

2.4. Poisson’s ratio vy;

Poisson’s ratio of a RUCE for the loading direction-2 (vyqy) is
obtained as (refer Fig. 4(a))
€1
D = - 39
210 . (39)
where €1 and €, represent the strains of a RUCE in direction-1 and
direction-2 respectively due to loading in direction-2. €, can be
obtained from Egs. (20) and (21) as

o — 0,1l cosb
27 Eg3(h+ 2s + 2Isinf)
2 2
x | 213 cos? 0 + 8s° C(_)S3 2. C(,)SB p
sino  sin’ B
+ 2s%1(cot?a + cotz,B)) (40)
From Fig. 4(c)
81 sin6
= " TcosH (41)
(% coso)
where §; = 2127551 and W = 20ylbcos6. Thus Eq. (41) reduces
to
3.
€ - _021 sinf cos 6 (42)

Est3

Thus the expression for Poisson’s ratio of a RUCE for the loading
direction-2 becomes

B sinf (4 425 +2sind)
B 2005260 +8(5)3 (952 + c"52’3)+2(§)2(cotzot+ cot? B)

sin’ o sin> B

V21u
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To derive the expression of equivalent Poisson’s ratio for load-
ing direction-2 of the entire irregular honeycomb structure (v31¢q),
the Poisson’s ratios for the constituting RUCEs (v,qy) are assem-
bled as discussed below. For obtaining vy, Stress o is applied
in direction-2 as shown in Fig. 5(a)). If the application of stress
o5 in the jth strip (as highlighted in Fig. 5(b)) is considered, total
deformation of the jth strip in direction-1 is summation of indi-
vidual deformations of the RUCEs in direction-1 of that particular
strip. Thus,

m
€1L=Z€1,‘J‘LU (44)
i=1
Using the basic definition of v,; Eq. (44) leads to
m
Dy j€2L = Z Vo1uij€aijlij (45)

i=1
where D,;; represents the equivalent Poisson’s ratio for loading
direction-2 of the jth strip. €, and €,;; are the strains in direction-
2 of jth strip and individual RUCEs of jth strip respectively. vy;y;
represents the Poisson’s ratio for loading direction-2 of a RUCE po-
sitioned at (i, j).

To ensure the deformation compatibility condition €, = €,;; for
i=1,2,...,min the jth strip. Thus Eq. (45) leads to
R it Varuijlij cos 6;
Dyj = T (46)

> i lij cos 0y

Total deformation of the entire honeycomb structure in direction-
2 under the application of stress o, along the two opposite edges
parallel to direction-1 is summation of the individual deformations
in direction-2 of n number of strips. Thus

n
€B=)€;B, (47)

j=1
By definition of vy Eq. (47) leads to

n
€1 €1
B= —B; (48)

Va1eq ; Va1j !

From the condition of deformation comparability €; = €;; for j=

1,2, ...,n. Thus the equivalent Poisson’s ratio for loading direction-
2 of the entire irregular honeycomb structure

] n
V2leq = ZBj (49)

(23}:1 B. > iy lij cos 0y ) P

m
Yo vawijlij cos 65

where v,y can be obtained from Eq. (43).

A

F
2

It can be noted here that following the similar way as dis-
cussed in Section 2.2, the derived expressions of two Poisson’s
ratios (Egs. (38) and (49)) can be reduced to the formulae pro-
vided by Gibson and Ashby (Gibson and Ashby, 1999) in case of
uniform honeycombs (i.e. By =By =---=Bp; s=h/2; o = 8 =90°;
lij=1and 6;; =0, for all i and j), which follows E5vy, = Ejv3;. For
regular uniform honeycombs v}, = v, = 1, where v}, and v;, de-
note the Poisson’s ratios of uniform regular honeycombs.

2.5. Shear modulus (Gy3)

To derive the expression of shear modulus (Gypy) for a RUCE,
shear stress 7 is applied as shown in Fig. 6(a). Lateral deforma-
tion of point D with respect to point H consists of three com-
ponents, namely lateral deformation of the cell wall having incli-
nation angle «, lateral deformation of the vertical cell walls and
lateral deformation of the cell wall having inclination angle S. The
remaining structure except these two inclined cell walls having in-
clination angles @ and B is symmetric. Thus points A, B, C (and
points E, G, F) do not have any relative lateral movement under
the applied stresses. For this reason, the cell walls having incli-
nation angle 6 do not have any contribution in the lateral defor-
mation of the RUCE. From Fig. 6(b) M = Fs, where F = 27lbcos6.
Due to equal bending stiffness of cell walls AB and BC, they will
share half of moment M each. Using the standard result of Euler—
Bernoulli beam theory, (deflection at one end due to application
of moment at the other end § = MI2/6EsI), the angle of rotation at
joint B can be expressed as

M I Fsl
T 2 6EJ] T 12E]

¢ (50)

Lateral deformation of the cell wall having inclination angle « has
two components, bending deformation and rotational deformation
due the rotation of joint B as shown in Fig. 6(b).

Thus the total lateral deformation of point D with respect to
point B is

5. — Fsinoz( s )3+¢ S Vsina
=\ 73Er \sina sina

Fs? 4s
= 12E (l + sina) 1)
© M
B Tz F
2
AII /
A
M 2

’ A F
M 5

Fig. 6. RUCE and free-body diagram used in the proposed analysis for Gq,.
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Lateral deformation the cell wall having inclination angle 8 can
also be expressed in the similar way as

Fs? 4s
%2 = 197 (l * sin,B) (52)
In Fig. 6(c), ] is the midpoint of the member AE. Displacement of
point ] with respect to point A is calculated in the similar way as
above considering the rotation of point A and bending deformation
of member AJ,

Fh?

O3 = @(l + 2h) (53)

Displacement of point ] in direction-1 with respect to point E
(814) is same as 8;3. By replacing F = 2tlbcos® and I = bt3/12 in
Eqs. (51)-(53) total lateral movement of point D with respect to
point H

O =811+ 082+ 813+ 014

2tlcos6 5 .3 h2l 3/ 1 1
5 (2!5 +h +7+4s (siinoe +7sin,8) (54)

The shear strain y for a RUCE can be expressed as
V= 25t h+2sing

2
_ 2tlcosf (2152+h3+hzl+453( 1.1 ))

Et3(2s + h + 2lsin6) sina -~ sinf
(55)
Thus the expression for shear modulus of a RUCE becomes
T
G - —
120 y
_E(t>3 (4 +2% +2sin6)
-\ 200502743 (g +ap) (D3 (D)
(56)

To derive the expression of equivalent shear modulus of the en-
tire irregular honeycomb structure (Gyeq), the shear moduli for
the constituting RUCEs (Gqpy) are assembled as discussed below.
For obtaining Giyeq, shear stress 7 is applied parallel to direction
direction-1 as shown in Fig. 7(a)). If the equilibrium of forces for
application of stress 7 in the jth strip (as highlighted in Fig. 7(b))
is considered,

TL = ZTULU (57)
i=1
DL
T 1
“ \
\ J Strip : I
B { 1
T\ \ lt
‘ 1
i
1 i
\ !
B . E
—
T

(a) Entire idealized irregular honeycomb structure

By definition of shear modulus Eq. (57) can be rewritten as

m
GpjyLl= Z GauijVijLij (58)
i=1
where Clzj represents the equivalent shear modulus of the jth
strip. y and y; are the shear strains of jth strip and individ-
ual RUCEs of the jth strip respectively. Gy,y; represents the shear
modulus of a RUCE positioned at (i, j).
To ensure the deformation compatibility condition y = y;; for
i=1,2,...,min the jth strip. Thus Eq. (58) leads to

Z?ll G12Uijlij Cos 9,‘]‘
Yol lij cos 0
Total lateral deformation of one edge compared to the opposite

edge of the entire honeycomb structure under the application of

shear stress T is the summation of the individual lateral deforma-
tions of n number of strips. Thus

Ciaj = (59)

n
yB=YvB; (60)
j=1

By definition of Gy, Eq. (60) leads to

n
‘EA
T gyl p (61)
¢ J
j=1 Y12j

GlZeq

From Egs. (59) and (61), equivalent shear modulus of the entire
irregular honeycomb structure can be expressed as

l n
noB. >y lij cos 6 Z B] (62)
(X By sty cosey ) 31

GlZeq =

where Gyyy; can be obtained from Eq. (56).

It is worthy to note that the derived expression of shear modu-
lus for irregular honeycombs (Eq. (62)) can be reduced to the for-
mulae provided by Gibson and Ashby (Gibson and Ashby, 1999)
in case of regular uniform honeycombs (i.e. By =By =--- =By; s =
h/2; a = B =90° Ijj =1 and 6;; = 0, for all i and j) following the
similar way as discussed in Section 2.2. For a regular honeycomb
with 9'1 =0 =30°

G: £\3
12 _ 0.57(7) 63
E. I (63)
where G}, denotes the shear modulus of uniform regular honey-
combs. The regular uniform honeycombs correctly obey the rela-
tion G =E/2(1+v), where E, G and v represent Young’'s modulus,
shear modulus and Poisson’s ratio of isotropic solids respectively.

T
[ —

5 T T T T
| A |
11 ‘a\‘ \‘ | it cel \

Ly —
T

(b) Idealized jt* strip

IR
‘r1 | ith Cell | LT

(c) Idealized it" cell in j** strip

Fig. 7. Free-body diagrams of idealized irregular honeycomb structure in the proposed analysis of Gi,.
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ted).

3. Finite element modeling and validation

A finite element code has been developed using Matlab
(MATLAB, 2013) to obtain the in-plane elastic moduli numerically
for honeycombs having spatially random structural variation. The
purpose of the finite element model in the present study is to val-
idate the proposed analytical approach for obtaining in-plane elas-
tic moduli of irregular honeycombs. Each cell wall has been mod-
eled as an Euler-Bernoulli beam element having three degrees of
freedom at each node. Axial and shear deformations have been ne-
glected in this study with the assumption of high axial rigidity and
low cell wall thickness respectively.

For obtaining E; and vq, numerically, two opposite edges par-
allel to direction-2 of the entire honeycomb structure are con-
sidered (refer 1). Along one of these two edges, uniform stress
parallel to direction-1 is applied while the opposite edge is re-
strained against translation in direction-1. Remaining two edges
(parallel to direction-1) are kept free. Similarly, for obtaining E,
and v,; numerically, two opposite edges parallel to direction-1 of
the entire honeycomb structure are considered. Along one of these
two edges, uniform stress parallel to direction-2 is applied while
the opposite edge is restrained against translation in direction-
2. Remaining two edges (parallel to direction-2) are kept free.
To obtain Gy, numerically, uniform shear stress is applied along
one edge keeping the opposite edge restrained against transla-
tion in direction-1 and 2, while the remaining two edges are kept
free.

The finite element model has been validated with results from
available literature (Gibson and Ashby, 1999). The developed fi-
nite element code is capable of accepting the number of RUCEs
in direction-1 and 2 as input in addition to material properties
and other geometrical features to obtain corresponding five elas-
tic moduli as output. Representative results for validation are fur-
nished in Fig. 8 for a regular honeycomb having cell angle 30°
and h/l ratio of 1.5. Convergence studies have been carried out
for the five in-plane elastic moduli with different number of RUCE
to ensure the average global behavior of the entire honeycomb by
avoiding any localized deformation due to boundary effect. In the
present study, the number of RUCE has been adopted as 1681 for
all the subsequent analyses.

4. Results and discussions

The analytical approach proposed in this study is capable of
obtaining equivalent in-plane elastic properties for irregular hon-
eycombs from known spatial variation of cell angle and material
properties of the honeycomb cells. Such irregularities in honey-
comb material can be characterized by using common techniques
like digital image analysis. For the purpose of finding the range of
variation in elastic moduli due to spatial uncertainty, cell angles
and material properties can be perturbed following a random dis-
tribution within specific bounds. From the expressions of effective
elastic moduli derived in Section 2, it is evident that all the five
elastic moduli depend on the ratios h/l, t/l, s/l and the angles 6, «,
B (refer Fig. 4(a)). In addition to these quantities, the two Young's
moduli and shear modulus also depend on E;. In the present anal-
ysis, results (Figs. 10-12) have been presented for three different
h/l ratios, namely: 1, 1.5 and 2 with a very small t/I value(~ 10-2).
For each of these h/l ratios, three different cell angles have been
considered, namely: 30°, 45° and 60°. Only bending deformation
has been accounted in the present analysis as the effect due to
axial and shear deformation becomes negligible for very high ax-
ial rigidity and small value of the ratio t/l respectively. In case of
large deformation, the axial force that has been neglected in this
study, creates a beam-column effect leading to an additional mo-
ment in the inclined cell walls caused by the fact that the ax-
ial loads no longer remain co-linear. The formulations presented
in Section 2 are valid for small strain allowing the non-linearity
due to beam-column effect to be neglected. As the two Young’s
moduli and shear modulus of low density honeycomb are propor-
tional to Esp3 (Zhu et al., 2001), the non-dimensional results for
elastic moduli Eq, Ey, Vi3, Vo1 and Gy, have been obtained us-
ing £, = Fieq C12eq
Esp3 Esp3
spectively, where * ©’ represents the non-dimensional elastic mod-
ulus and p is the relative density of honeycomb (ratio of the planar
area of solid to the total planar area of the honeycomb). Results
have been presented for spatial irregularity in the cell angles only.
The maximum, minimum and mean values of non-dimensional in-
plane elastic moduli for different degree of spatially random vari-
ations in cell angles (Af = 0°,1°, 3°,5°,7°) are shown in Figs. 10—
14. For a particular cell angle 6, results have been obtained using
a set of uniformly distributed 1000 random samples in the range
of [0 — AB,0 + AB]. The set of input parameter for a particular
sample consists of N number of cell angles in the specified range,
where N(=n x m) is the total number of RUCEs in the entire ir-
regular honeycomb structure. In the present analysis t, s and E;
have been modeled to possess no spatial variation. The quantities
h and 6 have been considered as the two random input param-
eters while «, 8 and [ are dependent features. Typical statistical
distribution of cell angles for a randomly chosen sample is shown
in Fig. 9(a). For that particular sample, the statistical distribution
of the inclination angle « is presented in Fig. 9(b). The figures
indicate that, even though the cell angles of an irregular honey-
comb sample have been drawn from an uniform distribution, in-
terestingly spatial distribution of the inclination angle o changes
to Gaussian. The numerical values shown in the right side of each
‘T' shaped marks (Figs. 10-14) represent percentage errors in the
maximum and minimum values of elastic moduli calculated using
the proposed analysis compared to the finite element results. The
numerical values shown in the left side represent the same for
the mean values. Smaller values in the percentage errors would
indicate that the proposed analytical approach is capable of ob-
taining in-plane elastic moduli for irregular honeycombs with high
precision and vice versa. Points on the Y-axis depicts the values
of elastic moduli corresponding to perfectly periodic cell structure
(i.e.A6 =0).

2e - - i
2= Esp%'v V12 = Vieq» V21 = V21¢¢ aNd Gyp = re-
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Fig. 11. Effect of structural irregularity on non-dimensional E;.

4.1. Longitudinal elastic modulus (E;)

Variation in the values of E; due to spatially random variations
in the cell angles is shown in Fig. 10. From the figures it is clear
that irregularity in the cell angles have negligible influence in the
longitudinal elastic modulus. Fig. 10 also reveals that with the in-
crease of both the cell angle (8) and h/I ratio, the mean values of
non-dimensional E; for the entire irregular honeycomb decrease.
This can be attributed to the fact that same trend is followed in
the non-dimensional E; of a single RUCE with the variation of cell
angle and h/I ratio.

4.2. Transverse elastic modulus (E;)

Fig. 11 shows the effect of irregularity due to spatially random
variations of cell angles in E,. From the figures it is evident that
the values of E; reduce considerably with increasing degree of ran-
dom variations in cell angles. The highest rate of reduction in the
values of E, with the increase in degree of irregularity is noticed

for mean cell angle of 60°, followed by 45° and 30°. Fig. 11 also
reveals that with the increase of both cell angle () and h/I ratio,
mean values of non-dimensional E, for the entire irregular hon-
eycomb increase depending on the variation of non-dimensional
E, of a single RUCE with cell angle and h/I ratio respectively. The
range of variation of E, is found to increase with increasing degree
of irregularity in cell angles.

4.3. Poisson’s ratio v,

Variation of vy, due to spatially random variations in cell an-
gles is shown in Fig. 12. The figures indicate that irregularity in
cell angles do not have much influence in vq,. The highest reduc-
tion in the values of v, with the increase in degree of irregularity
is noticed for mean cell angle of 30°. Fig. 12 also shows that with
the increase of both cell angle () and h/l ratio, mean values of
V1, for the entire irregular honeycomb decrease depending on the
variation of vy, of a single RUCE with cell angle and h/I ratio re-
spectively.
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Fig. 12. Effect of structural irregularity on non-dimensional vi,.

4.4. Poisson’s ratio vy;

Fig. 13 shows the effect of irregularity due to spatially random
variations of cell angles in v,;. From the figures it is evident that
the values of v,; reduce considerably with increasing degree of
random variations in cell angles. The highest rate of reduction in
the values of v,; with the increase in degree of irregularity is no-
ticed for mean cell angle of 60°, followed by 45° and 30°. Fig. 13
also reveals that with the increase of both cell angle () and h/l
ratio, mean values of non-dimensional v,; for the entire irregular
honeycomb increase depending on the variation of v,; of a single
RUCE with cell angle and h/I ratio respectively.

4.5. Shear modulus (Gq3)
The effect of irregularity due to spatially random variations

of cell angles in G, is depicted in Fig. 14, which shows that
the values of Gy, reduce considerably with increasing degree of

random variations in cell angles. Fig. 14 also reveals that with
the increase of both cell angle (/) and h/l ratio, mean values
of non-dimensional Gy, for the entire irregular honeycomb de-
crease depending on the variation of Gi, of a single RUCE with
cell angle and h/I ratio respectively. The range of variation of non-
dimensional Gy, is noticed to increase with increasing degree of
spatially random variations in cell angle.

4.6. Discussion

The results presented in Sections 4.1—4.5 show that the elastic
moduli obtained using the analytical method and by finite element
simulation are in good agreement, establishing the validity of the
closed-form expressions derived here. Papka and Kyriakides (1994)
have reported that under-expansion in honeycomb cells results in a
response which has a higher elastic moduli, while over-expansion
has the opposite effect. The present investigation shows the effects
of spatially random distribution of under and over expanded cells
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Fig. 13. Effect of structural irregularity on non-dimensional vy;.

of different degree on elastic moduli of the entire irregular honey-
comb structure. Fig. 10-14 show that the variation in E; and v,
due to spatially random variations in cell angles is very less, while
there is considerable amount of reductions in the values of E;, vy
and Gy, with increasing degree of irregularity. In the analysis of ir-
regular honeycomb structure having spatially random variations in
cell angles, the cell walls having inclination angles « and S play a
vital role. As the range of random variation in cell angles (A@) in-
creases, the inclination angle with respect to direction-2 of these
cell walls are also found to increase. Thus with the increase of
A6, component of axial stiffness of these cell walls in direction-
1 increase, while that in direction-2 decrease. As the cell walls are
considered axially rigid in this analysis, component of axial stiff-
ness of these cell walls in direction-2 are much higher compared
to bending stiffness for small value of Af. Thus with the increase
of A, stiffness in direction-2 decreases causing subsequent reduc-
tion in E; and v,;. However for small A9 as considered in this
study, component of axial stiffness of these cell walls in direction-

1 are much lesser compared to that of direction-2 resulting the
bending stiffness to be predominant in direction-1. Due to this rea-
son, the variations in E; and vy, are found negligible for small A6.
The reason for reduction in Gy, with the increase of Af can be ex-
plained using the same analogy. Under the application of shearing
stresses (refer Fig. 7(a)), as the component of bending stiffness in
direction-1 decreases with the increase with A6, a subsequent re-
duction in reduction in Gy, is noticed.

5. Summary and conclusions

A novel analytical approach for predicting equivalent in-plane
elastic moduli of honeycombs having spatial irregularities is pre-
sented in this article. Though there are few literature available
dealing with different forms of irregularity in honeycombs, those
are based on either experimental investigation or numerical simu-
lation approach. This study proposes an efficient analytical frame-
work. The results obtained using the proposed analytical method
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Fig. 14. Effect of structural irregularity on non-dimensional Gi;.

for spatially random variation of cell angles have been compared
with those obtained from the direct finite element simulation. The
mean and range of variation for different elastic moduli are found
to be in good agreement. Equivalent elastic properties of irregular
honeycombs can be obtained using the proposed analytical frame-
work more efficiently compared to expensive finite element sim-
ulation approach without compromising the accuracy of results.
The closed-form formulae of elastic moduli for irregular honey-
combs have been summarized in Table 1 for ready reference to the
readers along with the expressions of elastic moduli for uniform
honeycombs. The quantities Zgs, Zy and Zeq represent the elas-
tic moduli of regular honeycomb provided by Gibson and Ashby
(Gibson and Ashby, 1999), elastic moduli of a single representative
unit cell element (RUCE) and elastic moduli of the entire irregu-
lar honeycomb respectively, where ‘Z’ denotes the in-plane elastic
modulus.

It can be noticed that the expressions of longitudinal Young's
modulus, transverse Young's modulus and shear modulus are func-
tions of both structural geometry and material properties of the

irregular honeycomb (i.e. ratios h/l, t/l, s/l and angles 6, «, 8 and
Es), while the Poisson’s ratios depend only on structural geometry
of irregular honeycombs (i.e. ratios h/l, t/l, s/l and angles 0, «, )
(refer Table 1).

An important finding of this study is that, though the effect of
variations in cell angle on E; and vy, is small, E;, vy and Gy, re-
duce significantly with the increase in degree of random variation
of the cell angles. The highest reduction in the values of elastic
moduli is observed in case of E; and v,;, when the mean cell an-
gle is considered 60°. This uncertainty in the elastic moduli of hon-
eycombs owing to random variations in cell angle would have sig-
nificant influence on the subsequent analysis and design process.
The formulae developed here can also be used to predict equiva-
lent in-plane elastic moduli of irregular honeycombs having spatial
variation in material properties and thickness of cell wall. The pro-
posed conceptual analytical framework to efficiently deal with spa-
tial irregularities in honeycombs can be extended further to other
cellular structures considering appropriate representative unit cell
element.
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Summary of formulae for effective in-plane elastic properties of honeycombs.
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