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Abstract The present study portrays the stochastic natural frequencies of laminated composite conical shells
using a surrogate model (D-optimal design) approach. The rotary inertia and transverse shear deformation
are incorporated in probabilistic finite element analysis with uncertainty due to variation in angle of twist. A
sensitivity analysis is carried out to address the influence of different input parameters on the output natural
frequencies. Typical fiber orientation angle and material properties are randomly varied to obtain the stochastic
natural frequencies. The sampling size and computational cost are exorbitantly reduced by employing the
present approach compared to direct Monte Carlo simulation. Statistical analysis is presented to illustrate the
results. The stochastic natural frequencies obtained are the first known results for the type of analyses carried
out here.

1 Introduction

Composite materials have gained immense popularity due to their weight-sensitivity and cost-effectiveness
along with high specific stiffness and strength. An accelerated growth in demand of composite materials is
observed across a wide range of industries. Laminated composite materials are generally fabricated from
unidirectional plies of given thickness and with fiber orientation angles. Because of its inherent complexity, a
laminated composite shell is difficult to manufacture accurately according to its exact design specifications,
resulting in undesirable uncertainties. Fiber and matrix are fabricated with three basic steps, namely tape,
layup, and curing. The development of composite structures in the production process is always subject to large
variability due to manufacturing imperfection and operational factors. Hence, the uncertainties incurred during
the manufacturing process are due to the misalignment of ply orientation, intra-laminate voids, incomplete
curing of the resin, excess resin betweenplies, excessmatrix voids, andporosity resulting frommachine, human,
and process inaccuracy. Moreover, composite structures are often pretwisted due to design and operational
needs. The variation in twist angle inadvertently provides effects structural; for example, the wing twist of
an aircraft is provided to maintain optimum angle of attack preventing negative lift or thrust and maximizing
the aerodynamic efficiency. In addition, the natural frequency of such structures made of composites shows a
variability from its average value. In general, an additional factor of safety is incorporated by the designer to
account for such unpredictable frequency responses that may lead to either an ultraconservative or an unsafe
design. Thus, the structural stability is subjected to a considerable element of risk. Such risk is involved as
the variability in the estimated output (say stochastic natural frequency) resulting from the uncertainties in
the values of random input material properties and fiber parameters in each layer of laminated composites.
Uncertainties from one input parameter may propagate and influence another, through linking parameters, and
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the final system output may have a significant cascading effect due to the accumulation of risk. This variability
can result in significant deviations from the expected output. Therefore, it is essential to estimate the variability
in natural frequencies together with the expected performance characteristic value to ensure the operational
safety.

The Monte Carlo simulation technique is commonly utilized to generate the variable output frequency
dealing with large sample size. Although the uncertainty in material and geometric properties can be com-
puted by direct Monte Carlo Simulation, it is inefficient and incurs high computational cost. To mitigate this
lacuna, D-optimal design technique [1–5] is employed in the present analysis to map the inadvertent uncertain-
ties efficiently. Its purpose is to estimate response quantities in a cost-effective manner based on randomness
considered in input parameters (ply orientation angle, mass density, shear modulus, and elastic modulus). The
proposed procedure is based on constructing response surfaces that represent an estimate for the relationship
between the input parameters of the finite element model and response quantities of interest. The D-optimality
criterion was found to provide the best rational means among all other optimality criteria for creating exper-
imental designs in case of irregularly shaped response surfaces [6]. A multiplicative method was utilized for
computing D-optimal stratified designs of experiments by Radoslav [7]. The dynamic stability of uncertain
laminated beams subjected to subtangential loads was studied by Goyal and Kapania [8], and subsequently,
the stochastic finite element analysis of the free vibration of laminated composite plates was studied by Shaker
et al. [9]. On the other hand, Fang and Springer [10] studied on the design of composite laminates by a
Monte Carlo method, while Sasikumar et al. [11] investigated on stochastic finite element analysis of layered
composite beams with spatially varying non-Gaussian inhomogeneities. Ankenman et al. [12] employed the
Kriging approach for stochastic simulation bymeta-modelling. Park et al. [13] studied stochastic finite element
method for laminated composite structures while Ganesan and Kowda [14] investigated on free vibration of
composite beam-columns with stochastic material and geometric properties subjected to random axial loads.
The multi-response linear models with a qualitative factor were studied by Yue et al. [15] using D-optimal
design, while the optimal sampling frequency was investigated for high frequency using a finite mixture model
byChoi et al. [16]. Xu et al. [17] studied the uncertainty propagation in statistical energy analysis for structural–
acoustic coupled systems with non-deterministic parameters, while a finite element-based modal method was
employed for the determination of plate stiffness considering uncertainties by Kuttenkeuler [18]. The sto-
chastic finite element method [19–21] was employed in conjunction with laminated composites and other
applications.

Even though the assessment of the natural frequency of composite structures has gained a wide spectrum
of attention and applications, the treatment of uncertainties with a twist to quantify and analyze the same
for composite shells has received little attention. The novelty in the present study includes quantifying the
uncertainty of the first three natural frequencies of laminated composite conical shells. Moreover, to the best
of the authors’ knowledge, the application of D-optimal design is the first attempt of its kind in the realm of
stochastic analysis of laminated composites considering randomness in the twist angle. In the present study,
an algorithm is developed to quantify the stochastic natural frequencies of cantilever composite conical shells
using D-optimal design technique, and its efficacy is compared with the direct Monte Carlo simulation (MCS)
technique. A sensitivity analysis is also carried out to map the effect of individual input parameters on output
responses. An eight-noded isoparametric quadratic element with five degrees of freedom at each node is
considered incorporating rotary inertia and transverse shear deformation in the finite element formulation.

2 Governing equations

The present study is carried out as an extension of the previous work [22,23] to investigate the effect of
stochasticity in twist angle, ply orientation angle, and material properties applied to laminated composite
conical shells. The pretwisted composite cantilever conical shell with length Lo, reference width b, thickness
t , vertex angle φve, and base subtended angle of cone φo is furnished in Fig. 1. The component of radius
of curvature in the chordwise direction ry(x, y) is a parameter varying both in the x- and y- directions. The
variation in x-direction is considered to be linear, and there is no curvature along the spanwise direction
(rx = ∞). The cantilever shell is clamped along x = 0 with radius of twist rxy , which is assumed to
vary depending on the angle of twist. Thus, a shallow conical shell of uniform thickness, made of laminated
composite, is considered. A shallow shell is characterized by its middle surface and is defined by the equation
[24],



Stochastic natural frequency of composite conical shells 2539

Fig. 1 a Pretwisted composite cantilever shell, b conical shell model

z(ω̄) = −0.5
[(
x2/rx

) + {
2xy/rxy(ω̄)

} + (
y2/ry

)]
. (1)

The radius of twist (rxy), length (Lo) of the shell, and twist angle (Ψ ) are expressed as [25]

rxy(ω̄) = −Lo/ tanψ(ω̄), (2)

whereψ(ω̄)denotes the randomangle of twist,wherein the symbol (ω̄) indicates the stochasticity of parameters.
The constitutive equations for composite conical shell are given by [26]

{F} = [D(ω̄)] {ε}, (3)

where {F} is the internal force resultant vector expressed as

{F} = {
Nx , Ny, Nxy, Mx , My, Mxy, Qx , Qy

}T
,

{F} =
⎡

⎢
⎣

h/2∫

−h/2

{σx , σy, τxy, σx z, σyz, τxyz, τxz, τyz} zdz
⎤

⎥
⎦

T

, (4)

{ε} = {εx, εy, εxy, kx , ky, kxy, γxz, γyz}T,

[D(ω̄)] =
⎡

⎣
Aij(ω̄) Bij(ω̄) 0
Bij(ω̄) Dij(ω̄) 0
0 0 Sij(ω̄)

⎤

⎦ . (5)

The elements of the elastic stiffness matrix [D(ω̄)] are expressed as [26]

[
Aij(ω̄)

] =
nl∑

kk=1

[
Q̄ij(ω̄)

]
kk (zkk − zkk−1) for i, j = 1, 2, 6,

[
Bij(ω̄)

] = 1

2

nl∑

kk=1

[
Q̄ij(ω̄)

]
kk

(
z2kk − z2kk−1

)
for i, j = 1, 2, 6,

[
Dij(ω̄)

] = 1

3

nl∑

kk=1

[
Q̄ij(ω̄)

]
kk

(
z3kk − z3kk−1

)
for i, j = 1, 2, 6,

[
Sij(ω̄)

] = αs

nl∑

kk=1

[
Q̄ij(ω̄)

]
kk (zkk − zkk−1) for i, j = 4, 5,

(6)

where nl is the number of the laminate layer and αs is the shear correction factor and is assumed as 5/6.
[Aij(ω̄)], [Bij(ω̄)], and [Dij(ω̄)] are the extension, bending–extension coupling, and bending stiffness coeffi-
cients, respectively. [Q̄ij] is the off-axis elastic constant matrix, which is given by
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[
Q̄ij(ω̄)

]
off = [Tm(ω̄)]−1 [

Q̄ij
]
on [Tm(ω̄)]−T for i, j = 1, 2, 6,

[
Q̄ij(ω̄)

]
off = [

T̄m(ω̄)
]−1 [

Q̄ij
]
on

[
T̄m(ω̄)

]−T
for i, j = 4, 5, (7)

where

[Tm(ω̄)] =
⎡

⎣
sin2 θ(ω̄) cos2 θ(ω̄) 2 sin θ(ω̄) cos θ(ω̄)

cos2 θ(ω̄) sin2 θ(ω̄) −2 sin θ(ω̄) cos θ(ω̄)

− sin θ(ω̄) cos θ(ω̄) 2 sin θ(ω̄) cos θ(ω̄) sin2 θ(ω̄) − cos2 θ(ω̄)

⎤

⎦ , (8)

and
[
T̄m(ω̄)

] =
[
sin θ(ω̄) − cos θ(ω̄)
cos θ(ω̄) sin θ(ω̄)

]
,

in which θ(ω̄) is the random ply orientation angle.

[
Qij(ω̄)

]
on =

⎡

⎣
Q11(ω̄) Q12(ω̄) 0
Q12(ω̄) Q22(ω̄) 0

0 0 Q66(ω̄)

⎤

⎦ for i, j = 1, 2, 6, (9)

[
Q̄ij(ω̄)

]
on =

[
Q44(ω̄) Q45(ω̄)
Q45(ω̄) Q55(ω̄)

]
for i, j = 4, 5, (10)

where

Q11(ω̄) = E1(ω̄)

1 − ν12ν21
, Q22(ω̄) = E2(ω̄)

1 − ν12ν21
and Q12(ω̄) = ν12E2(ω̄)

1 − ν12ν21
,

Q66(ω̄) = G12(ω̄), Q44(ω̄) = G23(ω̄) and Q55(ω̄) = G13(ω̄).

The stochastic mass per unit area for each element of the conical shell is expressed as [27]

Pe(ω̄) =
n∑

k=1

zk∫

zk−1

ρe(ω̄) dz, (11)

where the suffix “e” represents the respective parameters for an element, and ρe(ω̄) denotes the stochastic
density parameter at each element. The element mass matrix is expressed as

[Me(ω̄)] =
∫

V

[N ][Pe(ω̄)][N ]dV , (12)

where V is the volume, and [N ] is the shape function matrix. The random stiffness matrix is given by

[K (ω̄)] =
1∫

−1

1∫

−1

[B(ω̄)]T [D(ω̄)] [B(ω̄)] dξ dη, (13)

where ξ and η are the local natural coordinates of the element. ApplyingHamilton’s principle [28], the dynamic
equilibrium equation of each element for free vibration is expressed as [29]

[Me(ω̄)][δ̈e] + [Ke(ω̄)]{δe} = 0. (14)

After assembling all the element matrices and the force vectors with respect to the common global coordinates,
the equation of motion of a free vibration system with ndof degrees of freedom can be expressed [30] as

[M (ω̄)]
[
δ̈
] + [K (ω̄)] {δ} = 0. (15)

In the above equation, M(ω̄) ∈ Rn×n is the mass matrix, [K (ω̄)] ∈ Rn×n is the stiffness matrix, while
{δ} ∈ Rn is the vector of generalized coordinates. The governing equations are derived based on Mindlin’s
theory [27] incorporating rotary inertia and transverse shear deformation. For free vibration, the stochastic
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natural frequencies [ωn(ω̄)] are determined from the standard eigenvalue problem [30] which is solved by the
QR iteration algorithm.

3 D-optimal design method

In general, a statistical measure of goodness of a model obtained by least-squares regression analysis is the
minimum generalized variance in the estimates of the model coefficients [4]. The D-optimal design method
is employed to provide a mathematical and statistical approach in portraying the input–output mapping by
the construction of meta-model with small representative number of samples. Considering the problem of
estimating the coefficients of a linear approximation is modelled by least-squares regression analysis

Y = Xβ + ε, (16)

where Y is a vector of observations of sample size, ε is the vector of errors having normal distribution with
zero mean, X is the design matrix, and β is a vector of unknown model coefficients and can be estimated by
using the least-squares method as

β = (
XTX

)−1
XTY. (17)

A measure of accuracy of the column of estimators, β, is the variance–covariance matrix that is defined as

V (β) = σ 2 (
XTX

)−1
, (18)

where σ 2 is the variance in the error. The matrix V (β) is a statistical measure of the goodness of the fit. V (β)
is a function of (XTX)−1, and therefore, one would want to minimize (XTX)−1 to improve the quality of the
fit. If X denotes the design matrix as a set of value combinations of coded parameters and XT is the transpose
of X , then D-optimality is achieved if the determinant of (XTX)−1 is minimal. The letter “D” stands for the
determinant of the (XTX)matrix associated with the model. In the present study, the constructed meta-models
provide an approximate meta-model equation that relates the input random parameters xi (say ply orientation
angle and elastic modulus of each layer of laminate) and output Y (say natural frequency) for a particular
system. The response surface model developed is actually an approximate mathematical model representing
a certain inherent property of a physical system, and it maps the input parameters xi to the corresponding
responses Y by an explicit function

Y = f (x1, x2, x3, x4, . . . xi . . . xk) + ε, (19)

where f denotes the approximate response function, ε is the statistical error term having a normal distribution
with null mean value, and k is the number of input variables. The input variables are usually coded as dimen-
sionless variables with zero as mean value and a standard deviation of xi . The first-order and second-order
polynomials are expressed as [4]

First-order model (interaction) : Y = βo +
k∑

i=1

βi xi +
k∑

i=1

k∑

j>i

βijxi x j + ε, (20)

Second-order model : Y = βo +
k∑

i=1

βi xi +
k∑

i=1

k∑

j>i

βijxi x j +
k∑

i=1

βi i x
2
i + ε, (21)

where βo, βi , βij, and βi i are the coefficients of the polynomial equation. The meta-model is employed to fit
approximately for a set of points in the design space using a multiple regression fitting scheme. The position of
design points is chosen algorithmically according to the selected number of input variables and their range of
variability. Hence, the design points are not considered at any specific positions; instead, they are selected in
such a fashion that it meets the optimality criteria. It provides the good accuracy of approximation compared to
direct Monte Carlo simulation method. In D-optimal design, the total sample size (n) is the summation of the
minimum number of design points [nd = 1

2 (k + 1)(k + 2)], additional model points (na = k), and lack-of-fit
points (nl). (i.e., n = nd+na+nl) where k is the number of stochastic input parameter. For model construction
in the present study, an overdetermined D-optimal design [31,32] (number of additional samples na, along with
the minimum point design and nl = 10 samples to estimate the lack of fit) has been used. The output feature
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(natural frequency) is selected in such a way that it is found to be sensitive enough corresponding to chosen
input features. The insignificant input features are screened out and not considered in the model formation. A
quantitative evaluation for the effect of each parameter on the total model variance is carried out using analysis
of variance (ANOVA) method according to its F test value

Fp = n − k − 1

k

(
SSR
SSE

)
, (22)

where Fp denotes the F test value of any input parameter p, while n, SSE, and SSR are the number of samples
used in the design procedure, sum of squares due to the model, and the residual error, respectively. The meta-
model constructed is checked by three basic criteria such as coefficient of determination or R2 term (measure
of the amount of variation around the mean explained by the model) and R2

adj term (measure of the amount
of variation with respect to the mean value explained by the model, adjusted for the number of terms in the
model), and R2

pred (measure of the prediction capability of the response surface model), which are expressed
as

R2 =
(
SSR
SST

)
= 1 −

(
SSE
SST

)
where 0 ≤ R2 ≤ 1, (23)

R2
adj = 1 −

(
SSE
n−k−1

)

(
SST
n−1

) = 1 −
(

n − 1

n − k − 1

) (
1 − R2) where 0 ≤ R2

adj ≤ 1, (24)

R2
pred = 1 −

(
PRESS

SST

)
where 0 ≤ R2

pred ≤ 1, (25)

where SST = SSE + SSR is the total sum of square and PRESS (predicted residual error sum of squares)
measures the quality of the fit of the model to chosen samples in the design space.

There are many sampling techniques, such as factorial designs, central composite design, optimal design,
Taguchi’s orthogonal array design, Plackett–Burman design, Koshal designs, Box–Behnken design, Latin
hypercube sampling, Sobol sequence [33–35], and surrogate model formation methods, such as polynomial
regression method, moving least-squares method, Kriging, artificial neural networks, radial basis function,
multivariate adaptive regression splines, support vector regression, and high-dimensional model representa-
tion [36]. The sampling method and surrogate modelling technique for a particular problem should be chosen
depending on the complexity of the model, the presence of noise in sampling data, nature and dimension (num-
ber) of input parameters, desired level of accuracy, and computational efficiency. Many comparative studies
have been performed over the years to guide the selection of surrogate model types [37–39]. The application of
D-optimal design for surrogate model formation in the area of structural engineering and mechanics (specif-
ically in FRP composite structures) is still very scarce, in spite of the fact that it has an immense potential
to be used as surrogate of expensive finite element simulation or experimentations of repetitive nature. The
D-optimal design method is suitable to handle a large number of input parameters efficiently for composite
structures compared to other methods, as the present model under consideration is linear in nature, and all the
data used are noise-free.

4 Stochastic approach using D-optimal design

The stochasticity in material properties of laminated composite conical shells, such as elastic modulus, mass
density, and geometric properties such as ply orientation angle, twist angle (Fig. 2) as input parameters, is
considered depending on the boundary condition for natural frequency analysis of composite conical shells.
In the present study, the frequency domain feature (first three natural frequencies) is considered as output. It
is assumed that the distribution of randomness of input parameters exists within a certain band of tolerance
with their central deterministic values. The cases wherein the random variables considered in each layer of
laminate are investigated for

(a) Variation in ply orientation angle only: θ(ω̄) = {θ1 θ2 θ3 . . . θi . . . θl}
(b) Variation in mass density only: ρ(ω̄) = {ρ1 ρ2 ρ3 . . . ρi . . . ρl}
(c) Variation in longitudinal shear modulus: G12(ω̄) = {G12(1) G12(2) G12(3) . . .G12(i) . . .G12(l)}
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(d) Variation in transverse shear modulus: G23(ω̄) = {G23(1) G23(2) G23(3) . . .G23(i) . . .G23(l)}
(e) Variation in elastic modulus (longitudinal): E1(ω̄) = {E1(1) E1(2) E1(3) . . . E1(i) . . . E1(l)}
(f) Combined variation in ply orientation angle, mass density, shearmodulus along longitudinal and transverse

direction, and elastic modulus (longitudinal):

g1 {θ(ω̄), ρ(ω̄),G12(ω̄),G23(ω̄), E1(ω̄)}
= {Φ1(θ1 . . . θl), Φ2(ρ1 . . . ρl), Φ3(G12(1) . . .G12(l)), Φ4(G23(1) . . .G23(l)), Φ5(E1(1) . . . E1(l))}

(g) Combined variation in ply orientation angle, mass density, shearmodulus along longitudinal and transverse
direction, elastic modulus (longitudinal), and angle of twist

g2{θ(ω̄), ρ(ω̄),G12(ω̄),G23(ω̄), E1(ω̄)}
= {Φ1(θ1 . . . θl), Φ2(ρ1 . . . ρl), Φ3(G12(1) . . .G12(l)), Φ4(G23(1) . . .G23(l)), Φ5(E1(1) . . . E1(l)),

Φ6(ψ1 . . . ψl)}
where θi , ρi ,G12(i), G23(i), E1(i), and ψi are the ply orientation angle, mass density, shear modulus along
longitudinal direction, shear modulus along transverse direction, elastic modulus along longitudinal direc-
tion, and angle of twist, respectively, and “l” denotes the number of layer in the laminate. The tolerances
of ±5◦, ±10◦, and ±15◦ for ply orientation angle with subsequent ±10, ±20, and ±30% for material
properties, respectively, from deterministic mean value are considered in the present study. In addition
to the above, the uncertainty in natural frequency due to random angle of twist [ψ(ω̄)] (±5◦ variation
considered for ψ = 0◦, 15◦, 30◦, and 45◦) is also investigated for a typical laminate.

5 Results and discussion

In the present study, four-layered graphite–epoxy symmetric angle-ply and cross-ply laminated composite
cantilever shallow conical shells are considered with aspect ratio of 0.7 and thickness ratio of 280. The
parameters of graphite–epoxy composite cantilever conical shells [40] are considered with deterministic value
as E1 = 138GPa, E2 = 8.9GPa, G12 = G13 = 7.1GPa, G23 = 2.84GPa, ρ = 3202 kg/m3, t = 0.002m,
ν = 0.3, Lo/s = 0.7, φo = 45◦, φve = 20◦. A typical discretization of a (6 × 6) mesh on plan area with 36
elements and 133 nodes with natural coordinates of an isoparametric quadratic element is considered for the
present finite element method. For full-scale MCS, number of original FE analysis is same as the sampling
size. In general for complex composite structures, the performance function is not available as an explicit
function of the random design variables. The random response in terms of natural frequencies of the composite
structure can only be evaluated numerically at the end of a structural analysis procedure such as the finite
element method which is often time-consuming. The present D-optimal design methodology is employed to
find a predictive and representative meta-model relating each natural frequency to a number of input variables.
Themeta-models are used to determine the first three natural frequencies corresponding to given values of input
variables, instead of time-consuming deterministic FE analysis. The probability density function is plotted as
the benchmark of bottom line results. Due to the scarcity of space, only a few important representative results
are furnished.

5.1 Validation

The present computer code is validated with the results available in the open literature. Table 1 presents
the non-dimensional fundamental frequencies of graphite–epoxy composite twisted plates with different ply
orientation angle [41]. The present formulation is validated for non-dimensional first three natural frequencies
for composite conical shells as furnished in Table 2. The differences between the results by Liew et al. [25]
and the present FEM approach can be attributed to the consideration of transverse shear deformation and
rotary inertia in the present FEM approach. The comparative study depicts an excellent agreement with the
previously published results, and hence, it demonstrates the capability of the computer codes developed and
insures the accuracy of analyses. In the present D-optimal design method, a sample size of 29 is considered
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Table 1 Non-dimensional first three natural frequencies [ω = ωnL2√(ρ/E1h2)] of three-layered [θ, −θ, θ] graphite–epoxy
twisted plates, L/b = 1, b/h = 20, ψ = 30◦

Fiber orientation
angle (θ)

f1 f2 f3

Present FEM Qatu and
Leissa [41]

Present FEM Qatu and
Leissa [41]

Present FEM Qatu and
Leissa [41]

15◦ 0.8618 0.8759 2.6551 2.6840 3.7661 3.8113
30◦ 0.6790 0.6923 2.5594 2.5952 3.7464 3.7969
45◦ 0.4732 0.4831 2.2287 2.2560 2.7493 2.7938
60◦ 0.3234 0.3283 1.7797 1.8088 1.9528 2.0015

Table 2 First three non-dimensional natural frequencies [ω = ωnb2
√

(ρh/D), D = Eh3/12(1− ν2)] for the untwisted shallow
conical shells with ν = 0.3, s/t = 1000, φo = 30◦, φve = 15◦

Aspect ratio (L/s) f1 f2 f3

Present FEM Liew et al. [25] Present FEM Liew et al. [25] Present FEM Liew et al. [25]

0.6 0.3552 0.3599 1.1889 1.2037 1.4602 1.4840
0.7 0.3013 0.3060 0.8801 0.8963 1.4090 1.4323
0.8 0.2731 0.2783 0.6984 0.7122 1.3795 1.4065

for each layer’s individual variation in ply orientation angle, mass density, longitudinal and transverse shear
modulus and longitudinal elastic modulus and twist angle, respectively. Due to the increased number of input
variables for combined random variation in ply orientation angle, mass density, longitudinal and transverse
shear modulus, and elastic modulus, the subsequent sample size of 261 is adopted to meet the convergence
criteria. Figure 3 depicts a representative plot describing the relationship between the original FE model and
the constructed D-optimal design meta-model for fundamental natural frequencies signifying the accuracy of
the present meta-model. In contrast, Fig. 4 shows a sample comparison of the probability density functions
(PDF) for both original MCS and D-optimal design meta-model using a sample size of 10,000 corresponding
to the first three natural frequencies. The low scatterness of the points found around the diagonal line in Fig. 3
and the low deviation obtained between the probability density function estimations of original MCS and
D-optimal design responses in Fig. 4 corroborate the fact that D-optimal design meta-models are accurately
formed. These two plots are checked and are found in good agreement ensuring the efficiency and accuracy
of the present constructed meta-model. While evaluating the statistics of responses through full-scale MCS,
computational time is exorbitantly high because it involves number of repeated FE analysis. However, in
the present method, MCS is conducted in conjunction with the D-optimal design model. Here, although the
same sampling size as in direct MCS (with sample size of 10,000) is considered, the number of actual FE
analysis is much less compared to original MCS and is equal to number representative sample required to
construct the D-optimal design meta-model. The D-optimal design meta-model is formed on which the full
sample size of direct MCS is conducted. Hence, the computational time and effort expressed in terms of
FE calculation is reduced compared to full-scale direct MCS. Hence, in order to save computational time, the
present constructed D-optimal design methodology is employed instead of traditional Monte Carlo simulation.
This provides an efficient affordable way for simulating the uncertainties in natural frequency. The sensitivity
of a given material or geometric property to each random variable is also quantified in the present meta-model
context. The representative probability density function for angle-ply and cross-ply laminate with respective
stochastic input parameters is compared with the results predicted by a Monte Carlo simulation (10,000
samples) wherein a good agreement is observed as furnished in Fig. 4. In the present analysis, the values of
R2, R2

adj and R2
pred are found to be close to one ensuring the best fit. The difference between R2

adj and R2
pred

is found less than 0.2, which indicates that the model can be used for further prediction. In addition to above,
another check is carried out, namely adequate precision which compares the range of the predicted values at
the design points to the average prediction error. For all cases of present D-optimal design meta-model, its
value is consistently found greater than four, which indicates the present model is adequate to navigate the
design space. The computational time required in the present study is observed to be around (1/345) times
(for individual variation in inputs) and (1/38) times (for combined variation in inputs) of direct Monte Carlo
simulation.
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Fig. 4 a–c Comparative study by PDF plot of original MCS and D-optimal design results with respect to first three natural
frequencies considering combined variation [ρ(ω̄), G12(ω̄), G23(ω̄),E1(ω̄)] for angle-ply and cross-ply composite conical shells

5.2 Statistical analysis

The material properties such as mass density [ρ(ω̄)], shear modulus (longitudinal and transverse)
[G12(ω̄),G23(ω̄)], and elastic modulus in longitudinal direction [E1(ω̄)] are assumed to be varied randomly
in each layer of the laminate. The composite conical shell is scaled randomly with uniform distribution of
input variables in the range having the lower and the upper limit as ±10% variability with respective mean
values, while for twist angle [ψ(ω̄)] and ply orientation angle [θ(ω̄)], the bounds are considered as within
±5◦ fluctuation with respective mean values of each layer of laminates. Although the uniform distribution of
stochastic input variables is considered, the stochastic outputs (i.e., natural frequencies) are very close to a
Gaussian distribution. The D-optimal design meta-models are formed to generate the first three natural fre-
quencies for angle-ply and cross-ply composite conical shells. The natural frequencies of the tested angle-ply
(45◦/−45◦/−45◦/45◦) laminate are found to be lower than that of the same for cross-ply (0◦/90◦/90◦/0◦)
laminate irrespective of stochasticity considered in random input parameters. Table 3 presents the comparative
study betweenMCS and D-optimal design for maximum values, minimum values, and percentage of deviation
for first three natural frequencies obtained due to individual stochasticity in each layer due to randomness
considered in only ply orientation angle for angle-ply and cross-ply composite cantilever conical shells. In this
case, the percentage of deviation between original MCS and D-optimal design of maximum value, minimum
value, mean value, and standard deviation for fundamental natural frequencies of angle-ply is found to be
higher than that of the same for cross-ply composite conical shells. Similar to the previous case, the percent-
age of deviation between original MCS and D-optimal design of maximum value, mean value, and standard
deviation for fundamental natural frequencies of the angle-ply is found to be higher than that of the same for
cross-ply composite conical shells expect for the minimum value, where a reverse trend is identified. All the
results obtained using original MCS and D-optimal design are observed to be in good agreement. Due to the
cascading effect resulting from combined stochasticity considered in five input parameters in each layer, the
bandwidth of variation in natural frequency is found to be higher than the stochasticity considered for variation
in any single input parameter.
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Table 3 Comparative study between MCS (10,000 samples) and D-optimal design (29 samples) results for maximum values,
minimum values, and percentage of deviation for first three natural frequencies obtained due to individual stochasticity in ply
orientation angle [θ(ω̄)] for angle-ply (45◦/−45◦/−45◦/45◦) and cross-ply (0◦/90◦/90◦/0◦) composite conical shells

Parameter Type of analysis Angle-ply (45◦/−45◦/−45◦/45◦) Cross-ply (0◦/90◦/90◦/0◦)
f1 f2 f3 f1 f2 f3

Max. value MCS 41.0610 108.3828 185.9936 52.4799 156.4330 287.6360
D-optimal 41.1975 108.9131 186.8028 52.4771 156.4974 287.9516
Deviation (%) −0.332 −0.489 −0.435 0.005 −0.041 −0.110

Min. value MCS 37.0048 94.8742 163.5500 47.7011 133.0286 242.0915
D-optimal 36.9809 94.7998 163.4015 47.6972 133.1006 242.2256
Deviation (%) 0.065 0.078 0.091 0.008 −0.054 −0.055

Mean value MCS 39.0706 101.7120 174.9002 49.9388 144.9036 265.9599
D-optimal 39.0839 101.7428 174.9548 49.9392 144.9268 265.9982
Deviation (%) −0.034 −0.030 −0.031 −0.001 −0.016 −0.014

Standard deviation (SD) MCS 0.6866 2.2887 3.7995 0.9905 4.9971 9.6838
D-optimal 0.6756 2.2998 3.8160 0.9920 4.9112 9.5052
Deviation (%) 1.602 −0.485 −0.434 −0.151 1.719 1.844

Considering individual stochasticity in elastic modulus shear modulus and mass density, the parametric
studies are carried out for maximum values, minimum values, means, and standard deviations of the first three
natural frequencies as depicted in Table 4, where the maximum and minimum volatility in natural frequency is
observed due to individual randomness of mass density and transverse shear modulus, respectively, while the
longitudinal shear modulus trailed by the elastic modulus is found to be intermediate. The sensitivity analysis
usingD-optimal design is performed for significant input parameter screening. The effect of stochasticity of ply
orientation angle of each and individual layer separately for angle-ply composite conical shells on respective
fundamental natural frequency is shown in Fig. 5g wherein for two outermost layers (i.e, layer 1 and layer 4),
it is found to have inverse relationship with ply orientation angle, but in due contrast to negative value of ply
orientation angle for two inner layers (i.e., layer 2 and layer 3), the reverse trend is observed. The variation
in elastic stiffness due to the randomness of ply orientation angle predominantly influences the fundamental
natural frequency. The interaction effect corresponding to randomness in ply orientation angle of respective pair
of layers for four-layered angle-ply laminate is furnished in Fig. 5a–f wherein two outermost layers are found
to act predominant role to influence the trend of volatility of fundamental natural frequency. The bandwidth
of fundamental natural frequency of combined ply angle variation in all four layers at a time is found in lower
range compared to the range found corresponding to randomness considered in separate each and individual
layer of the angle-ply laminate. Figure 6 presents the probability density function plot with stochastic angle of
twist (±5◦ variation) for the first three natural frequencies of angle-ply (45◦/−45◦/45◦/−45◦) conical shells.
Needless to mention that as the twist angle increases, due to the reduction in stochastic elastic stiffness, the
stochastic first three natural frequencies are found to decrease subsequently. As the degree of variation in
input parameters increases, the respective mean natural frequency values are found to reduce, but the volatility
(standard deviation) in stochastic natural frequencies is found to increase. In conformity to the same, the
probability density function plots with respect to first three natural frequencies are furnished considering
combined variation for cross-ply composite conical shells (Fig. 7).

The sensitivity index obtained from material and geometric properties to each random variable at the con-
stituent and ply levels is used as a guide to increase the structural reliability or to reduce the cost. Furthermore,
the probabilistic structural analysis and risk assessment is performed once the uncertain laminate properties
are computationally simulated. The sensitivity of different random variables for the laminate frequencies of
different modes may be different. In case of combined random variation in all input parameters, the percentage
contribution to the sensitivity of each and individual input parameter influencing output responses of angle-ply
and cross-ply composite conical shells is shown in Figs. 8 and 9, respectively, wherein the first three natural
frequencies are considered. From Fig. 8, it is observed that the predominant effect on the sensitivity of the
tested natural frequencies is influenced by the ply orientation angle followed by the mass density, trailed by
longitudinal shear modulus, elastic modulus, and the least contribution is observed for the transverse shear
modulus. In contrast to cross-ply composite conical shells, the sensitivity effect of the tested natural frequen-
cies is found to be dominated by the ply orientation angle followed by the elastic modulus of the two outmost
layers (null sensitivity effect is identified for the inner two layers due to the coupling effect), while subsequently
sensitivity contribution is trailed by the mass density followed by the longitudinal shear modulus, and null
sensitivity effect is identified for the transverse shear modulus.
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Fig. 6 Probability density function of first three natural frequencies (sample size=261) of angle-ply (45◦/−45◦/45◦/−45◦)
composite conical shells considering variation in angle of twist [ψ(ω̄)] (with ±5◦ variation)

6 Conclusions

The present approach includes the uncertainty quantification of the natural frequency considering the sto-
chastic effect of twist angle, ply orientation, and material properties for composite conical shells. D-optimal
design is first attempted for stochastic analysis of composite structures in the present study. The meta-model
formed from a small set of samples is found to establish the accuracy and computational efficacy. The results
obtained employing D-optimal design meta-models are compared with the results of the direct Monte Carlo
simulation method. The ply orientation angle is found to be most sensitive among all tested input para-
meters, while the transverse shear modulus is identified as least sensitive to the first three stochastic nat-
ural frequencies. As the stochastic twist angle increases, the stochastic first three natural frequencies are
found to decrease subsequently due to reduction in the stochastic elastic stiffness. From sensitivity analy-
sis of the combined input variation case, the ply orientation angles of two outer surface layers are found to
dominate the variation in natural frequencies. For the combined input variation case of the cross-ply lam-
inate, null sensitivity effect is identified at two inner layers for ply orientation angle and elastic modulus,
while in contrast, the sensitivity of the ply orientation angle for the angle-ply laminate at two inner layers
is found to be predominant. As the degree of variation in input parameters increases, the stochastic mean
natural frequency values are found to reduce, but the volatility in stochastic natural frequencies is found to
increase for both angle-ply and cross-ply laminates. For the angle-ply laminate, the predominant effect on
sensitivity on tested natural frequencies is influenced by the ply orientation angle followed by mass den-
sity, trailed by subsequently longitudinal shear modulus, elastic modulus and least contribution is observed
for the transverse shear modulus. For the cross-ply laminate, the prime sensitivity effect on tested natural
frequencies is influenced by the ply orientation angle followed by elastic modulus, trailed by mass den-
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Fig. 7 Probability density function with respect to first three natural frequencies (sample size=261) due to combined variation
for cross-ply (0◦/90◦/90◦/0◦) conical shells

Fig. 8 Sensitivity contribution in percentage for combined variation in [θ(ω̄), ρ(ω̄),G12(ω̄),G23(ω̄), E1(ω̄)] (sample size=261)
for angle-ply (45◦/−45◦/−45◦/45◦) composite conical shells
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Fig. 9 Sensitivity contribution in percentage for combined variation in [θ(ω̄), ρ(ω̄),G12(ω̄),G23(ω̄), E1(ω̄)] (sample size=261)
for cross-ply (0◦/90◦/90◦/0◦) composite conical shells

sity and longitudinal shear modulus, while the minimum effect is identified for the transverse shear mod-
ulus. More complex systems of laminated composite structures can be explored using the present generic
approach.
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