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� New formulation based on the non-
local elasticity theory is proposed to
investigate radial vibrations of the
nanoparticles subjected to magnetic
field.

� The influences of small scale and
elastic foundation on the radial fre-
quencies of several spherical nano-
particles are investigated.

� The transcendental equation for es-
timating the eigenfrequencies of the
nanoparticles is developed.
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B S T R A C T
An analytical model is presented for studying the effects of a circumferential magnetic field on the radial
breathing-mode frequency of a magnetically sensitive nanoparticle. The transcendental equation for
estimating the frequency of the breathing-mode of the elastically confined nanoparticles is developed
based on nonlocal continuum mechanics.
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Knowledge of the vibrational properties of nanoparticles is of fundamental interest since it is a signature
of their morphology, and it can be utilized to characterize their physical properties. In addition, the
vibration characteristics of the nanoparticles coupled with surrounding media and subjected to magnetic
field are of recent interest. This paper develops an analytical approach to study the radial breathing-
mode frequency of elastically confined spherical nanoparticles subjected to magnetic field. Based on
Maxwell's equations, the nonlocal differential equation of radial motion is derived in terms of radial
displacement and Lorentz's force. Bessel functions are used to obtain a frequency equation. The model is
justified by a good agreement between the results given by the present model and available experi-
mental and atomic simulation data. Furthermore, the model is used to elucidate the effect of nanoparticle
size, the magnetic field and the stiffness of the elastic medium on the radial breathing-mode frequencies
of several nanoparticles. Our results reveal that the effects of the magnetic field and the elastic medium
are significant for nanoparticle with small size.

& 2014 Elsevier B.V. All rights reserved.
adeh).
1. Introduction

In the fields of modern materials science and technology, na-
noparticles have been extremely interesting nano-objects due to
their enormous technological importance. Understanding their
structure and physical properties is crucial for many of their future
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Fig. 1. Nanoparticle embedded in the elastic matrix.
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novel applications. Knowledge of elastic vibrations is required to
describe various mechanical, thermal and electrical properties of
nanoparticles and efficient design of devices. In addition, the vi-
brations can be used to characterize nanoparticles. Therefore,
various theoretical and experimental approaches have been de-
veloped to gain insight into these vibrations. The vibrations can be
observed by inelastic scattering based optical techniques such as
low frequency Raman scattering [1,2], Brillouin scattering [3] and
time resolved femtosecond spectroscopy [4,5].

Voisin et al. [6] employed classical continuum mechanics to
derive expressions for the breathing acoustic mode of noble metal
nanoparticles embedded in an elastic medium. The analytically
obtained results were compared to the experimental data ob-
tained from a glass embedded with silver nanoparticles and gold
colloids using a time-resolved pump–probe technique. Using a
microscopic valence-force field model, the Raman intensities of
low-frequency phonon modes of spherical germanium nano-
particles with various diameters were studied [7]. In another work,
the vibration mode frequencies of spherical germanium were ob-
tained by using an atomistic approach based on the Stillinger–
Weber interaction potential and also utilizing the continuum
theory [8]. The vibration of elastically anisotropic nanoparticles
has been recently investigated [9,10]. Ng and Chang [11] in-
vestigated the laser-induced breathing vibration of gold and silver
nanospheres with size ranging from 5.8 to 46.2 nm. In this way,
the molecular dynamics and group theory were utilized. Recently,
the elastic vibration of spherical nanoparticles was investigated by
including the surface stress and the surface mass effects that can
be captured by the surface elasticity [12]. Radial vibration char-
acteristics of anisotropic spherical nanoparticles were analytically
investigated by Ghavanloo and Fazelzadeh [13] using nonlocal
continuum mechanics. More recently, the radial vibrations of
spherical nanoparticles immersed in a fluid medium was in-
vestigated based on the nonlocal elasticity theory [14].

In some new applications of nanotechnology, the investigation
on dynamic characteristic of the nanostructures under magnetic
field is useful [15]. Hence, in recent years, research interest has
grown on studying behavior of the nanostructures subjected to an
external magnetic field. Li et al. [16] investigated the effects of a
magnetic field on the dynamic characteristics of multi-walled
carbon nanotubes (MWNTs). The resonance frequencies and sta-
bility of a nanobeam subjected to a longitudinal magnetic field
were investigated by Firouz-Abadi and Hosseinian [17]. Murmu
et al. [18] developed an analytical model for studying the effects of
a longitudinal magnetic field on the vibration of a magnetically
sensitive double-walled carbon nanotube system. Dynamic re-
sponse of an embedded conducting nanowire subjected to an axial
magnetic shock was investigated by Kiani [19]. He also studied free
vibrations of conducting nano-plates subjected to unidirectional
in-plane magnetic fields [20].

From the above discussions it is understood that the study of
the mechanical behavior of nanostructures subjected to an ex-
ternal magnetic field is important and requires attention. In spite
of the extensive researches in the area of the dynamic character-
istics of nanostructures subjected to magnetic field, there has been
no attempt to tackle the problem described in the present paper.
The aim of this study is to investigate the radial breathing-mode
frequency of spherical nanoparticles subjected to the magnetic
field and embedded in an infinite elastic matrix. The radial
breathing-mode of nanoparticles is identified as the excitation of
A1g mode with in-phase radial displacement of atoms in the na-
noparticles. This mode may be of interest in many experiments
based on the inelastic scattering of light. Actually it has been well
established that it is the fundamental radial vibration that is ex-
cited in time resolved femtosecond pump-probe experiments
[21,22]. It should be noted that the breathing-mode is also Raman
active.

In this investigation, the nonlocal elasticity theory which was
first proposed by Eringen [23] is used to modify the classical
elasticity theory. A nonlocal governing equation of the nano-
particles in the radial direction under a magnetic field is derived
with considering the Lorentz magnetic force obtained from Max-
well's relation. The external medium is generally modeled as
Winkler-type foundation. The foundation modulus is represented
by stiffness of the springs. A Bessel function method is used to
obtain an analytical frequency relation for the radial breathing-
mode frequency of the nanoparticles with consideration of the
small scale effect, magnetic field and external medium stiffness. To
validate the accuracy of the present method, the results are
compared with solutions found in the literature. In addition, the
effects of the crucial parameters on the radial breathing-mode
frequency are elucidated.
2. Basic equation of nanoparticles under magnetic field

Consider a perfectly conducting spherical nanoparticle with
radius R and density ρ which is placed in a circumferential mag-

netic field = φ

→
HH (0, 0, ). It is convenient to choose the origin at the

center of the nanoparticle and use spherical coordinates r, θ and φ.
The nanoparticle has been embedded in an infinite elastic matrix.
The radial stiffness of the surrounding matrix of the nanoparticle is
represented by Km (Fig. 1). Under pure radial deformation, the
nonzero component of displacement can be denoted as u¼u(r, t).
Based on the nonlocal continuum mechanics, the constitutive re-
lations are [13]
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wherein c11, c12, c13, c22, c23 and c33 are six independent elastic
constants of anisotropic materials. The interested reader can find
more detail about the elastic constants of the crystals in Ref. [24]. μ
(μ¼e0a) is the nonlocal parameter revealing the small scale effect
on the responses of nanoscale structures. e0 is a material constant
and a is the lattice constant. In this study, we use e0E0.39 based
on the Eringen results [25]. In the particular case of nanoparticles
having cubic crystallinity, c11¼c22¼c33 and c12¼c13¼c23, the
constitutive relations are
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Assuming that the magnetic permeability, η, at the outer sur-
face of the nanoparticle to be equal to the magnetic permeability
of the matrix, and the matrix to be non-ferromagnetic and non-
ferroelectric, and omitting the displacement electric currents, the
Maxwell equations [26] for a perfectly conducting elastic body can
be expressed as

=
→ →
J hCurl (7)

η→
→

= − ∂
∂t

e
h

Curl (8)

→
=hdiv 0 (9)

η→
→ →

= − ∂
∂

×
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟t

e
U

H
(10)

→ → →
= ×( )h U HCurl (11)

in which
→
J , →e ,

→
h , and
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U represent the current density, strength

vectors of electric field, disturbing vectors of magnetic field and
the vector of displacement. Applying an initial magnetic field
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→

= φHH (0, 0, ) to Eqs. (7)–(1), yields [27]
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Due to the applied magnetic field on the nanoparticle, a body
force exerts on each element of the nanoparticle which is called
Lorentz's force [27,28] and calculated by
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It should be noted that in the present study the effective Lor-
entz force is a function of magnetic permeability and Hφ. In the
absence of external body forces and taking into account Lorentz's
force, the equation of motion for the nanoparticle is expressed as
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Using Eqs. (4)–(6), the nonlocal equation of motion is obtained
as
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To eliminate the stress components in the governing Eq. (19),
one can substitute the equation of motion in Eq. (18) into Eq. (19).
The resultant equation is
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3. Frequency equation

For the vibration analysis, it is assumed that the displacement u
varies harmonically with respect to the time variable t as follows:

ω=u r t U r t( , ) ( )sin( ) (21)

where ω is angular frequency related to natural frequency f by
ω¼2πf. Substituting Eq. (21) into Eq. (20), the following equation
is derived:
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It should be noted that the solution of Eq. (22) can be obtained
through solving
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Here, λ is an eigenvalue corresponding to boundary conditions
and given by local model. Therefore, analytical frequency relation
for the radial breathing-mode frequency of the nanoparticles is



Fig. 2. Radial-breathing mode periods for free Au nanoparticles.

Fig. 3. Radial-breathing mode periods for free Pt nanoparticles.
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obtained. This relationship is
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Eq. (23) is a Bessel equation and the general solution of the
Bessel equation corresponding to it is given by
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where A1 and A2 are unknown constants, J3/2 and Y3/2 are Bessel
functions of first- and second-kind, of order 3/2 respectively. As
the displacement must remain finite at the center of the nano-
particle, we must set A2¼0 to remove the infinite value of

λY r R r( / )/3/2 when r¼0. The resultant equation becomes
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The nanoparticle has been confined in an infinite elastic med-
ium with Young's modulus Em and Poisson's ratio νm. It can be
proved that the radial stiffness of the surrounding medium is
determined by

ν
=

+
K

E
R2 (1 ) (28)m

m

m

Therefore, the boundary conditions of Eq. (27) or the interac-
tion of the nanoparticle with its surrounding medium are given by

σ = −R t K u R t( , ) ( , ) (29)rr m

Substituting Eqs. (21) and (27) into boundary condition, the
frequency equation is obtained as below:
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By solving Eq. (30), we can obtain the radial frequencies of the
nanoparticles. It should be noted that the lowest frequency is the
breathing-mode which is critical to the characterization of the
nanoparticles.
Fig. 4. Radial-breathing mode frequency of five free nanoparticles as a function of
R-1.
4. Numerical results and discussion

In this section, the capabilities of the proposed model in pre-
dicting the radial breathing-mode frequency of elastically confined
spherical nanoparticles subjected to magnetic field are addressed.
To determine the numerical results, basic quantities which have to
be defined appropriately are the elastic constants of the nano-
particles. The parameters used in this work are given in Table 1
according to previous experimental and numerical investigations.
Table 1
Material properties of different nanoparticles.

Material Formula ρ/g cm�3 Elastic constants (1011

c11

Gold Au 19.283 1.9234
Nickel Ni 8.91 2.481
Platinum Pt 21.50 3.4670
Silver Ag 10.50 1.2399
Iron Fe 7.8672 2.26
To confirm the validity of the suggested model, we compare the
present results with some existing experimental results. Fig. 2
shows the predicted radial breathing-mode period for free Au
N/m2) Temperature (K) Lattice constant (nm)

c12

1.6314 300 0.408
1.549 298 0.352
2.5070 300 0.393
0.9367 300 0.409
1.40 298 0.287



Fig. 5. Radial-breathing mode frequency of Ag nanoparticle as a function of elastic
medium stiffness for several nanoparticle sizes.

Fig. 7. Variations of normalized frequency of Ni nanoparticle as a function of M for
several values of the nanoparticle size.
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nanoparticles without magnetic field in the size range up to 4 nm
along with the experimental data measured from time-resolved
pump-probe spectroscopy and atomistic simulation [29]. The
comparison of the calculated radial breathing-mode period for free
Pt nanoparticles with experimental and atomistic simulation data
is shown in Fig. 3. It can be seen that the nonlocal results are in
good agreement with the results reported in Ref. [29]. Therefore,
the nonlocal elasticity theory can be used for predicting the
breathing-mode frequency of nanoparticles. After verifying the
accuracy and reliability of the present formulation, we now pro-
ceed to the application of this method to various nanoparticles.

The variations of the radial breathing-mode frequency of dif-
ferent free nanoparticle without magnetic field including Au, Ni,
Pt, Ag and Fe nanoparticles with respect to the inverse radius are
plotted in Fig. 4. It is observed that the frequencies are not linear
functions of nanoparticle radius. This behavior is related to the
small scale effect.

To illustrate the effect of elastic medium, the radial breathing-
mode frequencies of Ag nanoparticles without magnetic field are
displayed in Fig. 5 for four different values of nanoparticle radius.
As expected, the radial breathing-mode frequency slightly in-
creases with an increase of stiffness of the elastic medium. The
present results are quite consistent with the literature experi-
mental results [30]. In addition, this figure reveals that the fre-
quency strongly depends on the particle size and increases with
decreasing size.

Another crucial study is conducted to examine the influence of
the magnetic field strength on the breathing-mode frequencies of
the nanoparticles. Therefore, as last numerical examples, the in-
fluence of the magnetic field on the radial breathing-mode fre-
quencies of nickel and iron nanoparticles are investigated. The
variations of the radial breathing-mode frequency of free iron
Fig. 6. Radial-breathing mode frequency of Fe nanoparticle as a function of R-1 for
several values of the magnetic field strength.
nanoparticles with respect to the inverse radius are indicated in
Fig. 6 for different values of the parameter η= φM H2. From the
figure, it is observed that the frequencies of iron nanoparticles
have higher frequencies in the presence of magnetic field than
without the magnetic field. The results show that the predicted
breathing-mode frequencies generally magnify as the influence of
the magnetic field strength becomes highlighted. Such a fact can
be interpreted by Eq. (24). Finally, to illustrate the simultaneous
effects of the magnetic field and external medium, the variations
of the normalized frequencies of the Ni nanoparticles as a function
of the parameter M are displayed in Fig. 7. The normalized fre-
quency is defined as
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In this figure, the stiffness of external elastic medium is set to
1020 (Pa/m). It can be seen from this figure that normalized fre-
quency increases as the magnitude of the M increases. This phy-
sical means that the magnetic field would lead to an increase of
the rigidity of the nanoparticles.
5. Concluding remarks

In this paper, an analytical model was presented for studying
the effects of a magnetic field on the radial breathing-mode fre-
quency of a magnetically sensitive nanoparticle. The transcen-
dental equation for estimating the frequency of the breathing-
mode of the elastically confined nanoparticles was developed
based on nonlocal continuummechanics. In spite of some previous
works on vibration analysis of the nanoparticles, to our knowl-
edge, there has been no attempt to address the problem described
in the present investigation. Developing the nonlocal elastic model
in conjunction with the magnetic effect is the main contribution of
the present paper. The comparison of theoretical results from the
present model with experiments and atomic simulation results
indicated a good agreement for Au and Pt nanoparticles. The main
results of the present work can be summarized as follows:
1)
 The frequency of breathing-mode is not inversely proportional
to the radius of the nanoparticle as predicted by the classical
elasticity.
2)
 We observed that the consideration of magnetic field may lead
to an increase of the stiffness of nanoparticles.
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3)
 The magnetic field and external elastic medium induce novel
size-dependent vibration behavior of the nanoparticles, which
is most significant for diameters below about 4 nm.

Finally, it should be noted that these results can be interesting
since the radial breathing-mode determination could be used as a
fingerprint to identify the nanoparticles diameter within such
spectroscopy techniques such as Raman spectroscopy and time-
resolved spectroscopy.
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