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Abstract: The first two moments of the steady-state response of a dynamical random system are determined through a polynomial chaos ex-
pansion (PCE) and a Monte Carlo simulation that gives the reference solution. It is observed that the PCE may not be suitable to describe the
steady-state response of a random system harmonically excited at a frequency close to a deterministic eigenfrequency: many peaks appear
around the deterministic eigenfrequencies. It is proved that the PCE coefficients are the responses of a deterministic dynamical system—the
so-called PC system. As a consequence, these coefficients are subjected to resonances associated to the eigenfrequencies of the PC system: the
spurious resonances are located around the deterministic eigenfrequencies of the actual system. It is shown that the polynomial order required to
obtain some good results may be very high, especially when the damping is low. These results are shown on a multidegree-of-freedom (DOF)
system with a random stiffness matrix. A 1-DOF system is also studied, and new analytical expressions that make the PCE possible even for
a high order are derived. The influence of the PCorder is also highlighted. The results obtained in the paper improve the understanding and scope
of applicability of PCE for some structural dynamical systems when harmonically excited around the deterministic eigenfrequencies.
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Introduction

The consideration of uncertainties plays a crucial role in accessing
the dynamic performance of a structure. A primary reason for this
is the increasing parametric sensitivity of the dynamic response
around the resonance frequencies. Response sensitivity to variations
of the structure, such as parametric variation in the Young’s mod-
ulus, Poisson’s ratio, density, or other kind of error sources, e.g.,
errors in themodel of damping, can be evaluated through uncertainty
quantification. It is generally considered that, at low frequencies, the
study of the response is best addressed by a parametric approach. For
this case, the stochastic FEMs (SFEM) (Ghanem and Spanos 1991)
can be applied to obtain statistics of response or the eigenvalues and
eigenvectors of the system.

Stochastic FEMs are principally divided into simulation-based
methods [e.g., Monte Carlo Simulation (MCS)] (Hurtado and Barbat
1998) and expansion-based methods (perturbation method, spectral
approach, and stochastic reduced basismethod). Reviews on SFEMs
applied to calculate the response statistics are given, for example, in
Stefanou (2009) and Schuëller and Pradlwarter (2009). Application

of perturbation methods to calculate response can be found in
Kleiber andHien (1992). Spectral approachmethods are reviewed in
Nouy (2009), where the most widely used spectral approach method
is polynomial chaos (PC) using a Galerkin scheme (Ghanem and
Spanos 1991) or collocationmethods (Berveiller et al. 2006;Xiu and
Hesthaven 2005; Xiu 2007). A different approach, followed in
Udwadia (1987a, b), proposed exact analytical expressions for the
response statistics for a single degree-of-freedom (1-DOF) system.
They were obtained from the probability density function (PDF) of
the eigenvalues, related to the PDF of the random parameters. Also,
Laplace’s integral has been used to calculatemoments and reliability
of response, where the maximum and Hessian of the logarithm
of the integrated function are obtained through different numeri-
cal methods (Papadimitriou et al. 1997). In the context of random
skeletal structures, a doubly spectral stochastic finite-element
(Adhikari 2011) approach was developed in the frequency domain.
This can be viewed as a stochastic dynamic stiffness formulation
(Ostoja-Starzewski and Woods 2003; Manohar and Adhikari 1998;
Adhikari and Manohar 2000).

The dynamic response of linear stochastic systems can be con-
sidered either in the modal domain or directly in the time or fre-
quency domain. The review papers (Stefanou 2009; Pradlwarter and
Schuëller 2010; Schuëller and Pradlwarter 2009) give an account of
the various techniques available. In themodal domain, many authors
used PC-based spectral projection approaches (Ghosh et al. 2005;
Verhoosel et al. 2006; Pascual and Adhikari 2012) for the eigen-
solutions of the system. However, spectral methods have not been
used widely for the direct computation of the response statistics.
Pichler et al. (2009) proposed a mode-based metamodel for the
frequency response functions of stochastic structural systems.
Adhikari and Manohar (1999) proposed a random eigenfunction
expansion method based on Galerkin projection for the fre-
quency domain response of stochastic dynamical systems. Van den
Nieuwenhof and Coyette (2003) proposed modal approaches for
the stochastic dynamic response of structures with material and
geometric uncertainties in the frequency domain. Impollonia and
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Ricciardi (2006) proposed a procedure to derive, in explicit form, the
stationary response of a linear structure subjected to Gaussian white
noise stochastic excitation. Their method is based on the solution of
complex eigenvalue problems for each fluctuating parameter.
Muscolino et al. (2000) discussed improved dynamic analysis of
structures with parametric uncertainties under deterministic input
forces. Fang (1995) proposed a transfer matrix–based approach in
conjunction with a perturbation method for dynamical systems.
Falsone and Ferro (2005, 2007) proposed the exact principal de-
formation mode (EPDM) approach for the frequency-domain re-
sponse of a general linear dynamical system. Their results show
excellent agreement with direct MCS results. Recently, Kundu and
Adhikari (2014) proposed a spectral-function approach for the time-
domain response of stochastic systems. The present work is not
related to the time integration issueswith PC expansion (PCE), as the
excitation as well as the response are harmonic; so, the calculations
are in the frequency domain and then, different issues arise. Lucor
and Karniadakis also worked on nonlinear random systems (Lucor
and Karniadakis 2004).

Few authors have discussed the convergence (Field and Grigoriu
2004, 2007) of the PCE for static problems (elliptic equations in
general). Practical works on dynamic problems show that some of
the nice and well-known features may not be preserved. There is
a lack of a detailed investigation in the literature on the behavior of
PCE in a dynamic context. The aim of this paper is to contribute so
that PCE can be applied to uncertain dynamical systems in an ac-
curate and computational-efficient manner. First, the authors ob-
serve that the PCE may not be suitable to describe the steady-state
response of a random system harmonically excited at a frequency
close to a deterministic eigenfrequency. Second, an explanation of
this undesirable behavior is given. Third, the quantities of interest are
studied when the number of terms of the PCE is increased; the
behavior of the PCE around the deterministic resonances is high-
lighted. Finally, it is shown that a PCE may be possible even for a
high PC order.

Response of a Harmonically Excited Random
Dynamical System

Uncertainties in a Dynamical System

The dynamical system is assumed to be described by its n3 n mass,
damping, and stiffness matrices,M,D, andK, where n is the number
of DOFs, the forces acting on this system are described by force
vector FðtÞ, and xðtÞ denotes the DOF vector.

The stiffness matrix is assumed to be uncertain and is given by

K ¼ Kð1þ dKjKÞ (1)

where jK 5 standard normal deviate; andK5 deterministic matrix,
which represents the mean stiffness matrix; the covariance matrix of
K is controlled by parameter dK . The deterministic dynamical system
corresponds to dK 5 0. This uncertainty is very simple. This choice
was motivated by the objective of the paper, which is not to find
a new method to derive the moments but to highlight and to ex-
plain a specific feature of a PCE around the deterministic eigen-
frequencies. This class of uncertainty makes the equations and the
explanations clearer. From a theoretical point of view, the normal
distribution may not appear relevant as a stiffness must not be
negative. However, because of the value of the mean and standard
deviation (SD) of the proposed distribution (SD5 0:05 for a unit
mean), a negative stiffness is an extremely rare event: for 10,000
independent samples of the random variable, no negative realization
was achieved, and accordingly, the probability that the stiffness

matrix defined by Eq. (1) is not positive definite is extremely weak.
From a practical point of view, this distribution is relevant. Further,
in a manufacturing context, the mean and SD are the only known
statics; therefore, if the constraint of positiveness is disregarded, the
distribution specified by the principle of maximum entropy is the
normal distribution. It must also be specified that all the develop-
ments made in this paper are applicable to other distributions such as
the uniform distribution.

In this study, the mass and damping matrices are assumed to be
deterministic. However, this is not a restriction, and this study may
be done with randommass and dampingmatrices. Conceptually, the
natural frequencies could have been perturbed. In this way, the
results of this study would immediately be generalized to propor-
tionally damped systems.

The force vector is assumed to be harmonicFðtÞ5F0eIvt, and the
steady-state response of the dynamical system is then xðtÞ5XeIvt,
where I5

ffiffiffiffiffiffiffi
21

p
, and X is the solution of the following equation:

2v2Mþ IvDþKð ÞX ¼ F0 (2)

AsK5 randommatrix,X5 randomvector,which canbedescribedby
itsmoments. In this study, thefirst twomoments areestimated.Because
of the class of systemunder study, thesemomentsmay also be obtained
by solving deterministic differential equations (Grigoriu 2002) or by
conditional Monte Carlo (Grigoriu 2002; Hammersley 1956).

As discussed previously, several methods may be used to derive
these moments, such as MCS or the PCE. In this paper, the MCS
results will be the reference results and the PCE results will be
compared to them.

The PC method is now a well-known and well-studied alter-
native toMCS that expands the solutionX in terms of polynomials
Cj, whose variables are a set of mutually independent standard
normal deviates (Ghanem and Spanos 1991). In this case, polynomial
chaos Cj is a Hermite polynomial and depends on one random
variable jK . Therefore, the response can be expanded on the PCbasis
such that

Xðv, jKÞ ¼
P‘
i50

XiðvÞCiðjKÞ (3)

This expression for Xðv, jKÞ can be truncated to a finite number of
terms P for the numerical study; P defines the number of poly-
nomials that is given by P1 15 ðm1 rÞ!=ðm!r!Þ, where r is the
number of random variables and m is the chaos order. Therefore,
by truncating the previous infinite expansion, an approximation of
Xðv, jKÞ is obtained as

XPðv, jKÞ ¼
PP
i50

XiðvÞCiðjKÞ (4)

In the following, the argument jK ofXP is dropped for convenience.

PC Component Dynamic Equation

As alreadymentioned, DOF vector xðtÞ is a random vector, and xðtÞ
is a solution to the equation

M€xðtÞ þ D _xðtÞ þKxðtÞ ¼ FðtÞ (5)

where K is defined by Eq. (1).
This random response vector may be expanded in terms of

Hermite polynomials Cj (Ghanem and Spanos 1991; Dessombz
2000). An approximation is obtained by truncating the infinite
series
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xPðtÞ ¼ PP
i50

YiðtÞCiðjkÞ (6)

t will be dropped to shorten the equations.
Substituting Eq. (6) into Eq. (5), one has

PP
i50

CjðjKÞ
�
M€Yi þ D _Yi þKYi

� ¼ F (7)

By using the Hermite polynomial properties and by taking into ac-
count Eq. (1), the following equations are obtained:

"j ¼ 0/P, h0, j, ji�M€Yj þ D _Yj þKYj
�

þ PP
i50

dKh1, i, jiKYj ¼ d0jF (8)

where dij 5 Kronecker d and

hk, i, ji ¼
ðþ‘

2‘

jkKCiðjKÞCjðjKÞ e
2j2K=2ffiffiffiffiffiffi
2p

p djK (9)

Because of the Hermite polynomial properties, the following rela-
tions may be easily derived:

h0, i, j i ¼
ðþ‘

2‘

CiðjKÞCjðjKÞ e
2j2K=2ffiffiffiffiffiffi
2p

p djK ¼ j!dij (10)

h1, i, j i ¼
ðþ‘

2‘

jKCiðjKÞCjðjKÞ e
2j2K=2ffiffiffiffiffiffi
2p

p djK

¼ dj iþ1 j!þ dj i21ð jþ 1Þ! (11)

Define

Mom0
.
Mom0

ij ¼ h0, i, j i and Mom0 2RðPþ1Þ�ðPþ1Þ (12)

Mom1
.
Mom1

ij ¼ h1, i, j i and Mom1 2RðPþ1Þ�ðPþ1Þ (13)

~M ¼ Mom0ÄM2R2ðPþ1Þ�2ðPþ1Þ (14)

~D ¼ Mom0ÄD2R2ðPþ1Þ�2ðPþ1Þ (15)

~K ¼ �
Mom0 þ dKMom1�ÄK2R2ðPþ1Þ�2ðPþ1Þ (16)

Y ¼ �
YT
0Y

T
1 / YT

P

�T 2R2ðPþ1Þ (17)

~FðtÞ ¼ �
FTðtÞ 0 0 / 0

�T 2R2ðPþ1Þ (18)

where Ä 5 Kronecker product; and ð•ÞT 5 transpose of ð•Þ. Then,
the components of the PC expansion satisfy the following equation:

~M€YðtÞ þ ~D _YðtÞ þ ~KYðtÞ ¼ ~FðtÞ (19)

It should be noted that Eq. (19) shows that the change of variables
provided by Eq. (6) leads to a 2ðP1 1Þ-DOF dynamical system that
will be referred to as the PC system in the following. Therefore, the
PCE transforms the study of a random dynamical system to the
study of a deterministic dynamical system. Accordingly, the PC
system has resonant frequencies and the steady-state response to
a harmonic force shows peaks related to these spurious resonances,
as will be illustrated with a 2-DOF system. This is an important
result of this paper; the spurious resonances will be referred to as
PC resonances.

Example

2-DOF System

The MCS and PCE methods will be used to evaluate the mean and
SD of X for the example shown in Fig. 1 (Didier 2012). Stiffness
k is assumed to be uncertain

k ¼ kð1þ dKjKÞ (20)

Thus, the mean stiffness matrix is

Fig. 1. 2-DOF system with stochastic stiffness coefficients

Table 1. System Characteristics

Characteristics Value

k (Nm21) 15,000
m (kg) 1
c (Nm21s21) 1
dK (percentage) 5
F01 (N) 1
F02 (N) 0
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K ¼ k

�
2 21

21 1

�
(21)

The characteristics of the system are listed in Tables 1 and 2. The
DOF vector was found for 501 values of v=ð2pÞ in the range of
10–35 Hz (Df 5 0:05 Hz).

The MCS results were obtained with 10,000 samples of the
random variable jK . The first two moments (mean and SD) are
plotted in Fig. 2. The deterministic response is also plotted in Fig. 2.

The PC expansion is calculated for two PC orders: 2 and 15. The
results are plotted in Figs. 3 and 4, and they are in perfect agreement
with theMCS results, except around the resonances, even for P5 2.
Around the resonances, some spurious oscillations arise, and it
seems that the curves oscillate more as P increases.

As previously explained, the PC coefficients are the solution
of a deterministic equation of motion of a mechanical system: the
PC system. The DOF number of the PC system is a multiple of
the DOF number of the deterministic real system; therefore, the
eigenfrequencies of the PC system are noticeable in the steady-
state response and resemble spurious PC eigenfrequencies. By
solving the PC eigenproblem associated with matrices ( ~K, ~M),

Table 2. Modal Characteristics of the Deterministic System

Eigenfrequencies, f (Hz) Damping ratio, j (%)

12.05 0.25
31.54 0.66

Fig. 2. Deterministic responses (solid lines); MCS with 10,000 samples (dotted lines): (a) mean of x1; (b) SD of x1
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the eigenfrequencies were determined, and then the modal
damping ratios were calculated; the eigenfrequencies and modal
damping ratios for several PC expansion degrees are listed in
Table 3.

Table 3 shows that the PC resonant frequencies may be divided
into two sets that are centered around the eigenfrequencies of the
deterministic system. This explains why there seems to be more and
more oscillations around the deterministic frequencies when P
increases (Figs. 3 and 4). In fact, there are no oscillations, but the
peaks are associated with resonances that have no physical meaning,
and the number of resonances increases with P. Similarly, the
damping ratios associated with a set of eigenfrequencies are similar
to the corresponding damping ratio. This explains why the curve is
smoother around the second deterministic eigenfrequency than the
first one.

Moreover, it turns out that the deterministic frequencies are in the
set of eigenfrequencies only when P is even. When P is odd, the
deterministic frequencies are antiresonant frequencies. This fact is
illustrated in Fig. 5 around the first and second deterministic fre-
quencies of the system. Not only are fluctuations of the mean
amplitudes observed when P increases, but also there are decreases
in the amplitudes and a switch between high and low amplitudes at
the first and second deterministic frequencies. This will be explained
in the following.

1-DOF System

The study of a random1-DOF system is now required to go further in
the calculation, and it shows representative behavior and the un-
derlying physics that would not change significantly with higher

Fig. 3. PC expansion of order 2 (solid lines) versus MCS (dotted lines): (a) mean of x1; (b) SD of x1
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dimension. Therefore, to keep working on the same example,
a modal analysis is performed and the modal coordinates are de-
veloped on PCs.

Let’s note (vðiÞ
det,F

ðiÞ
det) the deterministic ith mode associated with

(K, M): FðiÞ
det is also an eigenvector of (K, M) because of Eq. (20).

In the following, modal quantity ð•Þ related to mode i will be
denoted ð•ÞðiÞ. The associated modal coordinate, qðiÞðtÞ, satisfies

mðiÞ€qðiÞ þ cðiÞ _qðiÞ þ kðiÞqðiÞ ¼ FðiÞ (22)

whereFðiÞ 5F
ðiÞT
det F; andm

ðiÞ, cðiÞ, and kðiÞ may be easily determined
from the system characteristics. Moreover, Eq. (20) means that

kðiÞ 5 k
ðiÞð11 dK jKÞ.

Suppose a harmonic force [F0 expðIvtÞ] acts on the mass, and the
steady-state response is qðiÞðtÞ5QðiÞ expðIvtÞ; QðiÞ is expanded on
the PCs

QðiÞ ¼ PP
j50

YðiÞ
j CjðjKÞ (23)

and QðiÞ is governed by the following equation:	
aðiÞ þ k

ðiÞ
dKjK



QðiÞ ¼ FðiÞ (24)

where aðiÞ 5 ðkðiÞ 2v2mðiÞ 1 IvcðiÞÞ. Then, the PC expansion com-
ponents satisfy

Fig. 4. PC expansion of order 15 (solid lines) versus MCS (dotted lines): (a) mean of x1; (b) SD of x1
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aðiÞ
PP
j50

YðiÞ
j CjðjKÞ þ k

ðiÞ
dK

PP
j50

YðiÞ
j jKCjðjKÞ ¼ FðiÞ (25)

Using the Hermite polynomial orthogonality properties given by
Eqs. (10) and (11), the following P1 1 equations are derived:

aðiÞ0!YðiÞ
0 þ k

ðiÞ
dK1!Y

ðiÞ
1 ¼ FðiÞ (26)

aðiÞ1!YðiÞ
1 þ k

ðiÞ
dK1!Y

ðiÞ
0 þ k

ðiÞ
dK2!Y

ðiÞ
2 ¼ 0 (27)

« ¼ «

aðiÞðP2 1Þ!YðiÞ
P21 þ k

ðiÞ
dKðP2 1Þ!YðiÞ

P22 þ k
ðiÞ
dKP!Y

ðiÞ
P ¼ 0 (28)

aðiÞP!YðiÞ
P þ k

ðiÞ
dKP!Y

ðiÞ
P21 ¼ 0 (29)

The jth equation may be simplified by dividing this equation by
ð j2 1Þ!.

Define NðiÞ
j and DðiÞ

j as

YðiÞ
j ¼ NðiÞ

j

DðiÞ
j

YðiÞ
j21 (30)

Then, the following recurrence relations hold:

"j ¼ 2 / P, NðiÞ
j21 ¼ 2dKD

ðiÞ
j

and DðiÞ
j21 ¼

aðiÞ

k
ðiÞ D

ðiÞ
j þ dKjN

ðiÞ
j (31)

with the initial values

NðiÞ
P ¼ 2dK and DðiÞ

P ¼ aðiÞ

k
ðiÞ (32)

Then, NðiÞ
1 and DðiÞ

1 may be derived easily, and finally

YðiÞ
0 ¼ DðiÞ

1

aðiÞDðiÞ
1 þ k

ðiÞ
dKN

ðiÞ
1

FðiÞ (33)

By mathematical induction, it is easy to prove that aðiÞ may be
factorized either in NðiÞ

j or in DðiÞ
j for each j. More precisely, it may

be shown that if aðiÞ is a factor of DðiÞ
j (respectively, NðiÞ

j ), then aðiÞ

is a factor of NðiÞ
j21 (respectively, D

ðiÞ
j21). However, v

ðiÞ
det is a resonant

frequency of the frequency response function (FRF) 1=aðiÞ; ac-
cordingly,vðiÞ

det is a resonant frequency of Y
ðiÞ
P , Y ðiÞ

P22, Y
ðiÞ
P24, and so on.

Similarly, vðiÞ
det is an antiresonant frequency of Y

ðiÞ
P21, Y

ðiÞ
P23, Y

ðiÞ
P25, and

so on. Then if P is even, vðiÞ
det is a resonant frequency of Y ðiÞ

0 , which

corresponds to the mean of the ith modal response; if P is odd,vðiÞ
det is

an antiresonant frequency ofY ðiÞ
0 . The change of variableXP 5FT

detQ
leads to the same conclusions on the steady-state response.

This also shows that the behavior of the response expanded on
the PC depends on the parity of P. However, PCE converges in
probability and distribution (Ghanem and Spanos 1991; Field and
Grigoriu 2007), so X2Pðv5vdetÞ and X2P11ðv5vdetÞ tend to the
same limit asP tends to infinity.Define the following discrepancy for
the first DOF:

DðPÞ ¼
��XPþ1

1mean 2XP
1mean

����XP
1mean

�� (34)

This discrepancy provides valuable information about the required
number of terms to include in the expansion. Fig. 6(a) shows that for
low P, this discrepancy varies significantly from P to P1 1 because
of the alternating resonances and antiresonances. However, for
P. 300, DðPÞ is approximately 10%. Fig. 7(a) shows that for
P5 100, the peaks are still noticeable around the first eigenfre-
quency, whereas the agreement with the MCS results are excellent
for P5 300 [cf. Fig. 7(b)]. It is also interesting to note the PC
damping effect; as the PC damping ratio associated with the second
deterministic mode is higher than for the first mode, the agreement
between PCE and MCS around the second mode is good for a PC
order lower than 300. Indeed, no oscillations are noticeable around
the second mode in Fig. 7(a), that is, for P5 100.

However, in practice, a convergence is not purely theoretical; it
must be possible to be close enough to the limit from a numerical
point of view. This may be a real problem for a very low damping
ratio. In that case, when the system is excited at a frequency equal to
a deterministic eigenfrequency, the alternating resonance and anti-
resonance will produce a sequence with alternatively very low and
very high values. Then, a very high P will be required. In Fig. 6(b),
discrepancyDwas plotted when the damping is divided by 5, that is,
for a first mode damping ratio equal to 0.05%. Even for P equal to
1,500, the limit is not reached. Unfortunately, for P higher than
1,800, some numerical problems occurred, and it was not possible to
have a good estimation of the limit.

The use of the recurrence relation [Eq. (31)] also provides an
interesting expression for YðiÞ

j

Table 3. Modal Characteristics of the PC Component System

PC order f (Hz) j (%)

P5 1 11.74 0.26
12.34 0.25
30.74 0.67
32.32 0.64

P5 2 11.51 0.26
12.05 0.25
12.56 0.24
30.14 0.69
31.54 0.66
32.88 0.63

P5 3 11.32 0.27
11.82 0.26
12.27 0.25
12.73 0.24
29.64 0.7
30.95 0.67
32.12 0.65
33.33 0.63

P5 4 11.15 0.27
11.63 0.26
12.05 0.25
12.45 0.24
12.88 0.24
29.2 0.71
30.45 0.68
31.54 0.66
32.59 0.64
33.72 0.62
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"j$ 1, YðiÞ
j ¼ NðiÞ

j

DðiÞ
j

YðiÞ
j21 ¼

NðiÞ
j

DðiÞ
j

NðiÞ
j21

DðiÞ
j21

/
NðiÞ
1

DðiÞ
1

YðiÞ
0

¼ NðiÞ
j

DðiÞ
j

NðiÞ
j21

DðiÞ
j21

/
NðiÞ
1

DðiÞ
1

DðiÞ
1

aðiÞDðiÞ
1 þ dKk

mod
i NðiÞ

1

Fmod
i

¼ NðiÞ
j

DðiÞ
j

2dKD
ðiÞ
j

DðiÞ
j21

/
2dKD

ðiÞ
2

DðiÞ
1

DðiÞ
1

aðiÞDðiÞ
1 þ dKk

mod
i NðiÞ

1

Fmod
i

¼ ð2dKÞj21 NðiÞ
j

aðiÞDðiÞ
1 þ dKk

mod
i NðiÞ

1

Fmod
i

(35)

Then the modal coordinates may be obtained as

QðiÞ ¼ Fmod
i

aðiÞDðiÞ
1 þ dKk

mod
i NðiÞ

1

"
DðiÞ
1 C0 þ PP

j51
ð2dKÞ j21NðiÞ

j Cj

#

(36)

Conclusion

The comparison betweenMCS and a PCE of a random system steady-
state response statistics showed that the PCE results converge
quickly to the MCS results except around the deterministic eigen-
frequencies. This study proved that these oscillations are caused by

Fig. 5. Behavior around the (a) first and (b) second deterministic eigenfrequencies for several PC orders
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peaks that correspond to resonances. Indeed, the PCE coefficients
are the response of a deterministic dynamical system that has P1 1
eigenfrequencies located around each deterministic eigenfrequency
of the actual system; this explains why the spurious oscillations
increase with the PC order. This result shows that the PCE coef-
ficients are calculated by transforming the initial deterministic dy-
namical system into another dynamical system.

Moreover, it was observed that the PCE does not tend mono-
tonically to theMCSaround the deterministic frequencies; this depends
on the parity of the PC order. More precisely, when the random system
is excited at a deterministic frequency, the response moments are as-
sociated either with a resonance for an even PC order or with an anti-
resonance for an odd PC order. Accordingly, it may be very slow to
reach the MCS results for low damping ratios, and this may not be

numerically achieved. A discrepancy was defined and provides in-
formation about the number of PCs that must be used.

The response of a harmonically excited random system can take
advantage of modal analysis to determine a PCE. Indeed, the
equations may be simplified, and some recurrence relations were
determined. It was then possible to achieve a PCE even for a high PC
order that provided results very quickly, which are in an excellent
agreement with the MCS results.

The results are related to a class of uncertain dynamical systems.
This may be easily extended to uncertain mass, damping, and
stiffness matrices that have a Karhunen-Loève expansion, because
of the orthogonality properties of the multidimensional PC. In this
study, the number of DOFs was small. The analysis of more realistic
systems is the subject of ongoing research. Moreover, an effort must

Fig. 6. Discrepancy for increasing PC order: (a) damping ratio j5 0:25%; (b) damping ratio j5 0:05%

© ASCE 04014145-9 J. Eng. Mech.
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be made to calculate the PCE efficient at each excitation frequency;
work is ongoing to deal with that issue.
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