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We consider the dynamics of linear damped oscillators with stochastically perturbed natural frequencies.
When average dynamic response is considered, it is observed that stochastic perturbation in the natural
frequency manifests as an increase of the effective damping of the system. Assuming uniform dis-
tribution of the natural frequency, a closed-from expression of equivalent damping for the mean re-
sponse has been derived to explain the ‘increasing damping’ behaviour. In addition to this qualitative
analysis, a comprehensive quantitative analysis is proposed to calculate the statistics of frequency re-
sponse functions from the probability density functions of the natural frequencies. Firstly, single-degree-
of-freedom-systems are considered and closed-form analytical expressions for the mean and variance
are obtained using a hybrid Laplace's method. Several probability density functions, including gamma,
normal and lognormal distributions, are considered for the derivation of the analytical expressions. The
method is extended to calculate the mean and the variance of the frequency response function of
multiple-degrees-of-freedom dynamic systems. Proportional damping is assumed and the eigenvalues
are considered to be independent. Results are derived for several probability density functions and
damping factors. The accuracy of the approach for both single and multiple-degrees-of-freedom systems
is examined using the direct Monte Carlo simulation.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Damped linear oscillators have been used to model a range of
physical problems across different length and time scales, and
disciplines including engineering, biology and nanotechnology.
Examples include nanoscale oscillators used as ultra sensitive
sensors [1], vibration of buildings and bridges under earthquake
loads, vibration of automobiles and aircrafts. The equation of
motion of a damped oscillator can be expressed as

mu t cu ku t f t 1τ¨( ) + ̇( ) + ( ) = ( ) ( )

where t, u(t), m, c, k are respectively the time, displacement, mass,
damping, stiffness and applied forcing. Diving by m, this equation
can be expressed as

u t u u t f t m2 / 2n n n
2ζ ω τ ω¨( ) + ̇( ) + ( ) = ( ) ( )

where k m/nω = is the natural frequency and c km/2nζ = is the
damping ratio. A rich body of literature on random vibration [2,3]
is available for the case when the forcing function is random in
nature. We are interested in understanding the motion when the
natural frequency of the system is perturbed in a stochastic
ikari).
hikari).
manner.
Uncertainty in the natural frequency can arise in uncertainties

in the stiffness or inertia properties of the structure. These can be
attributed to stochastic parametric variation in the Young's mod-
ulus, Poisson's ratio, density, or geometry of the system. In general,
stochastic finite element based methods (for example, [4–8]) are
well suited to deal with problems with random (distributed)
parameters. For a single degree of freedom (SDOF) system, the
dynamic response due to uncertainties in the natural frequency
can be easily obtained using Monte Carlo simulation. Such an
approach, however, may not shed light into the nature of the re-
sponse statistics to be discussed in the paper. The use of reduced
computational methods such as perturbation method or poly-
nomial chaos [9] works well in general except when response near
the resonance frequency is considered [10]. From an engineering
point of view, this is exactly where a reliable estimate of dynamic
response is necessary as this is crucial to safe design of dynamic
structures.

This paper gives an explanation as to why mean based analy-
tical approximations (e.g., perturbation, polynomial chaos) fail to
provide accurate statistical description of the dynamics response
near the resonance frequency of a damped system. In Section 2
some simulation results are provided as the motivation of this
study. Based on this, few key observations are made and an ex-
planation based on the mean response for the case of uniform
distribution of the natural frequency is provided in Section 3. A
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quantitative analytical approach for dynamic response statistics of
single-degree-of-freedom (SDOF) systems is presented in Section
4. The calculation of the probability density function (pdf) of the
response is outlined in Section 4.1 and the expressions for the
mean and standard deviation are derived in Section 4.2. These
expressions depend on the calculation of three integrals, which are
evaluated through Laplace's method and through a proposed
modified Laplace's method in Sections 4.2.1 and 4.2.2. Exact ex-
pressions of the mean and standard deviation are obtained for the
uniform distribution of eigenvalues in Section 5.1. Laplace's
method and modified Laplace's method are developed for normal,
gamma and lognormal distributions respectively in Sections 5.2,
5.3 and 5.4. The method is extended to obtain mean and standard
deviation of the response for multiple-degree-of-freedom (MDOF)
systems in Section 6. A numerical example for a MDOF system is
shown in Section 6.4, where the proposed methods are compared
to MCS. The main results and the key conclusions arising from this
study are discussed in Sections 7 and 8.
2. Dynamic response of damped stochastic oscillators

2.1. Uncertainty model

Suppose the natural frequency is expressed as xn n
2 2

0
ω ω= , where

n0
ω is the deterministic frequency and x is a random variable with
a given probability distribution function. We assume that the
mean of x is 1 and the standard deviation is s. Stochastic pertur-
bation of this kind can represent statistical scatter of measured
values or a lack of knowledge regarding the natural frequency. Of
course in the special case when the standard deviation of the
random variable is close to zero, the stochastic oscillator ap-
proaches the classical deterministic oscillator. For initial simula-
tion results, three different types of random variables, namely
uniform, normal and lognormal, are considered as shown in Fig. 1.

Note that normal random variable is not a good choice for a
positive quantity as the squared natural frequency. It is kept here
only for comparing the results later.

2.2. Dynamic response in the time and frequency domain

Dynamic response of a SDOF system with initial displacement
u0 and initial velocity v0 can be obtained [11] using
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0.1aσ = . (b) Pdf: 0.2aσ = .
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In Fig. 2 we show the deterministic and mean response of the
oscillator due to an initial displacement. The time axis is scaled
with the deterministic time period T 2 /n n0 0π ω= so that the results
become general. A representative damping factor of 5%, three
types of random variables and two values of standard deviations
are used for illustration. Deterministic response, sample responses
of the random system (with uniform distribution) and mean re-
sponse due to the three cases with random natural frequencies are
shown in the figure. The mean response is significantly ‘damped’
compared to the deterministic response. Additionally, the ‘damp-
ing effect’ is almost independent to the nature of the statistical
distribution of the natural frequencies.

The normalised steady-state response amplitude in the fre-
quency domain of an SDOF oscillator can be expressed as

u
u r r

1

1 2
.

5st n
2 2 2ζ

=
( − ) + ( ) ( )

Here the static deformation u F k/st = where F is the amplitude of
the harmonic excitation and the frequency ratio r / n0ω ω= . In Fig. 3,
the dynamic response of the deterministic system and the mean
responses due to three cases with random natural frequencies are
shown. The frequency axis is scaled with the deterministic fre-
quency ωn0 for generality. Like the time-domain response, we
observe that the mean response is significantly more damped
compared to the deterministic response. Although the mean re-
sponses for different pdfs of ωn

2 are slightly different, the pre-
dominant feature (i.e., the ‘damping effect’) is mainly depended on
the standard deviation of the random variable. The observations in
these results can be summarised as:

� The mean response of a SDOF oscillator with random natural
frequency is more damped compared to the underlying de-
terministic response.

� The higher the randomness (standard deviation), the higher the
‘effective damping’.
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Fig. 2. Response in the time domain due to initial displacement u0 with 5% damping (v 00 = ). (a) Response: 0.1aσ = . (b) Response: 0.2aσ = .
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� The qualitative features are almost independent of the dis-
tribution the random natural frequency.

Assuming uniform random variable for ωn
2, we aim to explain

these observations in the next section.
3. Equivalent damping for the mean response

To explain the main observations reported in the previous
section, we consider the amplitude-square of the normalised fre-
quency response function. This is employed to simplify the ana-
lytical calculations by avoiding the square-root function in the
denominator. Without any loss of generality, assume that the
random natural frequencies are expressed as

x1 6n n
2 2

0
ω ω= ( + ϵ ) ( )

where x has zero mean and unit standard deviation. The normal-
ised harmonic response in the frequency domain can be expressed
as

u
f k

k m
x x/

/
1 2i 1 7n n n

2 2
0 0

ω ω ζ ωω
=

[ − + ( + ϵ )] + + ϵ ( )
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Fig. 3. Amplitude square of the normalised frequency response functio
Considering k m/n0
ω = and the frequency ratio r / n0

ω ω= we have

u
f k x r r x/

1
1 2i 1

.
8n

2 ζ
=

[( + ϵ ) − ] + + ϵ ( )

The squared-amplitude of the normalised dynamic response at

n0
ω ω= (that is r¼1) can be obtained as

⎛
⎝⎜

⎞
⎠⎟U

u
f k x x/

1
4 1

.
9n

2

2 2 2ζ
^ = | | =

ϵ + ( + ϵ ) ( )

Since x is an uniform random variable with zero mean and unit
standard deviation, its pdf is given by

p x x1/2 3 , 3 3 . 10x( ) = − ≤ ≤ ( )

The use of uniform random variable is justified due to the fact that
the qualitative feature of the mean response is independent of the
distribution of the natural frequency (refer Figs. 2 and 3). The
mean response is obtained using the following integral:
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n with 5% damping. (a) Response: 0.1aσ = . (b) Response: 0.2aσ = .
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Fig. 4. Normalised frequency response function with equivalent damping ( 0.05eζ = in the ensembles) when ωn
2 has the uniform distribution. For the two cases 0.0643eζ =

and 0.0819eζ = . (a) Response: 0.1aσ = . (b) Response: 0.2aσ = .
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Using the Taylor's series expansion of tan 1(•)− function we can
establish that

a a a Otan tan tan . 12
1
2

1 1 1 2δ δ δ{ ( + ) + ( − )} = ( ) + ( ) ( )
− − −

This implies that the linear term in δ disappears in the above
expression. Therefore, provided there is a small δ, the above ap-
proximation can be exploited to simplify the expression of the
mean as

⎛
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Considering light damping (that is, 12ζ ⪡ ), the validity of this ap-
proximation relies on the following inequality:

3
2

or
2
3

.
14n

n n
2 3

ζ
ζ ζϵ ⪢ ϵ⪢

( )

Since damping is usually quite small ( 0.2nζ < ), the above in-
equality will normally hold even for systems with very small un-
certainty. To give an example, for 0.2nζ = , which is quite high
damping in practice, from the above equation we get

0.0092minϵ = , which is less than 0.1% randomness. In practice we
will be interested in randomness of more than 0.1% and conse-
quently the criteria in Eq. (14) will be met. Therefore, the condi-
tions for the proposed approximation lie within the usual en-
gineering limits of practical applications.

Considering light damping, Eq. (13) can be further simplified as

UE
tan 3 /2

2 3
.

15
n

n

1 ζ
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[ ^ ] ≈
( ϵ )

ϵ ( )

−

Now consider that we want to ‘replace’ the actual oscillator with
an oscillator with equivalent damping factor ζe such that its mean
response at the deterministic natural frequency matches with the
analytical expression derived here. For small damping, the max-
imum deterministic amplitude at n0

ω ω= is 1/4 e
2ζ . Therefore, the

equivalent damping for the mean response is given by

2
2 3 1
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This expression of 2 e
2ζ( ) can be expanded by a Taylor series in ζn as
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For the case when damping is small compared to the degree of
randomness, neglecting all terms O n

2ζ( ), we have

3
.

18e n

1/4
ζ

π
ζ≈ ϵ

( )

This implies that, under the approximations sated before, the ef-
fective damping for the mean response of a stochastic oscillatory
system is approximately proportional to the square root of the
damping of the baseline model. As we assumed 1nζ < , this implies
that effective damping increases as observed in the results pre-
sented in the previous section. The analytical expression shows
that the ‘effective damping’ increases with increasing randomness
of the natural frequency, an observation also made in the nu-
merical results in the previous section.

In order to verify the expression of the equivalent damping
derived here, we look into the results in the previous section
again. In Fig. 4, the mean obtained using MCS is compared with
the response of an equivalent oscillator with damping ζe in Eq.
(16). It is observed that the simple closed-form expression in Eq.
(16) captures the essential feature of the mean dynamic response.

The analysis carried out in this section qualitatively explain the
nature of dynamic response of damped stochastic oscillators. As
the ‘effective damping’ of the mean response is significantly more
compared to the baseline model, this also explains as to why ap-
proximate numerical methods based on mean properties fail near
the resonance. Based on this qualitative analysis, in the rest of the
paper a semi-analytical quantitative approach for dynamic re-
sponse statistics is proposed.
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4. Analytical approach for dynamic response of single-degree-
of-freedom (SDOF) systems

Single-degree-of-freedom (SDOF) system is the simplest way to
model a structural dynamic system. The study of SDOF systems is
often undertaken prior to the study of multiple-degrees-of-free-
dom (MDOF) systems due to physical insights and analytical
conveniences. Solutions of an SDOF problem are easily obtained in
comparison to MDOF problems. They are also useful when in-
vestigating the response of general MDOF problems, as MDOF
problems with proportional damping reduce to a linear combi-
nation of SDOF problems. From the results in the last two sections,
it is known that approximate analysis (e.g, perturbation, poly-
nomial-chaos) based on the properties of underlying deterministic
system will not work very well for dynamic response near the
resonance frequency. This is due to the fact that effective damping
of the mean response is significantly lower that the baseline
damping. Based on this insight, an analytical approach based on
asymptotic integral is proposed to obtain dynamic response
statistics.

For an SDOF system, the frequency response function (also
known as the transfer function) is given by

h i
1

i2 19n n n
2 2ω

ω ω ζ ω ω
( ) =

( − + + ) ( )

where ωn and ζn are respectively the natural frequency and the
damping factor, and ω is the frequency. The transfer function is a
complex number for every nonzero ω. Its moments can be related
to the moments of its real and imaginary parts and its absolute
value. The real and imaginary parts of the transfer function and its
absolute value are respectively given by

h ,
4

,
20

n
n

n n n

2 2

2 2 2 2 2 2( )ω ω
ω ω

ω ω ζ ω ω
( ) =

−
( − ) + ( )

R

h ,
2

4 21
n

n n

n n n
2 2 2 2 2 2( )ω ω

ζ ω ω
ω ω ζ ω ω

( ) =
−

( − ) + ( )
I

hand ,
1

4
.

22
n

n n n
2 2 2 2 2 2

ω ω
ω ω ζ ω ω

| ( )| =
( − ) + ( )

In this set of equations, the squared natural frequency of the sys-
tem ωn

2 is assumed to be a random variable.
4.1. The probability density function of the response

Probability density functions of the real part, the imaginary
part and the absolute value of the response can be found analy-
tically if these quantities are considered as functions of one ran-
dom variable, i.e. x n

2ω= . These functions (denoted by z) have to
satisfy that its domain includes the range of ωn

2, z are Borel
functions and z x, ω( ) = ± ∞ has zero probability. All these condi-
tions are ratified if 0nζ ≠ and 0n

2ω = has zero probability. This is a
physically realistic situation as it points to a damped system with
positive natural frequency. If the new random variables h x, ω( ( ))R ,

h x, ω( ( ))I and h x, ω| ( )| are denoted by z, their pdf (denoted by fz)
can be derived using the transformation of random variables (see
for example [12])

z z x z x 23n1= ( ) = ⋯ = ( ) = ⋯ ( )
f z
f x

z x

f x

z x 24z
x x n

n

1

1
( ) =

( )
| ′( )|

+ ⋯ +
( )

| ′( )|
+ ⋯

( )

Here xn are the real roots of z z x= ( ), and z xn′( ) is the derivative of z
(x) evaluated at xn. The pdf of the real and imaginary parts of the
transfer function and its absolute value are derived below.

To obtain the pdf or the real part of the transfer function from
(24), the roots of (23) with z h x, ω= ( ( ))R have to be obtained. The
real part of the transfer function and its derivative with respect to
x are given by

z
x

x x
z x

x x

x x4
,

4
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.
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2 2 2 2 2
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′( ) =

−( − ) +
(( − ) + ) ( )

The roots of z h x, ω= ( ( ))R are the roots of a second order poly-
nomial, and are given by

x
B B AC

A
x

B B AC
A

4
2

,
4

2 261

2

2

2
= − − − = − + −

( )

with

A z 27= ( )

B z2 2 1 1 28n
2 2ω ζ= ( − ) − ( )

C z . 294 2ω ω= + ( )

The pdf of the real part of the transfer function is obtained by
introducing z xi′( ) and f xi( ) in (24), that is
f z f x z x f x z x/ /x x1 1 2 2( ) = ( ( )) | ′( )| + ( ( )) | ′( )|
R

.
For the imaginary part of response (z h x, ω= ( ( ))I ) and Eq. (23)

reduces to

z
x

x x

2
4

.
30

n

n
2 2 2 2

ζ ω
ω ζ ω

=
−

( − ) + ( )

From this equation, it can be derived that xn are the roots of a third
order polynomial

x z x z x z z4 2 1 6 4 2 1 4

0. 31
n n n n n n
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The first derivative of z with respect to x is given by
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The pdf of the imaginary part of the transfer function is obtained
by introducing z xn′( ) and f xn( ) into (24).

The absolute value of response and its derivative with respect
to x are given by

z
x x
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4 33n
2 2 2 2ω ζ ω

=
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and the roots of z h x, ω= | ( )| are the roots of a second order poly-
nomial, and are given by

x
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A
4

2 35
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with

A z 36= ( )

B z 2 2 1 37n
2 2 2ω ζ= ( − ) ( )

C z 1. 382 4ω= − − ( )

The pdf of the absolute value of the transfer function is obtained
by introducing z x′( ) and f xn( ) into (24).

The derivation of the pdf of the response is not straightforward
even for single-degree-of-freedom system. For multiple-degrees-
of-freedom systems, the problem becomes even more difficult,
and, generally, not analytically solvable.

4.2. Response statistics

It has been seen that the calculation of the pdf of the quantities
of interest (i.e. real and imaginary parts of the FRF and its absolute
value) is not straightforward. Therefore, we focus on the calcula-
tion of their moments. As formerly, a probability density function
fx(x) is assumed for the random variable x n

2ω= , where
f x 0 0x ( ≤ ) = . The first moment (mean) of the real part, imaginary
part and the absolute value of the transfer function, derived from
Eqs. (20)–(22), are given by
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xf x

x x
dx
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x x
dx

E
4

4 39
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2 2 2 2
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∫

μ
ω ζ ω

ω
ω ζ ω

= ( ) =
( )

( − ) +

−
( )

( − ) + ( )

( ) R
R
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x f x

x x
dxE 2

4 40h n
x

n
2 2 2 2∫μ ζ ω

ω ζ ω
= ( ) = −

( )
( − ) + ( )( ) I

I

⎡⎣ ⎤⎦h
f x

x x
dxE

4 41
h h

x

n

2 2
2 2 2 2∫σ μ

ω ζ ω
| | = + =

( )
( − ) + ( )

here is the domain of x, ih h hμ μ μ= +( ) ( )R I
is the mean of the

transfer function and sh is its standard deviation. The square of the
mean is obtained by multiplying the mean by its complex con-
jugate, so that

. 42h h h
2 2 2μ μ μ= + ( )( ) ( )R I

In the next section, integrals appearing in Eqs. (39)–(41) are ap-
proximated with Laplace's method.

4.2.1. Laplace's method
Integrals appearing in Eqs. (39)–(41) can be related to Laplace's

integral (see, for example, [13])

I w g x e dx.
43x

x
wy x

1

2∫( ) = ( )
( )

( )

It is known that if w is a large positive number, the major con-
tribution to the integral comes from the vicinity of points at which
y(x) assumes its largest value. If g is continuous, y is twice con-
tinuously differentiable and y y0, 0θ θ′( ) = ″( ) < , this integral can
be approximated with Laplace's method as

⎡
⎣⎢

⎤
⎦⎥I w g e

wy
2

.
44

wy
1/2

θ π
θ

( )∽ ( ) −
″( ) ( )

θ( )
We will assume g x 1( ) = and w¼1. Then

⎡⎣ ⎤⎦I w e y2 . 45
y 1/2π θ( )∽ − ″( ) ( )θ( ) −

A general function y x a,( ), obtained from integrals appearing in
Eqs. (39)–(41), can be given by

y x a f x a x h x, ln ln ln , 46x
2ω( ) = ( ( )) + ( ) − (| ( )| ) ( )

where

a
f x

x x
dx0 for
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2 2 2 2∫
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=
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Function y x a,( ) is maximum at x aθ= . Therefore, θa is the solution
of

f

f
a 2 4

4
0

50
x a
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2 2 2

2 2 2 2

θ
θ θ

θ ω ω ζ
θ ω ζ ω θ

′ ( )
( )
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( − ) +

( − ) +
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for which y a,aθ( ) is the absolute maximum. The second derivative
of y x a,( ) is

y x a f x
a
x

h x,
512

″( ) = ¯( ) − − ¯( )
( )

where

⎛
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⎠
⎟⎟h x

x x
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4 52n

n

n
2 2 2 2

2 2 2

2 2 2 2

2

ω
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ω ζ ω
ω ζ ω

¯( ) =
( − + ) +

−
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and f x¯ ( ) depends on the pdf of the random variable x. Laplace's
method will be applied for different pdfs in the remaining of the
paper.

4.2.2. Hybrid Laplace-numerical integration and modified Laplace
Laplace's method approximates (46) with a second-degree

polynomial given by the first two terms of Taylor expansion of y(x)
around its maximum θa. The method works well if the behaviour
of y(x) in the vicinity of its absolute maximum point θa is well
represented by the approximation used. From (46) it may be ob-
served that y(x) is obtained through the addition of three func-
tions. The first one, f xln x( ( )), is related to the pdf of the distribution
of the random variable x. This pdf is chosen such that it has only
one maximum, situated at x μ= , with μ being the mean of the
distribution. It is expected that f xln x( ( )) will have its maximum at
μ. The second function added to obtain y(x) is a xln( ), an increasing
function. The last function, h xln , 2ω− (| ( )| ), is related to the transfer
function and therefore has its maximum at 1 2 n

2 2ω ζ( − ). The
function h xln , 2ω− (| ( )| ) has three points (xh1, xh2 and xh3) where its
third derivative is zero. These three points are

x 1 2 2 3 1 53h n n n1
2 2 2 2ω ζ ω ζ ζ= ( − ) − − ( )

x 1 2 54h n2
2 2ω ζ= ( − ) ( )

x 1 2 2 3 1 . 55h n n n3
2 2 2 2ω ζ ω ζ ζ= ( − ) + − ( )
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Therefore, y(x) can have up to two local maximums, the first one,

aθ μ, is close to μ and the second one ( a 2θ ω ) is close to 1 2 n
2 2ω ζ( − ).

That is, a Newton iteration [14] with these starting points should
converge to the solution in few steps if the two maximums exist.
Three roots of y x 0‴( ) = can appear close to xh1, xh2 and xh3, re-
spectively, x xh1 1≈ , x xh2 2≈ and x xh3 3≈ . As formerly, Newton
iteration is a procedure leading to the solution in few steps if the
three points, xh1, xh2 and xh3, exist. Function y(x) can have different
shapes, and depending on it, a different method to calculate the
integral is applied

� The function has two maximums and y ya a2θ θ( ) < ( )ω μ , then, La-
place's method is used.

� The function has two maximums and y ya a 2θ θ( ) ≤ ( )μ ω . Laplace's
approximation does not work well, in this case, a numerical
integration (i.e. Gaussian quadrature, trapezoidal method) is a
good alternative to approximate the integral.

� The function has only one maximum, aθ μ, and x1, x2 and x3 do
not exist or are situated at the same side of aθ μ, that is, x a3 θ< μ or

xa 1θ <μ . Then, Laplace's method is used.
� The function has only one maximum, a 2θ ω , and x1, x2 and x3 exist

and are such that x xa1 32θ< <ω . In those situations, Laplace's
approximation can work well if no discontinuity has appeared
both in aθ ω( ) and y aθ ω″( ( )). Generally, Laplace's approximation
will provide a value smaller than the exact one. A different
second order polynomial, having its maximum at θa and going
through x1 if aθ μ> and through θ3 if aθ μ≤ , can be used instead
of the Taylor expansion used in Laplace's method. Then

I e
x

y x y
if

56
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π θ

θ
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− ( − )
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I e
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2
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π θ

θ
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( ) − ( )
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( )

θ( )

This second approximation to the integral provides, mostly, a
larger value than the exact result. This approximation will be
referred as modified Laplace's method.

If Laplace's method is applied when leading to a good approx-
imation and numerical integration is applied in the remaining
frequencies, the resulting method is called Hybrid Laplace-nu-
merical integration. If Laplace's method or modified Laplace's
method are applied when leading to a good approximation and
numerical integration is performed for the remaining frequencies,
the resulting method is referred to as modified Laplace.
5. FRF statistics for different probability density functions of
the natural frequency

The pdfs of x n
2ω= have to satisfy that f x 0 0x ( ≤ ) = , as it is not

physically possible to have a negative or zero squared natural
frequency. It is observed that x n

2ω= is the solution to the random
eigenvalue problem K M 0n

2ω− = , such that its pdf would be di-
rectly obtained when solving the random eigenvalue problem. The
purpose of this section is to understand how different possible
pdfs of ωn

2 influence the dynamic response. The pdfs studied can
be obtained with the maximum entropy principle, if some in-
formation on the eigenvalues is available [15]. That is, the pdfs are
the functions maximizing the following entropy equation:

S f f x f x dx f x dx g xln 1
58

x x x x
i

M

i i0
1

( )∫ ∫ ∑γ γ( ) = − ( ) ( ( )) − ( ) − − ( )
( )=

where , i0γ γ for i M1, ,= … are Lagrange multipliers and gi are
functions related to the constraints imposed on the pdf fx. Nu-
merical examples are provided, where 9xμ = , 1xσ = and the
damping factor has values 0.1nζ = or 0.01nζ = . The chosen pdfs,
other than the uniform distribution, are assumed to be unimodal
with maximum at x μ= . The number of samples in MCS is 10,000.
A summary of results based on SDOF and MDF systems is given
later in the paper.

5.1. Uniform distribution

The pdf of an uniform distribution U u u,1 2( ) is defined by a
constant αu over the interval x u u,1 2∈ [ ]. Parameters αu, u1 and u2
of the distribution can be expressed through its mean (μx) and
variance (sx)

u 3 59x x1 μ σ= − ( )

u 3 60x x2 μ σ= + ( )

1
2 3

.
61

u
x

α
σ

=
( )

This pdf can be obtained with the maximum entropy principle,
where the constraint gi imposed on the entropy equation is that
the random variable x belongs to a given interval. For this pdf, all
integrals appearing in Eqs. (47)–(49) can be calculated exactly. For
example if a¼0
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For a¼1 we have
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An expression for a¼0.5 can also be calculated analytically. In
Figs. 5 and 6 we compared the results of the analytical expressions
and MCS for different ζn and same uniform distribution
U 9 3 , 9 3( − + ) for x. Note the significant difference between
the mean and the deterministic results for the smaller value of the
damping factor in Fig. 6 compared to that for a higher value of the
damping factor in Fig. 5.

5.2. Normal distribution

The pdf fx(x) and f x f x/x x′ ( ) ( ) of the normal distribution condi-
tional to x 0> are given by
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e
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where μx and sx
2 are respectively the mean and the variance of the
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distribution and P 0( ) is the probability of x 0≤ for a normal dis-
tribution N x xμ σ( ). This pdf can be obtained with the maximum
entropy principle, where the constraints gi imposed on the en-
tropy equation is that the mean and variance of the random
variable x are known.

From (50), the parameter θa can be identified as the solution of
a fourth order polynomial

b x b x b x b x b 0 671
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2
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and 2 2 1n
2 2ζ ω ζ¯ = ( − )ω . Up to four solutions can be expected, and

we assume the existence of a first real solution close to the mean
of the distribution, aθ μ. If a second real solution a 2θ ω exists and is
not a saddle point, a relative minimum between the two relative
maximums exists. The remaining real solution is a spurious value,
and likely to be negative or close to zero. Depending on the shape
of y(x), and as indicated in Section 4.2.2, Laplace's method may be
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Fig. 6. Mean and standard deviation of the absolute value of the transfer function for uni
applied to approximate the integrals appearing in expressions of
hE[ ] and hE 2[| | ], given by Eqs. (39)–(41). The second derivative of y

(x) is given by (51) where h x, ω¯( ) is given by (52) and

f x
1

.
69x

2σ
¯ ( ) = −

( )

Laplace's approximation assuming normal distribution is therefore
given by
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where a is given in Eqs. (47)–(49). Parameters μx and sx are the
mean and the standard deviation of x n

2ω= . Another approxima-
tion of the integral can be obtained from Eqs. (56) and (57). Plots
of approximations for an SDOF with 9xμ = and 1xσ = are dis-
played, in Fig. 7 for 0.1nζ = and in Fig. 8 for 0.01nζ = . For the small
damping case one can again observe the significant difference
between the deterministic response and the mean response. Ad-
ditionally, it can be noted that hybrid modified Laplace method
also produced some discrepancies for the low damping case.
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5.3. Gamma distribution

The probability density function fx(x) and f x f x/x x′ ( ) ( ) of the
gamma distribution, defined in the interval 0,[ ∞], are given by
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Relationships between mean μx, variance sx
2 and parameters αg

and βg are given by
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This pdf can be obtained with the maximum entropy principle,
where the constraints gi imposed on the entropy equation are that
the random variable belongs to a given interval and the means of
the random variable x and of xln are known. As formerly, θa is the
real solution of the third order polynomial
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Fig. 8. Mean and standard deviation of the absolute value of the transfer function for no
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and 2 2 1n
2 2ζ ω ζ¯ = ( − )ω , at which y(x) is maximum. A third-order

polynomial has three solutions. Among these solutions, the ones
that can be considered as plausible solutions to our problem are
real and satisfy x 0> , y x a, 0′( ) = and y x a, 0″( ) < . As we have
already stated, one of the solutions is close to μ, and a second
plausible solution is close to x 1 2h n2

2 2ω ζ= ( − ). The third real so-
lution of the polynomial would then be the relative minimum
point situated between the two relative maximums, and verifies
y x a, 0″( ) > . Otherwise, two of the solutions are complex and there
is only one real solution. We can then find an approximation to the
solutions using Newton iteration method to (74). As indicated in
Section 4.2.2, Laplace's method will be a good option to approx-
imate the integrals depending on the shape of y(x). The second
derivative of y x a,( ) is given at (51) where h x, ω¯( ) is given by (52)
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and
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From (45), an analytical approximation to the integrals appearing
in the expressions of the two first moments of the absolute value
of the FRF is given by
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where a is given in Eqs. (47)–(49). Parameters αg and βg can be
derived from (73) if the mean μx and the standard deviation sx of
ωn

2 are known. Plots of approximations for an SDOF with 9xμ =
and 1xσ = are displayed, in Fig. 9 for 0.1nζ = and in Fig. 10 for

0.01nζ = . Again note the difference between the results for small
and high damping.
5.4. Lognormal distribution

A lognormal distribution is a probability distribution obtained
by taking the exponential of a normal distribution of mean μ and
standard deviation s, N ,μ σ( ). The probability density function fx(x),
and f x f x/x x′ ( ) ( ) of lognormal distribution, defined in the interval
0,( ∞), is given by

f x
e

x

f x

f x
x

x2
,

ln

78
x

x
x

x

ln /2

2

2

2

2 2

πσ

σ μ
σ

( ) =
′( )
( )

= − −
( )

μ σ−( − )

with mean μx and variance sx of lognormal distribution related to
μ and s by
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This pdf can be obtained with the maximum entropy principle,
where the constraint gi imposed on the entropy equation is that
the mean of xln and of xln 2( ) are known. From (50) parameter θa
can be identified as the solution to the equation
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As indicated in Section 4.2.2, we will assume here that one solu-
tion, aθ μ, is close to the mean of the distribution and that another
relative maximum of y(x), a 2θ ω , can arise together with a relative
minimum situated between those two maximums. We can then
find an approximation to these solutions using Newton method.
From (45) and depending on the shape of y(x), an analytical ap-
proximation to the integrals appearing in the expressions of hE[ ]
and of hE 2[| | ] allows to find an approximation to those moments.
This analytical approximation to integrals is given by
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with a given in Eqs. (47)–(49). Parameters μ and s can be found if
μx and sx are known. Plots of the approximations for an SDOF with

9xμ = and 1xσ = are displayed, in Fig. 11 for 0.1nζ = and in Fig. 12
for 0.01nζ = . Like the previous pdfs, the difference in results be-
tween the low and high damping can also be seen here.
6. Multiple-degrees-of-freedom (MDOF) systems

6.1. Response calculation

The aim of this section is to extend the results of SDOF systems
to MDOF systems with certain assumptions. Applying finite ele-
ment method to structural dynamic systems leads, generally, to an
MDOF problem where a displacement vector u is the unknown.
The equation of motion of a linear dynamical system in the fre-
quency domain can be expressed as

M C K u fi . 83
2( )ω ω− + + = ( )

Here ω is the frequency, M, C and K are respectively the mass,
damping and stiffness matrices of the system, f is the forcing
vector in the frequency domain and u is the response vector.

The frequency response vector of the MDOF system can be gi-
ven by (see, for example, [16])
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Fig. 10. Mean and standard deviation of the absolute value of the transfer function for gamma distribution with 0.01nζ = . (a) Absolute value of mean. (b) Standard deviation.
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where Φ is the matrix of eigenvectors (modal matrix) and Ω is a
diagonal matrix of natural frequencies of the system. The fre-
quency response can be expressed as
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where ej is the jth unit vector, or jth column of an identity matrix,
and matrix H′ is therefore diagonal. We denote by u⁎ and H′⁎ the
complex conjugate of u and H′ respectively. The jth diagonal
element of matrix H′ is denoted by hj′, and hj′

⁎ is its complex

conjugate. Vector iΦ is the ith row of matrix Φ, and ij
Φ is its jth

element. The jth element of vector F fTΦ= is denoted by Fj. Un-
certainty is introduced by the diagonal terms of H′, and therefore,
all other vectors and matrices are deterministic. From (85), an
expression of ui, the ith term of vector u, and of ui

2| | can be derived
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Fig. 11. Mean and standard deviation of the absolute value of the transfer function f
deviation.
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Denoting C Fj j ij
Φ= , the expression of ui

2| | can be simplified
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Mean of ui
2| | is equal to the second moments of ui| | and ui.
6.2. Mean of real and imaginary parts of the response

Expressions of real and imaginary parts of ui can be derived
from (86)
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Fig. 12. Mean and standard deviation of the absolute value of the transfer function for lognormal distribution with 0.01nζ = . (a) Absolute value of mean. (b) Standard
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Mean is a linear operator, therefore, the mean of each product
C hj j( ′)R , C hj j( ′)I , C hj j

2 2| ′| and C C h h2j k j k( ′ ′ )⁎R is needed. A well-known
theorem of random matrix theory [17] states that the joint density
functions of the latent roots l l, , n1 … of a n�n positive definite
matrix A with density function f A( ) is given by
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where Ω is an orthogonal matrix of the orthogonal group O(n)
verifying A L TΩ Ω= , with the diagonal matrix diag l lL , , n1= ( … ).
The eigenvalues and eigenvectors of A are independent if
f fA A TΨ Ψ( ) = ( ) with Ψ being an orthogonal matrix, and, for some
distributions as Wishart matrix distribution, they are asymptoti-
cally independent. Furthermore, applying the maximum entropy
principle to obtain joint distribution of eigenvalues and eigen-
vectors where no data is available on the joint pdf leads to in-
dependent eigenvalues and eigenvectors. It is assumed that ei-
genvectors and eigenvalues are independent. The independence of
eigenvalues and eigenvectors of a positive definite matrix implies
that
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Φ Φ[ ] = ∑ [ ]= can be obtained from the second

moment of the jth eigenvalue, with fk being the kth element of the
forcing term. Only means hE j[ ( ′)]R and hE j[ ( ′)]I remain to be cal-
culated to obtain E ui[ ( )]R and E ui[ ( )]I . These means are given by
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If uncorrelated random variables are assumed, integrals I1j
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An analytical approximation to these integrals could be given,
depending on the shape of the integrand, by Eqs. (70), (77) and
(82) for normal, gamma and lognormal distributions respectively.
Parameter a¼0 for I1j

, a¼1 for I2j
and a 1/2= for I3j

.

6.3. Variance of the response

Expressions of the second moment of response can be derived
from (88), remembering that mean is a linear operator and that
eigenvalues and eigenvectors are assumed to be independent
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Means CE j
2[ ] can be obtained from the fourth moment of the jth

eigenvector and C CE j k[ ] from the fourth moment of the eigenvector
matrix Φ. The second moment is given by
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Fig. 13. Linear array of N spring–mass oscillators, N¼20, m¼1 kg and k¼350 N/m. A proportional damping model with damping factor 0.1 and 0.01 is assumed.
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where mean of response and squared value of mean are given by
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And finally the variance can be obtained as
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In the next section, numerical results are shown for an MDOF
system with random eigenvalues with the different distributions
already discussed.

6.4. Numerical example

A proportionally damped system consisting of a linear array of
spring–mass oscillators is considered to illustrate the proposed
approach. Fig. 13 shows the model system. N masses, each of the
nominal mass m, are connected by springs of nominal stiffness k.
The system considered uses the mean of eigenvalues and eigen-
vectors obtained from the deterministic mass and stiffness ma-
trices M and K, and forcing vector f as
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with I being the identity matrix. The number of degrees of free-
dom of the system is 20, therefore, matrices M and K become
20�20 matrices. Mass and stiffness constants are given by
m¼1 kg and k¼350 N/m. The eigenvectors used are the ones ob-
tained from the deterministic matrices M and K matrices, that is,
they are considered deterministic, or with central moments equal
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Fig. 14. Mean and standard deviation of the absolute value of the transfer function for n
to zero. It is observed that the eigenvalue problem k mK Iλ= here
reduces to m kK I/λ= ( ) , such that the eigenvectors are determi-
nistic and the pdf of the eigenvalues depends on that of m k/ . Mean
eigenvalues are obtained from the deterministic matrices M and K,
and the standard deviation s of each eigenvalue is given by a
percentage of the mean of the considered eigenvalue. Each per-
centage is obtained through a sample of the uniform distribution
U 10, 15( ). Damping factors are assumed to be all equal to 0.1jζ = or
to 0.01jζ = . The number of samples for MCS is 10,000. Results are
obtained for normal distribution with damping factors 0.1jζ = in
Fig. 14 and 0.01jζ = in Fig. 15. Figs. 16 and 17 show Gamma dis-
tribution results for 0.1jζ = and 0.01jζ = respectively. Lognormal
distribution results for 0.1jζ = and 0.01jζ = are respectively dis-
played in Figs. 18 and 19. In all the figures, a comparison between
mean and standard deviation obtained through approximations
and MCS is facilitated. Uniform distribution results are not shown
as an analytical expression to integrals is available and results
match exactly MCS results.
7. Results and discussion

7.1. Discussion of the proposed analytical methods

In this paper, the mean and the variance of frequency response
function of single and multiple-degrees-of-freedom systems are
calculated from the pdf of independent eigenvalues. This method
needs the calculation of three integrals per frequency and degree
of freedom, namely the ones appearing in Eqs. (47)–(49). Un-
fortunately, exact analytical integration is only available when the
random variable, i.e. the squared natural frequency, has uniform
distribution. Therefore, the main problem of the method is the
calculation of the integrals. Numerical calculation of the integrals
or evaluation through MCS can become computationally expensive
for systems with large degrees of freedom. This problem can be
overcome if integrals can be approximated using one of the two
methods proposed in this paper.

The first method, referred as hybrid Laplace-numerical
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ormal distribution with 0.1nζ = . (a) Absolute value of mean. (b) Standard deviation.
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Fig. 15. Mean and standard deviation of the absolute value of the transfer function for normal distribution with 0.01nζ = . (a) Absolute value of mean. (b) Standard deviation.
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Fig. 16. Mean and standard deviation of the absolute value of the transfer function for gamma distribution with 0.1nζ = . (a) Absolute value of mean. (b) Standard deviation.
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Fig. 17. Mean and standard deviation of the absolute value of the transfer function for gamma distribution with 0.01nζ = . (a) Absolute value of mean. (b) Standard deviation.
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Fig. 18. Mean and standard deviation of the absolute value of the transfer function for lognormal distribution with 0.1nζ = . (a) Absolute value of mean. (b) Standard
deviation.
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Fig. 19. Mean and standard deviation of the absolute value of the transfer function for lognormal distribution with 0.01nζ = . (a) Absolute value of mean. (b) Standard
deviation.
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integration, is a hybrid method between Laplace's method and
numerical integration. Laplace's method is used to approximate
the integrals at those frequencies where the method is expected to
give a good approximation, and numerical integration is used for
the remaining frequencies. The second method, i.e. hybrid mod-
ified Laplace, also approximates the integrals with Laplace's
method when it is supposed to give a good approximation. The
remaining integrals are approximated, when possible, with a
modified Laplace's method and with numerical integration
otherwise. For the frequencies where the modified Laplace's
method can be applied, it is observed that Laplace's method pro-
vides an approximation smaller than the exact value, while the
modified Laplace's method provides mostly a larger approxima-
tion. The modified Laplace's approximation gives good approx-
imation at resonance points both for lognormal and normal dis-
tribution, but results are too large when dealing with the gamma
distribution.

It is observed, in all figures where the mean of the system is
calculated, that the difference between mean and deterministic
system is larger at frequencies in the neighborhood of resonance
frequencies than at other frequencies. This is due to the fact that
each deterministic FRF corresponding to a sample of the natural
frequency ωn has a sharp peak at frequency 1 2n n
2ω ζ− . The effect

of taking the mean is equivalent to add up those FRFs with peaks
at different frequencies and dividing the result by the number of
samples. As a result, the mean appears more damped than the
deterministic system in the neighborhood of the mean natural
frequency and is closer to the deterministic system at other fre-
quencies. It is also observed that for gamma distribution, the
modified Laplace's method leads to results significatively larger
than the ones fromMCS. This is due to the fact that, while for other
distributions the methods provide a good approximation for the
resonance frequency, for gamma distribution, the method leads to
a result close to the deterministic response. The accuracy of the
modified Laplace's method is therefore dependent on the pdf of
the random variable.

Overall, the level of damping has a significant impact on La-
place's method for both SDOF and MDOF systems. When the sys-
tems are reasonably damped (about 10% damping), all the pro-
posed methods work well and the results agree with each other.
But the situation changes dramatically when damping becomes
small (about 1% or smaller). In this case only numerical integration
is able to produced results which agree with the direct Monte
Carlo simulation results, at frequencies in the vicinity of resonance.
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Therefore, one of the key conclusions from this work is that care
should be taken for dynamic analysis of stochastic systems with
very light damping.

7.2. Summary of numerical results

It can be observed that damping has an important effect on the
standard deviation of the response. The higher is the damping, the
smaller is the standard deviation compared to the mean. This is
observed for both SDOF and MDOF systems, but is more evident
for MDOF systems. This effect is independent of the distribution of
the random variable. Comparing results of mean and standard
deviation for SDOF systems, it is observed that mean and standard
deviation of all the pdfs give similar results. On the other side, this
is only observed for frequencies near the first natural frequency for
MDOF systems. For higher frequencies, mean of the FRF for normal
distribution appears more damped than the ones obtained with
other distributions, and standard deviation is generally larger than
the one for other distributions. Values of mean and standard de-
viation of FRF for MDOF for lognormal, gamma and uniform dis-
tribution are almost coincident for every frequency.
8. Conclusions

This paper considers qualitative and quantitative analysis of
response statistics of damped stochastic linear dynamical systems.
The mean response of the system is effectively more damped than
the underlying baseline system. Assuming uniform distribution of
the squared natural frequency, a closed-from expression of the
equivalent damping of the mean response is obtained as

3 / 106e n
1/4ζ ζ π≈ ϵ ( )

where ϵ is the standard deviation of the squared natural frequency
and ζn is the damping ratio. This simple expression qualitatively
explains many key general observations on the dynamic response.

For quantitative analysis of dynamic response statistics, con-
sidering the distribution of the system eigenvalues, two novel
semi-analytical methods, namely hybrid Laplace-numerical in-
tegration and hybrid modified Laplace methods, have been pro-
posed. The proposed methods have been extended to general
multiple degree of freedom systems assuming uncorrelated ei-
gensolutions. Due to the semi-analytical nature of the results, the
proposed methods can offer computational advantages over direct
Monte Carlo simulations for structures with very large number of
degrees of freedom.
Mean of the real and imaginary parts of the response vector
and second moment of its absolute value are calculated making
use of the proposed methods. Four probability density functions,
namely uniform, normal, log-normal and gamma, are considered
for the natural frequencies. Exact closed-form expressions for the
response moments have been obtained for the uniform distribu-
tion. It is observed that the accuracy of the proposed method
depends on the pdf of the random variable, on the damping factor
and on the frequency at which the integral is evaluated. In general
lightly damped systems show less accuracy compared to systems
with more damping. The assumption of uncorrelated eigenvalues
is likely to be valid for low frequencies only, where less overlap
between the eigenvalues is expected. Future works will consider
dynamic response in the medium and higher frequencies where
joint pdf of eigenvalues and eigenvectors need to be considered.
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