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This paper introduces the idea of nonlocal normal modes arising in the dynamic analysis
of nanoscale structures. A nonlocal finite element approach is developed for the axial
vibration of nanorods, bending vibration of nanobeams and transverse vibration of
nanoplates. Explicit expressions of the element mass and stiffness matrices are derived
in closed-form as functions of a length-scale parameter. In general the mass matrix can be
expressed as a sum of the classical local mass matrix and a nonlocal part. The nonlocal
part of the mass matrix is scale-dependent and vanishes for systems with larger lengths.
Classical modal analysis and perturbation method are used to understand the dynamic
behaviour of discrete nonlocal systems in the light of classical local systems. The
conditions for the existence of classical normal modes for undamped and damped
nonlocal systems are established. Closed-form approximate expressions of nonlocal
natural frequencies, modes and frequency response functions are derived. Results derived
in the paper are illustrated using examples of axial and bending vibration of nanotubes
and transverse vibration of graphene sheets.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Nanoscale systems, such as those fabricated from simple and complex nanorods, nanobeams [1] and nanoplates, have
attracted keen interest among scientists and engineers. Examples of one-dimensional nanoscale objects include (nanorod and
nanobeam) carbon nanotubes [2], zinc oxide (ZnO) nanowires and boron nitride (BN) nanotubes, while two-dimensional
nanoscale objects include graphene sheets [3] and BN nanosheets [4]. These nanoscale entities or nanostructures are found to
have exciting mechanical, chemical, electrical, optical and electronic properties. Nanostructures are being used in the field of
nanoelectronics, nanodevices, nanosensors, nanooscillators, nanoactuators, nanobearings, and micromechanical resonators,
transporter of drugs, hydrogen storage, electrical batteries, solar cells, nanocomposites and nanooptomechanical systems
(NOMS). Understanding the dynamics of nanostructures is crucial for the development of future generation applications in
these areas.

Experiments at the nanoscale can be difficult as many parameters need to be taken care of. On the other hand, atomistic
computation methods such as molecular dynamic (MD) simulations [5] are computationally prohibitive for nanostructures
with large numbers of atoms. Thus continuum mechanics is an important tool for modelling, understanding and predicting
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physical behaviour of nanostructures. Although continuum models based on classical elasticity are able to predict the general
behaviour of nanostructures, they lack the accountability of effects arising from the small-scale. At small-scale the theory and
laws of classical elasticity may not hold. Consequently for accurate predictions, the employability of the classical continuum
models have been questioned in the analysis of nanostructures and nanoscale systems. To address this, size-dependent
continuum based methods [6–9] are getting in popularity in the modelling of small sized structures as they offer much faster
solutions than molecular dynamic simulations for various nanoengineering problems. Currently research efforts are under-
going to bring in the size-effects within the formulation by modifying the traditional classical mechanics. One popularly used
size-dependant theory is the nonlocal elasticity theory pioneered by Eringen [10], and applied to nanotechnology by
Peddieson et al. [11]. The theory of nonlocal elasticity (nonlocal continuum mechanics) is being increasingly used for efficient
analysis of nanostructures viz. nanorods [12,13], nanobeams [14], nanoplates [15,16], nanorings [17], carbon nanotubes [18,19],
graphenes [20,21], nanoswitches [22] and microtubules [23]. Nonlocal elasticity accounts for the small-scale effects at the
atomistic level. At nanometer scales, size effects often become prominent. Both experimental and atomistic simulation results
have shown a significant size-effect in the mechanical properties when the dimensions of these structures become small
[24,25]. In the nonlocal elasticity theory the small-scale effects are captured by assuming that the stress at a point as a function
of the strains at all points in the domain. Nonlocal theory considers long-range inter-atomic interaction and yields results
dependent on the size of a body [10]. Some of the drawbacks of the classical continuum theory could be efficiently avoided and
size-dependent phenomena can be explained by the nonlocal elasticity theory. A good review on nonlocal elasticity and
application to nanostructures can be found in Ref [26].

Several researchers have used nonlocal theory for dynamic analysis of continuum systems such as nanorods, nanobeams
and nanoplates. Nanorods have found application in energy harvesting, light emitting devices and microelectromechanical
systems (MEMS). Using nonlocal elasticity, various work on mechanical behaviour of nanorods [12,13,27–29] were reported.
Numerous works are seen in the literature regarding analysis (mainly structural) of nanobeams using nonlocal elasticity [26]
and coupled nanobeams [14]. The work on nanobeams is related to carbon nanotubes, boron nitride nanotubes and ZnO
nanowires. Nanoplate models have been used to represent two-dimensional nanostructures such as graphene sheets and BN
sheets. Several works on dynamics of nanoplates using nonlocal theory are available in literature [30,31].

From the brief literature review it is clear that significant research efforts have taken place in the analysis of nanostructures
modelled as a continuum. While the results have given significant insights, the analysis is normally restricted to single-structure
(e.g, a beam or a plate) with simple boundary conditions and no damping. In the future complex nanoscale structures will be
used for next generation nanoelectro-mechanical systems. Therefore, it is necessary to have the ability for design and analysis of
damped built-up structures. The finite element approach for nanoscale structures can provide this generality. Work on nonlocal
finite elements is in its infancy stage. Pisano et al. [32] reported a finite element procedure for nonlocal integral elasticity. Chang
[33] studied the small scale effects on axial vibration of non-uniform and nonhomogeneous nanorods by using the theory of
nonlocal elasticity and the finite element method. Narendar and Gopalakrishnan [34] used the concept of nonlocal elasticity and
applied it for the development of a spectral finite element (SFE) for analysis of nanorods. Recently Adhikari et al. [35] reported
the free and forced axial vibrations of damped nonlocal rods using dynamic nonlocal finite element analysis. Similar to the few
works on nonlocal finite element analysis of nanorods, not many works were reported on the nonlocal finite element
formulation of nanobeams (carbon nanotubes). Phadikar and Pradhan [30] have proposed basic finite element formulations for
a nonlocal elastic EulerBernoulli beam using the Galerkin technique. Studies were carried out for bending, free vibration and
buckling for nonlocal beam with four classical boundary conditions. Pradhan [36] updated the work of nonlocal finite element
to Timoshenko beam theory and applied it to carbon nanotubes. With the finite element analysis bending, buckling and
vibration for nonlocal beams with clamped–clamped, hinged–hinged, clamped–hinged and clamped-free boundary conditions
were illustrated. The basic nonlocal finite elements of undamped two-dimensional nanoplates (such as graphene sheets) were
reported by Phadikar and Pradhan [30]. Recently, Ansari et al. [37] developed nonlocal finite element model for vibration of
embedded multi-layered graphene sheets. The proposed finite elements were based on the Mindlin-type equations of motion
coupled together through the van der Waals interaction. Vibrational characteristics of multi-layered graphene sheets with
different boundary conditions embedded in an elastic medium were considered.

The majority of the reported works on nonlocal finite element analysis consider free vibration studies where the effect of
non-locality on the undamped eigensolutions has been studied. Damped nonlocal systems and forced vibration response
analysis have received little attention. On the other hand, significant body of literature is available [38–40] on finite element
analysis of local dynamical systems. It is necessary to extend the ideas of local modal analysis to nonlocal systems to gain
qualitative as well as quantitative understanding. This way, the dynamic behaviour of general nonlocal discretised systems
can be explained in the light of well known established theories of discrete local systems. The purpose of this paper is to
make contributions in this open area.

The paper is organised as follows. In Section 2 we introduce the nonlocal finite element formulation for the axial vibration
of rods, bending vibration of beams and transverse vibration of plates. Explicit expressions of element mass and stiffness
matrices for the three systems are derived. Modal analysis of discrete nonlocal dynamical systems is discussed in Section 3.
The conditions for the existence of classical normal modes, approximations for nonlocal frequencies and modes are proposed.
In Section 4, dynamic response of damped nonlocal systems and approximation to the frequency response function are
discussed. Analytical results, including the approximations of the nonlocal natural frequencies and modes, are numerically
illustrated for the three systems in Section 5. In Section 6 some conclusions are drawn based on the theoretical and numerical
results obtained in the paper.
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2. Finite element modelling of nonlocal dynamic systems

2.1. Brief overview of nonlocal elasticity

In this section and the next three subsections, we review the fundamental principle of nonlocal elasticity theory and give
the equations of motion for axial vibration of nanorods, bending vibration of nanobeams and flexural vibration of thin
nanoplates. Equations of motions are not derived here, but relevant references are given for background. According to
Eringen [10], the basic equations for nonlocal anisotropic linear homogenous nonlocal elastic body neglecting the body force
can be expressed as

σij;j ¼ 0;

σijðxÞ ¼
Z
V
ϕðjx�x0j;αÞtijdVðx0Þ; 8xAV

tij ¼Hijklϵkl;
ϵij ¼ 1=2ðui;jþuj;i ð1Þ

The terms σij, tij, ϵkl and Hijkl are the nonlocal stress, classical stress, classical strain and fourth order elasticity tensors
respectively. The volume integral is over the region V occupied by the body. Eq. (1) couples the stress due to nonlocal
elasticity and the stress due to classical elasticity. The kernel function ϕðjx�x0j;αÞ is the nonlocal modulus. The nonlocal
modulus acts as an attenuation function incorporating into constitutive equations the nonlocal effects at the reference point
x produced by local strain at the source x0. The term jx�x0j represents the distance in the Euclidean form and α is a material
constant that depends on the internal (e.g. lattice parameter, granular size, distance between the C–C bonds) and external
characteristics lengths (e.g. crack length and wave length). Material constant α is defined as α¼ ðe0aÞl. Here e0 is a constant
for calibrating the model with experimental results and other validated models. The parameter e0 is estimated such that the
relations of the nonlocal elasticity model could provide satisfactory approximation to the atomic dispersion curves of the
plane waves with those obtained from the atomistic lattice dynamics. The terms a and l are the internal (e.g. lattice
parameter, granular size, and distance between C–C bonds) and external characteristics lengths (e.g. crack length and wave
length) of the nanostructure. Eq. (1) effectively shows that in nonlocal theory, the stress at a point is a function of the strains
at all points in the domain. The classical elasticity can be viewed as a special cade when the kernel function becomes a Dirac
delta function.

The direct use of Eq. (1) in boundary value problems results in integro-partial differential equations and they are
generally difficult to solve analytically. For this reason, a differential form of nonlocal elasticity equation is often beneficial.
According to Eringen [10], this can be achieved for a special case of the kernel function given by

ϕðjx�x0j;αÞ ¼ ð2πℓ2α2ÞK0ð
ffiffiffiffiffiffiffiffi
x�xp

=ℓαÞ ð2Þ
Here K0 is the modified Bessel function. The equation of motion in terms of nonlocal elasticity can be expressed as

σij;jþ f i ¼ ρ €ui ð3Þ
where fi, ρ and ui are the components of the body forces, mass density, and the displacement vector, respectively. The terms
i; j takes up the symbols x; y, and z. The operator ð €�Þ denotes double derivative with respect to time. Assuming the kernel
function ϕ as the Greens function, Eringen [10] proposed a differential form of the nonlocal constitutive relation as

σij;jþLðf i�ρ €uiÞ ¼ 0 ð4Þ
where

Lð�Þ ¼ ½1�ðe0aÞ2∇2�ð�Þ ð5Þ
and ∇2 is the Laplacian. Using this equation the nonlocal constitutive stress–strain relation can be simplified as

ð1�α2 l2∇2Þσij ¼ tij ð6Þ
One can use this relationship and derive the equation of motion using conventional variational principle. In the next
subsections we consider the dynamics of nonlocal road, beam and plate using this approach.

2.2. Axial vibration of nanorods

The equation of motion of axial vibration for a damped nonlocal rod can be expressed as [41,12,42,35]

EA
∂2Uðx; tÞ

∂x2
þbc1∂3Uðx; tÞ∂x2∂t

¼ bc2∂Uðx; tÞ∂t
þ 1�ðe0aÞ2

∂2

∂x2

� �
m
∂2Uðx; tÞ

∂t2
þF x; tð Þ

� �
ð7Þ

In the above equation EA is the axial rigidity, m is mass per unit length, e0a is the nonlocal parameter [10], Uðx; tÞ is the axial
displacement, Fðx; tÞ is the applied force, x is the spatial variable, and t is the time. The constant bc1 is the strain-rate-
dependent viscous damping coefficient and bc2 is the velocity-dependent viscous damping coefficient. We consider an
element of length ℓe with axial stiffness EA and mass per unit length m. An element of the axially vibrating rod is shown
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in Fig. 1. This element has two degrees of freedom and there are two shape functions N1ðxÞ and N2ðxÞ. The shape function
matrix for the axial deformation [40] can be given by

NðxÞ ¼ ½N1ðxÞ;N2ðxÞ�T ¼ ½1�x=ℓe; x=ℓe�T ð8Þ

Using this the stiffness matrix can be obtained using the conventional variational formulation as

Ke ¼ EA
Z ℓe

0

dNðxÞ
dx

dNT ðxÞ
dx

dx¼ EA
ℓe

1 �1
�1 1

� �
ð9Þ

The mass matrix for the nonlocal element can be obtained as

Me ¼m
Z ℓe

0
N xð ÞNT xð Þ dxþmðe0aÞ2

Z ℓe

0

dNðxÞ
dx

dNT ðxÞ
dx

dx

¼mℓe

6
2 1
1 2

� �
þ e0a

ℓe

� �2

mℓe
1 �1
�1 1

� �
ð10Þ

For the special case when the rod is local, the mass matrix derived above reduces to the classical mass matrix [40,43] as
e0a¼ 0 . Therefore for a nonlocal rod, the element stiffness matrix is identical to that of a classical local rod but the element
mass has an additive term which is dependent on the nonlocal parameter.
2.3. Bending vibration of nanobeams

For the bending vibration of a nonlocal damped beam, the equation of motion can be expressed by [36,41,44]

EI
∂4Vðx; tÞ

∂x4
þm 1�ðe0aÞ2

∂2

∂x2

� �
∂2Vðx; tÞ

∂t2

� �
þbc1∂5 Vðx; tÞ∂x4∂t

þbc2∂Vðx; tÞ∂t
¼ 1�ðe0aÞ2

∂2

∂x2

� �
fF x; tð Þg ð11Þ

In the above equation EI is the bending rigidity, m is mass per unit length, e0a is the nonlocal parameter, Vðx; tÞ is the
transverse displacement and Fðx; tÞ is the applied force. The constant bc1 is the strain-rate-dependent viscous damping
coefficient and bc2 is the velocity-dependent viscous damping coefficient. We consider an element of length ℓe with bending
stiffness EI and mass per unit lengthm. An element of the beam is shown in Fig. 2. This element has four degrees of freedom
and there are four shape functions. The shape function matrix for the bending deformation [40] can be given by

NðxÞ ¼ ½N1ðxÞ;N2ðxÞ;N3ðxÞ;N4ðxÞ�T ð12Þ
1 2

le

Fig. 1. A nonlocal element for the axially vibrating rod with two nodes. It has two degrees of freedom and the displacement field within the element is
expressed by linear shape functions.

1 2
le

Fig. 2. A nonlocal element for the bending vibration of a beam. It has two nodes and four degrees of freedom. The displacement field within the element is
expressed by cubic shape functions.
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where

N1 xð Þ ¼ 1�3
x2

ℓ2
e
þ2

x3

ℓ3
e
; N2 xð Þ ¼ x�2

x2

ℓe
þx3

ℓ2
e
;

N3 xð Þ ¼ 3
x2

ℓ2
e
�2

x3

ℓ3
e
; N4 xð Þ ¼ �x2

ℓe
þx3

ℓ2
e

ð13Þ

Using this, the stiffness matrix can be obtained using the conventional variational formulation [43] as

Ke ¼ EI
Z ℓe

0

d2NðxÞ
dx2

d2NT ðxÞ
dx2

dx¼ EI
ℓ3
e

12 6ℓe �12 6ℓe

6ℓe 4ℓ2
e �6ℓe 2ℓ2

e

�12 �6ℓe 12 �6ℓ2
e

6ℓe 2ℓ2
e �6ℓe 4ℓ2

e

266664
377775 ð14Þ

The mass matrix for the nonlocal element can be obtained as

Me ¼m
Z ℓe

0
N xð ÞNT xð Þ dxþmðe0aÞ2

Z ℓe

0

dNðxÞ
dx

dNT ðxÞ
dx

dx

¼mℓe

420

156 22ℓe 54 �13ℓe

22ℓe 4ℓ2
e 13ℓe �3ℓ2

e

54 13ℓe 156 �22ℓe

�13ℓe �3ℓ2
e �22ℓe 4ℓ2

e

266664
377775þ e0a

ℓe

� �2mℓe

30

36 3ℓe �36 3ℓe

3ℓe 4ℓ2
e �3ℓe �ℓ2

e

�36 �3ℓe 36 �3ℓe

3ℓe �ℓ2
e �3ℓe 4ℓ2

e

266664
377775 ð15Þ

For the special case when the beam is local, the mass matrix derived above reduces to the classical mass matrix [40,43] as
e0a¼ 0.

2.4. Transverse vibration of nanoplates

For the transverse bending vibration of a nonlocal damped thin plate, the equation of motion can be expressed by [15]

D∇4 V x; y; tð Þþm 1�ðe0aÞ2∇2
	 
 ∂2Vðx; y; tÞ

∂t2

� �
þbc1∇4∂Vðx; y; tÞ

∂x4∂t
þbc2∂Vðx; y; tÞ∂t

¼ 1�ðe0aÞ2∇2
	 


fF x; y; tð Þg ð16Þ

In the above equation ∇2 ¼ ð∂2=∂x2þ∂2=∂x2Þ is the differential operator, D¼ Eh3=12ð1�ν2Þ is the bending rigidity, h is the
thickness, ν is the Poisson's ratio, m is mass per unit area, e0a is the nonlocal parameter, Vðx; y; tÞ is the transverse
displacement and Fðx; y; tÞ is the applied force. The constant bc1 is the strain-rate-dependent viscous damping coefficient andbc2 is the velocity-dependent viscous damping coefficient. We consider an element of dimension 2c� 2b with bending
stiffness D and mass per unit area m. An element of the plate is shown in Fig. 3 together with the local coordinate system.
The shape function matrix for the bending deformation is a 12�1 vector [43] and can be expressed as

Nðx; yÞ ¼ C�1
e αðx; yÞ ð17Þ

Here the vector of polynomials is given by

αðx; yÞ ¼ ½1 x y x2 xy y2 x3 x2y xy2 y3 x3y xy3�T ð18Þ
x

y

(- c ,-b) 

(- c ,b) 

( c ,-b) 

( c ,b) 

12

3 4

Fig. 3. A nonlocal element for the bending vibration of a plate. It has four nodes and twelve degrees of freedom. The displacement field within the element
is expressed by cubic shape functions in both directions.
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and the coefficient matrix can be obtained as

C�1
e ¼ 1

8a3b3

�

2c3b3 c3b4 c4b3 2c3b3 c3b4 �b3c4 2c3b3 �c3b4 �c4b3 2c3b3 �c3b4 c4b3

�3c2b3 �c2b4 �c3b3 3c2b3 c2b4 �c3b3 3c2b3 �c2b4 �c3b3 �3c2b3 c2b4 �c3b3

�3c3b2 �c3b3 �c4b2 �3c3b2 �c3b3 c4b2 3c3b2 �c3b3 �c4b2 3c3b2 �c3b3 c4b2

0 0 �c2b3 0 0 c2b3 0 0 c2b3 0 0 �c2b3

4c2b2 c2b3 c3b2 �4c2b2 �c2b3 c3b2 4c2b2 �c2b3 �c3b2 �4c2b2 c2b3 �c3b2

0 �c3b2 0 0 �c3b2 0 0 c3b2 0 0 c3b2 0
b3 0 cb3 �b3 0 cb3 �b3 0 cb3 b3 0 cb3

0 0 c2b2 0 0 �c2b2 0 0 c2b2 0 0 �c2b2

0 c2b2 0 0 �c2b2 0 0 c2b2 0 0 �c2b2 0
c3 c3b 0 c3 c3b 0 �c3 c3b 0 �c3 c3b 0
�b2 0 �cb2 b2 0 �cb2 �b2 0 cb2 b2 0 cb2

�c2 �c2b 0 c2 c2b 0 �c2 c2b 0 c2 �c2b 0

26666666666666666666666664

37777777777777777777777775
ð19Þ

Using the shape functions in Eq. (17), the stiffness matrix can be obtained using the conventional variational formulation
[43] as

Ke ¼
Z
Ae

BTEB dAe ð20Þ

In the preceding equation B is the strain-displacement matrix, and the matrix E is given by

E¼D

1 ν 0
ν 1 0
0 0 1�ν

2

264
375 ð21Þ

Evaluating the integral in Eq. (20), we can obtain the element stiffness matrix in closed-form as

Ke ¼
Eh3

12ð1�ν2ÞC
�1TkeC�1 ð22Þ

where

ke ¼

0
0 0
0 0 0
0 0 0 ke44
0 0 0 0 ke55
0 0 0 ke64 0 ke66 symmetric
0 0 0 0 0 0 ke77
0 0 0 0 0 0 0 ke88
0 0 0 0 0 0 ke97 0 ke99
0 0 0 0 0 0 0 ke108 0 ke1010
0 0 0 0 ke115 0 0 0 0 0 ke1111
0 0 0 0 ke125 0 0 0 0 0 ke1211 ke1212

26666666666666666666666664

37777777777777777777777775

ð23Þ

with

ke44 ¼ 16cb; ke55 ¼ 8cb 1�νð Þ; ke64 ¼ 16νcb

ke66 ¼ 16cb; ke77 ¼ 48c3b; ke88 ¼
16cbðð2�2νÞc2þb2Þ

3

ke97 ¼ 16νc3b; ke99 ¼
16cbðc2þ2ð1�νÞb2Þ

3
; ke10 8 ¼ 16νcb2

ke10 10 ¼ 48cb3; ke11 5 ¼ 8 1�νð Þc3b; ke11 11 ¼ 4c3b
9ð1�νÞc2

5
þ4b2

� �
ke12 5 ¼ 8 1�νð Þcb3; ke12 11 ¼ 8 νþ1ð Þc3b3; ke12 12 ¼

8 cb3ð10c2þ9ð1�νÞb2Þ
5
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The mass matrix for the nonlocal element can be obtained as

Me ¼ ρh
Z
Ae

N x; yð ÞNT x; yð Þþðe0aÞ2
∂Nðx; yÞ

∂x
dNT ðx; yÞ

dx
þ∂Nðx; yÞ

∂x
dNT ðx; yÞ

dx

 !( )
dAe

¼M0e þ
e0a
c

	 
2
Mxe þ

e0a
b

	 
2
Mye ð24Þ

The three matrices appearing in the above expression can be obtained in closed-form as

M0e ¼
ρhcb
3150

�

1727 461b 461c 613 199b �274c 197 �116b �116c 613 �274b 199c
461b 160b2 126cb 199b 80b2 �84cb 116b �60b2 �56cb 274b �120b2 84cb
461c 126cb 160c2 274c 84cb �120c2 116c �56cb �60c2 199c �84cb 80c2

613 199b 274c 1727 461b �461c 613 �274b �199c 197 �116b 116c
199b 80b2 84cb 461b 160b2 �126cb 274b �120b2 �84cb 116b �60b2 56cb
�274c �84cb �120c2 �461c �126cb 160c2 �199c 84cb 80c2 �116c 56cb �60c2

197 116b 116c 613 274b �199c 1727 �461b �461c 613 �199b 274c
�116b �60b2 �56cb �274b �120b2 84cb �461b 160b2 126cb �199b 80b2 �84cb
�116c �56cb �60c2 �199c �84cb 80c2 �461c 126cb 160c2 �274c 84cb �120c2

613 274b 199c 197 116b �116c 613 �199b �274c 1727 �461b 461c
�274b �120b2 �84cb �116b �60b2 56cb �199b 80b2 84cb �461b 160b2 �126cb
199c 84cb 80c2 116c 56cb �60c2 274c �84cb �120c2 461c �126cb 160c2

26666666666666666666666664

37777777777777777777777775
ð25Þ

Mxe ¼
ρhcb
630

�

276 66b 42c �276 �66b 42c �102 39b 21c 102 �39b 21c
66b 24b2 0 �66b �24b2 0 �39b 18b2 0 39b �18b2 0
42c 0 112c2 �42c 0 �28c2 �21c 0 �14c2 21c 0 56c2

�276 �66b �42c 276 66b �42c 102 �39b �21c �102 39b �21c
�66b �24b2 0 66b 24b2 0 39b �18b2 0 �39b 18b2 0
42c 0 �28c2 �42c 0 112c2 �21c 0 56c2 21c 0 �14c2

�102 �39b �21c 102 39b �21c 276 �66b �42c �276 66b �42c
39b 18b2 0 �39b �18b2 0 �66b 24b2 0 66b �24b2 0
21c 0 �14c2 �21c 0 56c2 �42c 0 112c2 42c 0 �28c2

102 39b 21c �102 �39b 21c �276 66b 42c 276 �66b 42c
�39b �18b2 0 39b 18b2 0 66b �24b2 0 �66b 24b2 0
21c 0 56c2 �21c 0 �14c2 �42c 0 �28c2 42c 0 112c2

26666666666666666666666664

37777777777777777777777775
ð26Þ

Mye ¼
ρhcb
630

�

276 42b 66c 102 21b �39c �102 21b 39c �276 42b �66c
42b 112b2 0 21b 56b2 0 �21b �14b2 0 �42b �28b2 0
66c 0 24c2 39c 0 �18c2 �39c 0 18c2 �66c 0 �24c2

102 21b 39c 276 42b �66c �276 42b 66c �102 21b �39c
21b 56b2 0 42b 112b2 0 �42b �28b2 0 �21b �14b2 0
�39c 0 �18c2 �66c 0 24c2 66c 0 �24c2 39c 0 18c2

�102 �21b �39c �276 �42b 66c 276 �42b �66c 102 �21b 39c
21b �14b2 0 42b �28b2 0 �42b 112b2 0 �21b 56b2 0
39c 0 18c2 66c 0 �24c2 �66c 0 24c2 �39c 0 �18c2

�276 �42b �66c �102 �21b 39c 102 �21b �39c 276 �42b 66c
42b �28b2 0 21b �14b2 0 �21b 56b2 0 �42b 112b2 0
�66c 0 �24c2 �39c 0 18c2 39c 0 �18c2 66c 0 24c2

26666666666666666666666664

37777777777777777777777775
ð27Þ

For the special case when the plate is local, the mass matrix derived above reduces to the classical mass matrix as e0a¼ 0
[43].



S. Adhikari et al. / Mechanical Systems and Signal Processing 60-61 (2015) 583–603590
Based on the discussions in this section for all the three systems considered here, in general the element mass matrix of a
nonlocal dynamic system can be expressed as

Me ¼M0e þMμe
ð28Þ

HereM0e is the element stiffness matrix corresponding to the underlying local system and Mμe
is the additional term arising

due to the nonlocal effect.

3. Modal analysis of nonlocal dynamical systems

Modal analysis is a classical technique developed by Rayleigh [45] in 1877. Contemporary methods for damped multi
body dynamic systems [38,39,46] essentially rely on this classical approach. Here we employ the classical modal analysis in
conjunction with the first-order perturbation method, also pioneered by Rayleigh, to nonlocal dynamic system. Using the
finite element formulation, the stiffness matrix of the local and nonlocal system turns out to be identical to each other. The
mass matrix of the nonlocal system is however different from its equivalent local counterpart. Assembling the element
matrices and applying the boundary conditions, following the usual procedure of the finite element method [47] one
obtains the global mass matrix as

M¼M0þMμ ð29Þ
In the above equation M0 is the usual global mass matrix arising in the conventional local system and Mμ is matrix arising
due to nonlocal nature of the systems. In general we can express this matrix by

Mμ ¼
e0a
L

	 
2 bMμ ð30Þ

where bMμ is a nonnegative definite matrix. The matrix Mμ is therefore, a scale-dependent matrix and its influence reduces if
the length of the system L is large compared to the parameter e0a. Majority of the current finite element software and other
computational tools do not explicitly consider the nonlocal part of the mass matrix. For the design and analysis of future
generation of nanoelectromechanical systems it is vitally important to consider the nonlocal influence. In this section we are
interested in understanding the impact of the difference in the mass matrix on the dynamic characteristics of the system. In
particular the following questions of fundamental interest have been addressed:
�
 Under what condition a nonlocal system possess classical local normal modes?

�
 How the vibration modes and frequencies of a nonlocal system can be understood in the light of the results from classical

local systems?

By addressing these questions, it would be possible to extend conventional ‘local’ elasticity based finite element software to
analyse nonlocal systems arising in the modelling of complex nanoscale built-up structures.

3.1. Conditions for classical normal modes

The equation of motion of a discretised nonlocal damped system with n degrees of freedom can be expressed as

½M0þMμ� €uðtÞþC _uðtÞþKuðtÞ ¼ fðtÞ ð31Þ
Here uðtÞARn is the displacement vector, fðtÞARn is the forcing vector, K;CARn�n are respectively the global stiffness and
the viscous damping matrix. In general M0 and Mμ are positive definite symmetric matrices, C and K are non-negative
definite symmetric matrices. The equation of motion of corresponding local system is given by

M0 €u0ðtÞþC _u0ðtÞþKu0ðtÞ ¼ fðtÞ ð32Þ
where u0ðtÞARn is the local displacement vector. The natural frequencies ðωjARÞ and the mode shapes ðxjARnÞ of the
corresponding undamped local system can be obtained by solving the matrix eigenvalue problem [38] as

Kxj ¼ω2
j M0xj; 8 j¼ 1;2;…;n ð33Þ

The undamped local eigenvectors satisfy an orthogonality relationship over the local mass and stiffness matrices, that is

xT
kM0xj ¼ δkj ð34Þ

and

xT
kKxj ¼ω2

j δkj; 8 k; j¼ 1;2;…;n ð35Þ
where δkj is the Kroneker delta function. We construct the local modal matrix

X¼ ½x1; x2;…; xn�ARn ð36Þ
The local modal matrix can be used to diagonalize the local system (32) provided the damping matrix C is simultaneously
diagonalisable with M0 and K. This condition, known as the proportional damping, originally introduced by Rayleigh [45] in
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1877, is still in wide use today. The mathematical condition for proportional damping can be obtained from the commutative
behaviour of the system matrices [48]. This can be expressed as

CM�1
0 K¼KM�1

0 C ð37Þ

or equivalently C¼M0f ðM�1
0 KÞ as shown in [49].

Considering undamped nonlocal system and premultiplying the equation by M�1
0 we have

ðInþM�1
0 MμÞ €uðtÞþðM�1

0 KÞuðtÞ ¼M�1
0 fðtÞ ð38Þ

This system can be diagonalised by a similarity transformation which also diagonalise ðM�1
0 KÞ provided the matrices

ðM�1
0 MμÞ and ðM�1

0 KÞ commute. This implies that the condition for existence of classical local normal modes is

ðM�1
0 KÞðM�1

0 MμÞ ¼ ðM�1
0 MμÞðM�1

0 KÞ ð39Þ

or

KM�1
0 Mμ ¼MμM�1

0 K ð40Þ

If the above condition is satisfied, then a nonlocal undamped system can be diagonalised by the classical local normal
modes. However, it is also possible to have nonlocal normal modes which can diagonalize the nonlocal undamped system as
discussed in the next subsection.
3.2. Nonlocal normal modes

Nonlocal normal modes can be obtained by the undamped nonlocal eigenvalue problem:

Kuj ¼ λ2j ½M0þMμ�uj; 8 j¼ 1;2;…;n ð41Þ

Here λj and uj are the nonlocal natural frequencies and nonlocal normal modes of the system. We can define a nonlocal
modal matrix:

U¼ ½u1;u2;…;un�ARn ð42Þ

which will unconditionally diagonalize the nonlocal undamped system. It should be remembered that in general nonlocal
normal modes and frequencies will be different from their local counterparts.

Under certain restrictive condition it may be possible to diagonalise the damped nonlocal system using classical normal
modes. Premultiplying the equation of motion (31) by M�1

0 , the required condition is that ðM�1
0 MμÞ, ðM�1

0 CÞ and ðM�1
0 KÞ

must commute pairwise. This implies that in addition to the two conditions given by Eqs. (37) and (40), we also need a third
condition:

CM�1
0 Mμ ¼MμM�1

0 C ð43Þ

If we consider the diagonalisation of the nonlocal system by the nonlocal modal matrix in (42), then the concept of
proportional damping can be applied similar to that of the local system. One can obtain the required condition similar to
Caughey's condition [48] as in Eq. (37) by replacing the mass matrix with M0þMμ. If this condition is satisfied, then the
equation of motion can be diagonalised by the nonlocal normal modes and in general not by the classical normal modes.
3.3. Approximate nonlocal normal modes

Majority of the existing finite element software calculate the classical normal modes. However, it was shown that only
under certain restrictive condition, the classical normal modes can be used to diagonalise the system. In general one need to
use nonlocal normal modes to diagonalise the equation of motion (31), which is necessary for efficient dynamic analysis and
physical understanding of the system. In this section we aim to express nonlocal normal modes in terms of classical normal
modes. Since the classical normal modes are well understood, this approach will allow us to develop physical understanding
of the nonlocal normal modes. The analytical approach adopted here is motivated by the first-order perturbation method
used for complex modes arising in non-proportionally damped dynamic systems. We refer to the book by Rayleigh [45] for
viscously damped systems and a more recent book [46] on general non-viscously damped systems for more detailed
discussions.

For distinct undamped eigenvalues (ω2
l ), local eigenvectors xl; 8 l¼ 1;…;n, form a complete set of vectors. For this

reason each nonlocal normal mode uj can be expanded as a linear combination of xl. Thus, an expansion of the form:

uj ¼
Xn
l ¼ 1

αðjÞ
l xl ð44Þ
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may be considered. Without any loss of generality, we can assume that αðjÞ
j ¼ 1 (normalisation) which leaves us to determine

αðjÞ
l ; 8 la j. Substituting the expansion of uj into the eigenvalue equation (41), one obtains

½�λ2j ðM0þMμÞþK�
Xn
l ¼ 1

αðjÞ
l xl ¼ 0 ð45Þ

For the case when αðjÞ
l are approximate, the error involving the projection in Eq. (44) can be expressed as

εj ¼
Xn
l ¼ 1

½�λ2j ðM0þMμÞþK�αðjÞ
l xl ð46Þ

We use a Galerkin approach to minimise this error by viewing the expansion as a projection in the basis functions
xlARn; 8 l¼ 1;2;…n. Therefore, making the error orthogonal to the basis functions one has

εj ? xl or xT
kεj ¼ 0 8 k¼ 1;2;…;n ð47Þ

Using the orthogonality property of the undamped local modes described by Eqs. (34) and (35) one obtainsXn
l ¼ 1

½�λ2j ðδklþM0
μkl
Þþω2

kδkl�αðjÞ
l ¼ 0 ð48Þ

where M0
μkl

¼ xT
kMμxl are the elements of the nonlocal part of the modal mass matrix. The j-th equation of this set obtained

by setting k¼ j and can be written as

�λ2j ð1þM0
μjj
Þþω2

j �λ2j
Xn
la j

ðM0
μjl
ÞαðjÞ

l ¼ 0 ð49Þ

Assuming that the off-diagonal terms of the nonlocal part of the modal mass matrix are small and αðjÞ
l 51; 8 la j,

approximate nonlocal frequencies can be obtained as

λj �
ωjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þM0
μjj

q ð50Þ

This equation gives a closed-form expression relating nonlocal natural frequencies λj and local natural frequencies ωj. If the
length-scale parameter is large, then diagonal elements of the nonlocal part of the modal mass matrix becomes smaller and
consequently the nonlocal frequencies approach the classical local frequencies. Eq. (50) can also be viewed as a general
correction to the local frequencies due to the nonlocal effect arising due to small length scale.

For the general case when ka j, from Eq. (48) we have

½�λ2j ð1þM0
μkk

Þþω2
k �αðjÞ

k �λ2j
Xn
lak

ðM0
μkl
ÞαðjÞ

l ¼ 0 ð51Þ

Recalling that αðjÞ
j ¼ 1, this equation can be expressed as

½�λ2j ð1þM0
μkk

Þþω2
k �αðjÞ

k ¼ λ2j M0
μkj

þ
Xn

laka j

M0
μkl
αðjÞ
l

24 35 ð52Þ

Again assuming that the off-diagonal terms of the nonlocal part of the modal mass matrix are small and αðjÞ
l 51; 8 la j, we

can obtain

αðjÞ
k �

λ2j M
0
μkj

�λ2j ð1þM0
μkk

Þþω2
k

� λ2j
ðλ2k�λ2j Þ

M0
μkj

ð1þM0
μkk

Þ ð53Þ

Substituting this in the original expansion (44), the nonlocal normalmodes can be expressed in terms of the classical normalmodes as

uj � xjþ
Xn
ka j

λ2j
ðλ2k�λ2j Þ

M0
μkj

ð1þM0
μkk

Þxk

8<:
9=; ð54Þ

This equation explicitly relates nonlocal normal modes with the classical normal modes. From this expression, the following insights
about the nonlocal normal modes can be deduced:
�
 Each nonlocal mode can be viewed as a sum of two principal components. One of them is parallel to the corresponding
local mode and the other is mass-orthogonal to it as all xk are mass-orthogonal to xj for jak.
�
 Due to the term ðλ2k�λ2j Þ in the denominator, for a given nonlocal mode, only few adjacent local modes contributes to the
mass-orthogonal component.
�
 For systems with well separated natural frequencies, the contribution of the mass-orthogonal component becomes
smaller compared to the parallel component.
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frequencies and mode shapes. Accuracy of these expressions will be investigated through numerical examples in Section

Eqs. (50) and (54) completely define the nonlocal natural frequencies and mode shapes in terms of the local natural

examples. Dynamic response of nonlocal damped systems is considered next.
4. Dynamic response of damped nonlocal systems

Forced response of damped nonlocal systems in the frequency domain is considered. Assuming that all the initial
conditions are zero and taking the Fourier transformation of the equation of motion (31) we have

DðiωÞuðiωÞ ¼ f ðiωÞ ð55Þ

where the nonlocal dynamic stiffness matrix is given by

DðiωÞ ¼ �ω2½M0þMμ�þ iωCþK ð56Þ

In Eq. (55) uðiωÞ and f ðiωÞ are respectively the Fourier transformations of the response and the forcing vectors. Using the
local modal matrix (36), the dynamic stiffness matrix can be transformed to the modal coordinate as

D0ðiωÞ ¼XTDðiωÞX¼ �ω2½IþM0
μ�þ iωC0 þΩ2 ð57Þ

where I is a n-dimensional identity matrix,Ω2 is a diagonal matrix containing the squared local natural frequencies and ð�Þ0
denotes that the quantity is in the modal coordinates. Unless all the conditions derived in Section nonlocalmodes are
satisfied, in general M0

μ and C0 are not diagonal matrices. We separate the diagonal and off-diagonal terms of these matrices
and rewrite Eq. (57) as

D0ðiωÞ ¼ �ω2 IþM
0
μ

h i
þ iωC

0 þΩ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
diagonal

þ �ω2ΔM0
μþ iωΔC0

	 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

off �diagonal

ð58Þ

¼D
0ðiωÞþΔD0ðiωÞ ð59Þ

From Eq. (55) the dynamic response of the system can be obtained as

uðiωÞ ¼HðiωÞf ðiωÞ ¼ XD0�1ðiωÞXT
h i

f ðiωÞ ð60Þ

where the matrix HðiωÞ is known as the transfer function matrix. From the expression of the modal dynamic stiffness matrix
in Eq. (59) we have

D0�1ðiωÞ ¼ D
0ðiωÞ IþD

0�1ðiωÞΔD0ðiωÞ
	 
h i�1

ð61Þ

�D
0�1ðiωÞ�D

0�1ðiωÞΔD0ðiωÞD 0�1ðiωÞ ð62Þ

In the above equation the diagonal part D
0�1ðiωÞ is expected to be the dominant term and its elements can be expressed as

D
0�1ðiωÞ

n o
jj
¼ 1

�ω2 1þM0
μjj

	 

þ2iωωjζjþω2

j

ð63Þ

In the above we defined the modal damping factors as

C
0n o

jj
¼ 2ωjζj ð64Þ

Substituting the approximate expression of D0�1ðiωÞ from Eq. (62) into the expression of the transfer function matrix in
Eq. (60) we have

HðiωÞ ¼ XD0�1ðiωÞXT
h i

�H
0ðiωÞ�ΔH0ðiωÞ ð65Þ

where

H
0
iωð Þ ¼XD

0
iωð ÞXT ¼

Xn
k ¼ 1

xkxT
k

�ω2 1þM0
μkk

	 

þ2iωωkζkþω2

k

ð66Þ

and

ΔH0ðiωÞ ¼XD
0�1ðiωÞΔD0ðiωÞD 0�1ðiωÞXT ð67Þ
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Considering that the matrixΔD0ðiωÞ has only off-diagonal terms, expanding the matrix multiplications a general term of the
previous matrix can be expressed as

ΔH0
ij iωð Þ ¼

Xn
l ¼ 1

Xn
ka l

xilΔD0
lkðiωÞxjk

�ω2ð1þM0
μll
Þþ2iωωlζlþω2

l

	 

�ω2ð1þM0

μkk
Þþ2iωωkζkþω2

k

	 
 ð68Þ

Eq. (65) therefore completely defines the transfer function of the damped nonlocal system in terms of the classical normal
modes. This can be useful in practice as all the quantities arise in this expression can be obtained from a conventional finite
element software. One only needs the nonlocal part of the mass matrix as derived in Section 2. Some notable features of the
expression of the approximate transfer function matrix in Eq. (65) are
�

Fi
For lightly damped systems, from Eq. (66) observe that the transfer function will have peaks around the nonlocal natural
frequencies derived in the previous section. This justifies the consistency of the approximation used in the paper.
�
 The decomposition in Eq. (58) indicates that error in the transfer function depends on two components. They include the
off-diagonal part of the modal nonlocal mass matrix ΔM0

μ and the off-diagonal part of the of the modal damping matrix
ΔC0. While the error in the damping term is present for nonproportionally damped local systems, the error due to the
nonlocal modal mass matrix in unique to the nonlocal system.
�
 For a proportionally damped system ΔC0 ¼O. For this case, error in the transfer function only depends on ΔM0
μ.
�
 In general, error in the transfer function is expected to be higher for higher frequencies as both ΔC0 and ΔM0

μ are
weighted by frequency ω.

The expressions of the nonlocal natural frequencies (50), nonlocal normal modes (54) and the nonlocal transfer function
matrix (65) allow us to understand the dynamic characteristic of a nonlocal system in a qualitative and quantitative manner
in the light of equivalent local systems. Next we illustrate these new expressions by numerical examples of nanoscale
structures.
Fig. 4. Axial vibration of a zigzag (7, 0) single-walled carbon nanotube (SWCNT) with clamped-free boundary condition.
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g. 5. The variation of first 20 undamped natural frequencies for the axial vibration of SWCNT. Four representative values of e0a (in nm) are considered.
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5. Numerical examples

5.1. Axial vibration of a single-walled carbon nanotube

A single-walled carbon nanotube (SWCNT) is considered to examine the accuracy of the nonlocal finite element
formulation and approximate expressions of the natural frequencies, normal modes and transfer functions. A zigzag (7, 0)
SWCNT with Young's modulus E¼6.85 TPa, L¼25 nm, density ρ¼9.517�103 kg/m3 and thickness t¼0.08 nm is taken from
[27]. The system considered here is shown in Fig. 4. For a carbon nanotube with chirality ðni;miÞ, the diameter can be
given by

di ¼
r
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
i þm2

i þnimi

q
ð69Þ

where r¼0.246 nm. The diameter of the SWCNT shown in Fig. 4 is 0.55 nm. A constant modal damping factor of 1% for all
the modes is assumed. By comparing with MD simulation results [50,51] it was observed that e0a¼ 1 nm is the optimal
value of the nonlocal parameter. In this study however we consider a range of values of e0a within 0–2 nm to understand its
role on the accuracy of the dynamic characteristics of the system.

We consider clamped-free boundary condition for the SWCNT. Undamped nonlocal natural frequencies can be obtained
[12] as

λj ¼
ffiffiffiffiffiffi
EA
m

r
σjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þσ2
j ðe0aÞ2

q ; where σj ¼
ð2j�1Þπ

2L
; j¼ 1;2;… ð70Þ
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Fig. 6. Four selected mode shapes for the axial vibration of SWCNT. Exact finite element results are compared with the approximate analysis based on local
eigensolutions. In each subplot four different values of e0a, namely 0.5, 1.0, 1.5 and 2.0 nm have been used (see subplot d). (a) Mode 2, (b) Mode 5, (c) Mode 6,
(d) Mode 9.
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EA is the axial rigidity and m is the mass per unit length of the SWCNT. For the finite element analysis the SWCNT is divided
into 200 elements. The dimension of each of the system matrices becomes 200�200, that is n¼200. The global mass
matrices M0 and Mμ are obtained by assembling the element mass matrix given by (10). For this case it turns out (see
element stiffness matrix in (9)) that the nonlocal part of the mass matrix is actually proportional to the stiffness matrix, that
is MμpK. Therefore, the condition for the existence of classical normal modes for the undamped system given by Eq. (40) is
exactly satisfied in this case. This in turn implies that the error in the approximate expressions in Section 3.2 should be zero
as Mμkl

¼ 0; 8ka l. We give numerical results to demonstrate that the theory for the existence of classical normal modes for
nonlocal system derived in Section 3.1 and the approximate expressions derived in Section 3.2 are consistent.
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Fig. 7. Amplitude of the normalised frequency response of the SWCNT at the tip for different values of e0a. Exact finite element results are compared with
the approximate analysis based on local eigensolutions. (a) e0a¼ 0:5 nm; (b) e0a¼ 1:0 nm; (c) e0a¼ 1:5 nm; (d) e0a¼ 2:0 nm.

Fig. 8. Bending vibration of an armchair (5, 5), (8, 8) double-walled carbon nanotube (DWCNT) with pinned–pinned boundary condition.
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In Fig. 5, the natural frequencies obtained using the analytical expression (70) are compared with direct finite element
simulation results. The frequency values are normalised with respect to the first local natural frequencyω1. First 20 nonlocal
natural frequencies are shown and four values of e0a, namely 0.5, 1.0, 1.5 and 2.0 nm have been used. In the same figure,
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natural frequencies obtained using the direct finite element method and the results obtained using the approximate
expression (50) are also shown. It can be observed that the values obtained using three different approaches coincide for
this problem. Natural frequencies corresponding to the underlying local system is shown in Fig. 5. Local frequencies are
qualitatively different from nonlocal frequencies as it increases linearly with the number of modes. Nonlocal frequencies on
the other hand approaches to a constant value with increasing modes. This upper bound is known as the asymptotic
frequency [35] and given by λmax ¼ 1=ðe0aÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
EA=m

p
. It is worth noting that the approximate expression of the natural

frequency given by Eq. (50) is able to capture the asymptotic frequency for the axial vibration of SWCNT. Therefore, Eq. (50)
can be used to understand both quantitative and qualitative behaviour of the natural frequencies of a nonlocal system.

In Fig. 6 mode shapes corresponding to modes 2, 5, 6 and 9 are shown for four values of the nonlocal parameter. These
mode numbers are selected for illustration only. The results obtained from the direct finite element are compared with the
approximate expression given by Eq. (54). The mode shapes obtained by both approaches agree each other well.

Finally in Fig. 7 the frequency response function of the tip of the SWCNT is shown for the four representative values of
the nonlocal parameter. In the x-axis, excitation frequency normalised with respect to the first local frequency is considered.
The frequency response is normalised by the static response δst (response when the excitation frequency is zero). The
frequency response function of the underlying local model is also plotted to show the difference between the local and
nonlocal responses. For the nonlocal system, the frequency response is obtained by the direct finite element method and the
approximation derived in Section 4. As proportional damping model is assumed, the off-diagonal part of the modal damping
matrix is a null matrix. For this case the approximate solution match exactly to the results obtained from the direct finite
element method.
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5.2. Bending vibration of a double-walled carbon nanotube

A double-walled carbon nanotube (DWCNT) is considered to examine the bending vibration characteristics. An armchair
(5, 5), (8, 8) DWCNT with Young's modulus E¼1.0 TPa, L¼30 nm, density ρ¼ 2:3� 103 kg=m3 and thickness t¼0.35 nm is
considered as in [52]. The inner and the outer diameters of the DWCNT are respectively 0.68 nm and 1.1 nm. The system
considered here is shown in Fig. 8 . We consider pinned–pinned boundary condition for the DWCNT. Undamped nonlocal
natural frequencies can be obtained [12] as

λj ¼
ffiffiffiffiffi
EI
m

r
β2
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þβ2
j ðe0aÞ2

q ; where βj ¼ jπ=L; j¼ 1;2;… ð71Þ

EI is the bending rigidity and m is the mass per unit length of the DWCNT. For the finite element analysis the DWCNT is
divided into 100 elements. The dimension of each of the systemmatrices become 200�200, that is n¼200. The global mass
matrices M0 and Mμ are obtained by assembling the element mass matrix given by (15). Unlike the case of the axial
vibration of rods, the nonlocal part of the mass matrix is not proportional to the stiffness matrix. Therefore, the condition for
the existence of classical normal modes for the undamped system given by Eq. (40) is not satisfied for this case. This
numerical study therefore quantifies the accuracy of the approximate expression proposed in the paper.
Fig. 12. Transverse vibration of a rectangular (L¼20 nm, W¼15 nm) single-layer graphene sheet (SLGS) with simply supported boundary condition along
the four edges.
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The natural frequencies obtained using the analytical expression (71) are compared with direct finite element simulation
in Fig. 9. The frequency values are normalised with respect to the first local natural frequency. First 20 nonlocal natural
frequencies are shown for four distinct values of e0a, namely 0.5, 1.0, 1.5 and 2.0 nm. In the same figure, natural frequencies
obtained using the direct finite element method and the results obtained using the approximate expression (50) are also
shown. It can be observed that the values obtained using three different approaches almost coincide for this problem.
Natural frequencies corresponding to the underlying local system is shown in Fig. 9. Local frequencies are qualitatively
different from nonlocal frequencies as it increases quadratically with the number of modes. Nonlocal frequencies on the
other hand increases linearly with the number of modes. The approximate expression of the natural frequency given by
Eq. (50) is able to capture this crucial qualitative difference.

In Fig. 10 mode shapes corresponding to mode 2, 5, 6 and 9 are shown for four values of the nonlocal parameter. These
mode numbers are selected for illustration only. The results obtained from the direct finite element is compared with the
approximate expression given by Eq. (54). The mode shapes obtain by both approach agree to each other.

In Fig. 11 the amplitude of the frequency response function HijðωÞ for i¼ 6; j¼ 8 is shown for the four representative
values of the nonlocal parameter. In the x-axis, excitation frequency normalised with respect to the first local frequency is
considered. The frequency response is normalise by the static response dst. The frequency response function of the
underlying local model is also plotted to show the difference between the local and nonlocal response. For the nonlocal
system, the frequency response is obtained by the direct finite element method and the approximation derived in Section 4.
As proportional damping model is assumed, the off-diagonal part of the modal damping matrix is a null matrix. For this case
the approximate solution match closely to the results obtained from the direct finite element method. The dynamic
response of the nonlocal system becomes very different from the corresponding local system for higher frequency values
and higher values of the nonlocal parameter e0a. The proposed approximate expression of the transfer function given in
Eq. (65) can be used to understand this significant different behaviour for the bending vibration of DWCNT.

5.3. Transverse vibration of a single-layer graphene sheet

A rectangular single-layer graphene sheet (SLGS) is considered to examine the transverse vibration characteristics of
nanoplates. The graphene sheet is of dimension L¼20 nm, W¼15 nm and Young's modulus E¼1.0 TPa, density
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approximate analysis based on local eigensolutions (dashed line). (a) Mode 2, (b) Mode 4, (c) Mode 5, (d) Mode 6.



10−3

10−2

10−1

100

101

102

N
or

m
al

is
ed

 a
m

pl
itu

de
: H

ij 
(ω

)/δ
st

10−3

10−2

10−1

100

101

102

N
or

m
al

is
ed

 a
m

pl
itu

de
: H

ij 
(ω

)/δ
st

10−3

10−2

10−1

100

101

102

N
or

m
al

is
ed

 a
m

pl
itu

de
: H

ij 
(ω

)/δ
st

10−3

10−2

10−1

100

101

102

N
or

m
al

is
ed

 a
m

pl
itu

de
: H

ij 
(ω

)/δ
st

0 1 2 3 4 5 6 7 8 9 10

Normalised frequency (ω/ω1)
0 1 2 3 4 5 6 7 8 9 10

Normalised frequency (ω/ω1)

0 1 2 3 4 5 6 7 8 9 10

Normalised frequency (ω/ω1)
0 1 2 3 4 5 6 7 8 9 10

Normalised frequency (ω/ω1)

local
exact − nonlocal
approximate − nonlocal

Fig. 15. Amplitude of the normalised frequency response HijðωÞ for i¼ 475; j¼ 342 of the SLGS for different values of e0a. Exact finite element results are
compared with the approximate analysis based on local eigensolutions. (a) e0a¼ 0:5 nm; (b) e0a¼ 1:0 nm; (c) e0a¼ 1:5 nm; (d) e0a¼ 2:0 nm.
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ρ¼ 2:25� 103 kg=m3, Poisson's ratio ν¼0.3 and thickness h¼0.34 nm is considered as in [53]. The system considered here
is shown in Fig. 12 . We consider simply supported boundary condition along the four edges for the SLGS. Undamped
nonlocal natural frequencies can be obtained [54,44] as

λij ¼
ffiffiffiffiffi
D
m

r
β2
ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þβ2
ijðe0aÞ2

q ; where βij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iπ=L
� 
2þ jπ=W

� 
2q
; i; j¼ 1;2;… ð72Þ

D is the bending rigidity and m is the mass per unit area of the SLGS. For the finite element analysis the DWCNT is divided
into 20�15 elements. The dimension of each of the system matrices becomes 868�868, that is n¼868. The global mass
matrices M0 and Mμ are obtained by assembling the element mass matrix given by (24). Like the case of the bending
vibration of nanobeams, the nonlocal part of the mass matrix is not proportional to the stiffness matrix. Therefore, the
condition for the existence of classical normal modes for the undamped system given by Eq. (40) is not satisfied for this case.
Among the three types of systems considered here, only the nanorod satisfy the condition of existence of classical
normal modes.

In Fig. 13, the natural frequencies obtained using the analytical expression (72) are compared with direct finite element
simulation. The frequency values are normalised with respect to the first local natural frequency. First 15 nonlocal natural
frequencies are shown for four distinct values of e0a, namely 0.5, 1.0, 1.5 and 2.0 nm. In the same figure, natural frequencies
obtained using the direct finite element method and the results obtained using the approximate expression (50) are also
shown. It can be observed that the values obtained using three different approaches are very close. Natural frequencies
corresponding to the underlying local system is shown in Fig. 13. Local frequencies diverge significantly from the nonlocal
frequencies for higher frequency indices. The approximate expression of the natural frequency given by Eq. (50) is able to
capture this quantitative difference very well.
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In Fig. 14 mode shapes corresponding to mode 2, 4, 5, and 6 are shown when the nonlocal parameter e0a¼ 2 nm. We
have selected the highest value of e0a as this leads to maximum inaccuracy of the proposed approximate expressions.
Results obtained from the direct finite element and the approximate expression given by Eq. (54) are shown in these plots.
These mode numbers are selected for illustration only. Results obtained from the direct finite element and the approximate
expression given by Eq. (54) are shown in these plots. The mode shapes obtain by both approach agree to each other well.

Finally in Fig. 15 the amplitude of the frequency response function HijðωÞ for i¼ 475; j¼ 342 is shown for the four
representative values of the nonlocal parameter. In the x-axis, excitation frequency normalised with respect to the first local
frequency is considered. The frequency response is normalise by the static response dst (that is the response when the
excitation frequency is zero rad/s). The frequency response function of the underlying local model is also plotted to show the
difference between the local and nonlocal response. For the nonlocal system, the frequency response is obtained by the
direct finite element method and the approximation derived in Section 4. As proportional damping model is assumed, the
off-diagonal part of the modal damping matrix is a null matrix. For this case the approximate solution match exactly the
results obtained from the direct finite element method. The dynamic response of the nonlocal system becomes very
different from the corresponding local system for higher frequency values and higher values of the nonlocal parameter e0a.
The proposed approximate expression of the transfer function given in Eq. (65) can be used to understand this significant
different behaviour.

6. Conclusions

Nonlocal elasticity is a promising theory for the modelling of nanoscale dynamical systems such as carbon nantotubes
and graphene sheets. A finite element approach is proposed for dynamic analysis of general nonlocal structures. Explicit
closed-form expressions of element mass and stiffness matrices of nanorods, nanobeams and nanoplates have been derived.
The mass matrix can be decomposed into two parts, namely the classical local mass matrix M0 and a nonlocal part denoted
by Mμ. The nonlocal part of the mass matrix is scale-dependent and vanishes for systems with large length-scale. Classical
modal analysis in conjunction with first-order perturbation method is employed to understand the dynamic behaviour of
general discrete nonlocal systems. Approximate expressions for nonlocal natural frequencies, mode shapes and frequency
response functions have been derived. The main theoretical contributions made in this paper include the following results:
�
 An undamped nonlocal system will have classical normal modes provided the nonlocal part of the mass matrix satisfy
the condition KM�1

0 Mμ ¼MμM�1
0 K where K is the stiffness matrix.
�
 A viscously damped nonlocal system with damping matrix C will have classical normal modes provided
CM�1

0 K¼KM�1
0 C and CM�1

0 Mμ ¼MμM�1
0 C in addition to the previous condition.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
�
 Natural frequency of a general nonlocal system can be expressed as λj �ωj= 1þM0

μjj
; 8 j¼ 1;2;…, where ωj are the

corresponding local frequencies and M0
μjj

are the elements of nonlocal part of the mass matrix in the modal coordinate.

�
 Every nonlocal normal mode can be expressed as a sum of two principal components as

uj � xjþ
Xn
ka j

λ2j
λ2k�λ2j
	 
 M0

μkj

1þM0
μkk

	 
xk

8<:
9=;; 8 j¼ 1;2;…:

One of them is parallel to the corresponding local mode xj and the other is mass-orthogonal to it.

The theoretical results obtained in the paper are applied to three representative problems, namely (a) axial vibration of a
single-walled carbon nanotube, (b) bending vibration of a double-walled carbon nanotube, and (c) transverse vibration of a
single-layer graphene sheet. These three systems are modelled by nonlocal rod, beam and plate respectively. Among these
three systems, only the nonlocal rod model satisfy the condition of existence of classical normal modes. For the other two
systems it was observed that the proposed approximate expressions of nonlocal natural frequencies, mode shapes and
frequency response functions provide acceptable accuracy. The results obtained in the paper give physical insights into the
dynamic behaviour of discrete nonlocal systems which can be understood in the light of well known dynamic behaviour of
the underlying local systems.
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