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Introduction

Inherent uncertainties in the large-scale engineering systems com-
monly encountered in modern applications have called for numer-
ical models, which can account for the uncertainty and efficient
methods of propagating this uncertainty to the system response. The
kinds of uncertainty commonly encountered in the physical world
may be broadly categorized into uncertainties related to the fidelity
of mathematical models and the parametric uncertainty related to the
input to the mathematical model (Matthies 2007; Kiureghian and
Ditlevsen 2009). The parametric uncertainty stems from either (1)
a lack of complete knowledge of the physical system because of, for
example, an insufficient number of experiments and a lack of quality
control (e.g., elastic properties of structural systems),which are termed
epistemic uncertainty; or (2) the use of such physical quantities that
cannot be estimated precisely from experiments or by measuring
devices (e.g., lift/drag coefficient, convective coefficient), termed as
aleatoric uncertainty.

The multiplicative stochasticity associated with randomly pa-
rameterized systems has been tackled with different methods rang-
ing from the brute-force nonintrusive statistical simulation methods
[e.g., Monte-Carlo simulation (MCS) and its variants (Caflisch 1998;
Papadrakakis and Papadopoulos 1996)] to nonstatistical analytical
methods, which provide us with an explicit functional relationship

of the independent random variables used to model the problem
(e.g., perturbation methods, Neumann expansion method, and some
Galerkin-type method using a polynomial expansion technique).

Various MCS technique approaches, which are nonintrusive in
nature, have been analyzed and used in the context of structural
dynamics problems (Schuëller 2001; Hurtado and Barbat 1998;
Pradlwarter and Schuëller 1997). The advantage of nonintrusive
techniques, such as the MCS in conjunction with advanced inter-
polation schemes, lies in the fact that they only make use of the
simple deterministic codes to solve the stochastic problem at the
sample points and hence do not require any further development.
Also, they are naturally suited for parallelization. The convergence
of the MCS, however, is slow, and its computational cost grows as
a polynomial with the dimension of the input stochastic space. The
computational efficacy of these sample-based techniques can be
substantially improved by reducing the problem to important ran-
dom variables using the principle component analysis (Schuëller
2001) and with various efficient sampling techniques, such as im-
portance sampling, multipoint estimate method, stratified sampling,
Latin hypercube sampling, orthogonal sampling, which can be
classified under the variance reduction techniques (Yamazaki and
Shinozuka 1988; Schuëller et al. 1991), and the response surface
method (Bucher and Bourgund 1990) or metamodeling [e.g.,
Kriging metamodel (Kleijnen 2009)]. However, the limitations of
these techniques are dictated by the input stochastic space di-
mension. Uncertain structural systems represented by few random
variables subjected to deterministic loading can be well suited to
variance reduction procedures.

Nonstatistical approaches can be based on a perturbation method
(Kleiber and Hien 1992; Falsone and Impollonia 2002), or equiv-
alently the lower-order Taylor approximation and Neumann ex-
pansionmethod (Yamazaki et al. 1988; Zhu et al. 1992), all of which
come down to the estimation of the response surface in a parameter
space. On the other hand, the Galerkin-type methods (Deb et al.
2001; Babuska et al. 2005; Matthies and Keese 2005), developed
with differing choice of the approximation space, systematically lead
to a high-precision solution, allowing the response to be expressed
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explicitly in terms of the basic random variables describing the
uncertainties. Their principle drawback lies in the fact that the di-
mensionality of the resulting system of linear equations is high. The
Wiener-Hermite expansions, in conjunctionwith theFEMs, havebeen
widely applied to different problems (Pettit and Beran 2006; Ghanem
and Spanos 1991). It was extended to generalized polynomial chaos
(gPC) (Xiu and Karniadakis 2002), which provided an optimal
convergence of the solution using the so-called Askey scheme.

In this paper, the authors review the problem of unsteady (tran-
sient) dynamics of structural systems and propose an alternative
method by projecting the solution in a preconditioned stochastic
Krylov space. The solution is approximated in a stochastic subspace
using spectral functions of different orders, which are highly non-
linear functions of the input random variables. The statistical pro-
perties of the response quantities change with time, and the authors
investigate the time evolution of this uncertainty propagation with
different solution techniques considered herein. The objective here
is to tackle the problem of the growing dimensionality of the clas-
sical spectral Galerkin approach for long time integration with an
alternative formulation of the spectral function approach.

A damped structural dynamic system with stochastic parameters,
definedondomainD, subjected to an externally applied force excitation
p varying with time t is considered. The force equilibrium condition
gives the following stochastic partial differential equation (SPDE):

r
∂2u
∂t2

þ Lh
∂u
∂t

þ div½2saðuÞ� ¼ p on D (1)

with the associated Dirichlet boundary condition

u ¼ 0; on ∂D (2)

wheresaðuÞ5 stress related to thedisplacementfieldu5 fu: uðr, t; uÞ
2D3 T 3Qg; r 5 mass density; and p 5 external volume force
density varying with time t 2T →R. Lh is the damping operator,
with h as the damping parameter, and it can be used to represent
different damping models, such as the strain rate–dependent viscous
damping or the velocity-dependent viscous damping. Also, D2Rd

is a bounded domain with piecewise Lipschitz boundary dD, where
d# 3 is the spatial dimension andT 2R1 is the time. (Q,F ,P) is the
probability space where u2Q is a sample point from the sampling
space Q, F is the associated Borel s-algebra, and P is the image
probability measure. The constitutive equations relating the stress
field to the displacement u are given as

saðuÞ ¼ aðr, uÞ: ɛðuÞ

where a 5 Hooke’s elasticity tensor and is a second-order, sta-
tionary, square integrable random field such that a: Rd 3Q→R.
Depending on the physical problem, the random field aðr, uÞ can be
used to model different physical systems. Here, p denotes the time-
dependent deterministic excitation field for which the solution u is
sought in the time domain.

The paper is organized as follows: the next section gives the
details of the finite-element (FE) implementation of the SPDE in
the time domain, which includes the discretization techniques of the
stochastic field with a finite number of random variables. The de-
scription of the stochastic system matrices is also included in this
section. After this, the details of the solution techniques of the dis-
cretized stochastic FE system using the spectral function method in
the stochastic subspace are given. In the section following, the nu-
merical implementation of the proposed solution technique for the
case of a cantilever Euler-Bernoulli beam under an impulse load is
discussed. This section includes a comparison of the time-domain

response of the beam using different solution techniques, such as
the direct MCS, the proposed spectral function approach, and the
fourth-order polynomial chaos (PC) approach, which demonstrate
the accuracy and computational efficacy of the proposed method-
ology. A detailed discussion of a posteriori error analysis and the
behavior of the autocorrelation function (ACF) has also been in-
cluded. The final section lists the significant conclusions that can be
reached from this study.

FE Modeling of the SPDE

Discretization of the Parametric Random Field

The stochastic parameter used as an input to themathematical model
is defined on a compact region onRd and a probability space (Q, F ,
P), and is represented as aðr, uÞ:D3Q. This parameter is written as
a series expansion in a variable separable form as

aðr, uÞ ¼P
i
wiðrÞkðuÞ ¼ wðrÞKðuÞ (3)

where the vector of random functionsKðuÞ5 fk1ðuÞ, . . . , kmðuÞgT
is weighted by the spatial shape functions wðrÞ5 fw1ðrÞ, . . . ,
wmðrÞg. These shape functions can be chosen based on the type
of series representation used to represent the random field, which
includes (1) the interpolation method (Liu et al. 1986), (2) the
midpoint method (Li and Kiureghian 1993), (3) the expansion
optimal linear estimation (EOLE)method (Li andKiureghian 1993),
(4) the spatial averagemethod (Vanmarcke 1983), (5) the orthogonal
expansionmethod, andfinally, and perhapsmost importantly, (6) the
spectral decomposition of the stochastic process, which relies on
discretizing the latter with a finite number of spectral components of
the covariance kernel associated with the random process.

The objective of the spectral decomposition method is to express
the random parameter with a set of a denumerable number of or-
thogonal random variables (spanning the stochastic Hilbert space)
and the associated spatial eigenfunctions. Let Ca:Rd 3Rd →R be
a kernel function that admits to the following decomposition:ð

D
Caðr1, r2Þwjðr1Þdr1 ¼ njwjðr2Þ, " j ¼ 1, 2, . . . (4)

Eq. (4) is a homogeneous Fredholm integral equation of the second
kind. The function Caw is defined such that

ðCawÞðr1Þ ¼
ð
D
Caðr1, r2Þwðr2Þdr2 r1, r2 2Rd (5)

It can be easily verified that Ca: L2ðRdÞ→ L2ðRdÞ is a linear operator
on a vector space; hence, Eq. (4) can be expressed as

Caw ¼ nw (6)

A nontrivial solution to this homogeneous equation exists only for
those values of n, which makes (I2 nCa) noninvertible, where I is
the identity operator. The covariance functions Ca commonly en-
countered in the study of randomly parameterized engineering
systems are bounded and symmetric; hence, the associated linear
operator Ca is compact and self-adjoint. Considering the solution of
Eq. (4) lies in some normed vector space, it is possible to represent
the random parameter using a finite number of dominant compo-
nents based on the eigenvalue problem in Eq. (6).
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The Karhunen-Loève (KL) expansion is a special case of this
spectral representation of the random field using orthogonal eigen-
components of the covariance kernel. The random parameter
aðr, uÞ:D3Q in the truncated spectral representation takes the form

aðr, uÞ ¼ a0ðrÞ þPm
i¼1

ffiffiffiffi
ni

p
jiðuÞwiðrÞ (7)

wherea0ðrÞ5E½aðr, qÞ� is themean of the stochastic parameter, and
jiðuÞ are mutually uncorrelated random variables with zero mean
{E½jiðqÞ�5 0} and unit variance {E½jiðuÞ2�5 1}. In addition, ni and
wiðrÞ are eigenvalues and eigenfunctions satisfying the integral
equation [Eq. (4)]. For Gaussian random fields, the jiðuÞ are un-
correlated Gaussian random variables by virtue of the property of
Gaussian variables. However, the Gaussian random field model is
not applicable for strictly positive quantities arising in many
practical problems.

Alternatively,whenaðr, uÞ is a non-Gaussian random field, it can
be expressed in a mean-square convergent series using the Wiener-
Askey chaos expansion scheme (Xiu and Karniadakis 2002, 2003b;
Wan and Karniadakis 2006). To overcome the computational and
experimental challenges that may be involved as a result of the basic
random variables not being independent in nature, it is desirable to
discretize the stochastic process with a set of independent non-
Gaussian random variables ĵðuÞ5 fĵð1Þ, . . . ,ĵðnÞg, and express the
components of ĵðuÞ with a PC type of expansion using a series of
normalized finite-order Hermite polynomials wjðxiÞ as

ĵ
ðiÞðuÞ ¼ P‘

j¼1
qi
jwjðxiÞ�

Pp
j¼1

qi
jwjðxiÞ (8)

where xi 5 Gaussian independent identically distributed random
variables; and qi

j 5 undetermined deterministic coefficients of the
problem, which must be such that the sum of their squares always
comes to one.

The formulation presented is applicable to this kind of general
decomposition of the random field. For the numerical implementa-
tion of the aforementioned method, the probabilistic content of
the problem is represented using a finite set of random variables
j5 ðj1, j2, . . . , jmÞ:Q→Rm. The stochastic problem can be
equivalently formulated on the finite dimensional probability space
[QðmÞ,FðmÞ, PðmÞ], whereQðmÞ 5 range(j) is a subset ofRm,FðmÞ is
the associated Borel s-algebra, and PðmÞ is the image probability
measure.

FE Modeling of the Discretized Random System

The FE treatment of the governing SPDE involves spatial dis-
cretization of the continuum D2Rd into domains with polygonal
boundaries Dh, where h is the mesh-space parameter. Also, it is
known from theDoob-Dynkin lemma (Bobrowski 2005), that for the
parameterized equation in Eq. (1), where the input randomness is
expressed in terms of a finite dimensional vector jðuÞ [as in Eq. (7)],
the solution can be expressed entirely in terms of the same random
variables. The solution of the discretized FE system lies in the
Hilbert space HðDh 3 T3QÞ. This space can be expressed in a
separable form with the Hilbert spaces H1 and H2 such that
HxH1 ÄH2. Now, H1 and H2 can be chosen to have different
forms, and the solution separable spaces vary accordingly. The FE
shape functions are taken to lie in L2ðDhÞ space. Strictly speaking,
the space of these ansatz functions is governed by the continuity
requirement of the field over the element domain; for example, if
symmetric bilinear forms are obtained from applying the variational
principle to elliptic differential operators of order 2k (and with

Dirichlet boundary conditions), then these trial functions lie in the
Hilbert spaceHk

0 ⊂ L2ðDhÞ and areCk continuouswithin the element
domain. The principle of virtual work is utilized to arrive at the
discretized set of linear algebraic equations from Eq. (1). For the
virtual displacements, a set of stochastic kinematically admissible
displacement functions vð × ; uÞ satisfying the boundary condition
vð × ; uÞ��

dD
5 0 and which have finite strain energy on the spatial

domain lying inEðDÞ⊂ L2ðDÞ is chosen.Denoting the set of all such
functions by E

o ðDÞ gets

E
o ðDÞ ¼ �vð × ; uÞ: vð × ; uÞ 2EðDÞ, and vð × ; uÞj∂D ¼ 0

�
(9)

From the principle of virtual work

ð
D
v:

�
r
∂2u
∂t2

þ Lh
∂u
∂t

þ divðsaðuÞ
�
dr "v2E

o ðDÞ (10)

The Green-Gauss theorem is applied to this equation, and noting
that the initial strain and the boundary integral terms are set to zero,
thebilinear formBðu, v; uÞ and the linear formFðv; uÞ can be defined
such that

Bðu, v; uÞ ¼def
ð
D
ɛðvÞ: aðr, uÞ: ɛðuÞdrþ

ð
D
rðr, uÞv × ∂

2u
∂t2

dr

þ
ð
D
v ×Lhðr,uÞ

∂u
∂t

dr (11)

Lðv; uÞ ¼def
ð
D
v × p dr (12)

The FE approximation of the admissible function space E
o ðDÞ can

be written as E
o ðDÞn ⊂E

o ðDÞ such that un 5
Pn

i cðrÞuiðt; uÞ, ui 2R.
Using this discrete form of un 2E

o ðDÞn in Eqs. (11) and (12) obtains

Bðun, vn; uÞ ¼ Lðvn; uÞ " vn 2E
o ðDÞn (13)

Denoting the nodal components of the displacement field as
uðt; uÞ5 ½u1ðt; uÞ, . . . , unðt; uÞ�T 2Rn, the FE system of equations
from Eq. (13) is

vT
�P2

i¼0
AiðuÞu,iðt; uÞ

	
¼ vTpðtÞ, " v2Rn (14)

where AiðuÞ 5 system matrices (stiffness, damping, mass for
i5 0, 1, and 2, respectively); and uiðt; uÞ5 ith time derivative of
the displacement field. The system matrices inherit the randomness
of the input stochastic parameters; hence, the stochastic linear
system for structural dynamics takes the form

MðuÞ€uðt; uÞ þ CðuÞ _uðt; uÞ þKðuÞuðt; uÞ ¼ pðtÞ (15)

where MðuÞ, CðuÞ, and KðuÞ 5 random mass, damping, and stif-
fness matrices, respectively; uðt; uÞ and its dotted variants5 system
response vector and its time derivatives, respectively; and pðtÞ
5 deterministic forcing vector. Following the discretized spectral
representation of the random field in Eq. (7) and the bilinear form
in Eq. (11), the system matrices can be expanded in terms of the
functions of the input random variables as
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MðuÞ ¼ M0 þPp1
i¼1

miðuiÞMi 2Rn�n and

KðuÞ ¼ K0 þPp2
i¼1

niðuiÞKi 2Rn�n
(16)

Here themass and stiffness matrices have been expressed in terms of
their deterministic components (M0 and K0) and the corresponding
random contributions (Mi and Ki) obtained from discretizing the
mass and stiffness parameters with a finite number of random
variables [miðuÞ and niðuÞ]. The total number of random variables
utilized to represent the stochastic system matrices is M5 p1 1 p2.
For most cases, the damping parameter is expressed as a linear
combination of the mass matrix and the system stiffness matrix,
which is the proportional damping model; this has been adopted in
the present work.

Solution Technique

The solution of the stochastic system response €uðt; uÞ in Eq. (15) is
sought in the space L2ðQ; T3RnÞ, which is the space of real valued
square integrable functions defined on the probability space (Q, F ,
P). The nature and characteristics of this function space will be
subsequently explored in more detail. A direct time-integration
scheme is introduced at first to transform Eq. (15) to a set of lin-
ear algebraic equations, which is to be solved at each time step. The
solution of this system can then be written to exist in L2ðQ;Rn 3 tÞ,
where t 2R1 denotes the dependence of the FE solution vector on
time t.

Time-Integration Technique

The time-domain response of the stochastic linear system in Eq. (15)
necessitates a time-integration scheme. This is achieved using dif-
ferent time-stepping techniques, whichmay be implicit or explicit in
nature (based on how the response quantities depend on those
obtained at the previous steps). Here, an implicit direct integration
operator is used, and the solution methodology for the linear sto-
chastic systems obtained with such an approach is described.

Next the direct integration operators A1 and A0 are introduced,
which depend on the system matrices, but are independent of the
response quantities. The system equation can generally be written in
terms of this operator as

A1uðtsþ1Þ ¼ pðtsþ1Þ þ A0uðts, ts21, . . .Þ (17)

where the integration operators transform the system response at the
earlier time steps ts, ts21, . . . to the repose at ts11. The quantities
uðts11Þ and uðts, ts21, . . .Þ are defined as follows:

uðtsþ1Þ ¼ huðtsþ1Þ; _uðtsþ1Þ; €uðtsþ1Þi
uðts, ts21, . . . Þ ¼ hfuðtsÞ; _uðtsÞ; €uðtsÞg;

fuðts21Þ; _uðts21Þ; €uðts21Þg; . . . i
(18)

For single-step schemes, the response at ts11 depends only on the
previous time step ts.When the operatorsA1 andA0 can bewritten in
upper or lower triangular form (in the block sense), it becomes an
explicit time-integration scheme. The stability and convergence
behavior of the time-integration scheme will be subsequently
discussed.

For the case of stochastic linear systems, the system matrices
inherit the parametric randomness; hence, they themselves are ran-
dom in nature. This leads to the integration operators A1 and A0

being random in nature. The integration operators are linear com-
binations of the system matrices and can be expressed as the
polynomial series of random variables, as in Eqs. (13) and (14), such
that the series expansion takes the form of A1ðuÞ5 E½A1ðuÞ�
1
P

iwjðxiÞðA1Þi, where ðA1Þi denotes the perturbation components
of the integration operator associated with the random variables
wjðxiÞ [Eq. (8)], which inherits the input randomness.

For the present case, the Newmark generalized acceleration op-
erator (Bathe 1996; Hahn 1991) is used, which gives an uncon-
ditionally stable time-integration scheme. Other such methods
include the Wilson averaging operator and the Houbolt operator
(Nickel 1971), both of which offer unconditional stability. The
integration operators for the stochastic dynamic case for the
Newmark method are of the following form:

2
64 a0MðuÞ þ a1CðuÞ þKðuÞ 0 0

0 1 2a7
2a0 0 1

3
75
8><
>:

utþDt

_utþDt

€utþDt

9>=
>; ¼

2
64ptþDt

0

0

3
75þ

2
64 a0MðuÞ þ a1CðuÞ a2MðuÞ þ a4CðuÞ a3MðuÞ þ a5CðuÞ

2a0 2a2 2a3
0 1 a6

3
75
8><
>:

ut
_ut
€ut

9>=
>;

(19)

where the integration constants ai, i5 1, 2, . . . , 7 are given by

a0 ¼ 1
aDt2

; a1 ¼ g

aDt
; a2 ¼ 1

aDt
; a3 ¼ 1

2a
2 1;

a4 ¼ g

a
2 1; a5 ¼ Dt

2



g

a
2 2
�
; a6 ¼ Dtð12 gÞ; a7 ¼ gDt

(20)

The parameters a and g, which have to be chosen, are guided by
the consideration of unconditional stability, which is ensured
using the following two criterion (Bathe 1996): g$ 0:50 and
a$ 0:25ð0:51 gÞ2. Although the implicit Newmark method

provides unconditional stability under the aforementioned criterion,
it is conditionally convergent (Hahn 1991). The convergence is
guided by the condition (Newmark 1959)

Dt
T
, 1
2p

�
1
a

	1=2

for a. 0 (21)

where T 5 natural time period of vibration of a single-degree-of-
freedom (DOF) system. FormultipleDOF systems, it is required that
T be interpreted as the time period of the highest vibration mode of
the system. Hence, the time-step size is governed by the dimension
of the linear system being solved, that is, the higher the dimension of
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the linear system, the lower the value of T (associated with the
highest vibrationmode) and the smaller the upper bound on the time-
step size Dt. This can have a huge adverse effect for the spectral
Galerkin solution technique because the dimension of the linear
system increases exponentially with the order of the stochastic
polynomials used in the solution basis. Therefore, the PC method
would typically require a significantly lower value of the time-step
size Dt to produce the time-integration results of identical numerical
accuracy compared with other techniques, such as direct MCS,
which deals with the dimension of the original discretized FE
system.

Eq. (19) is rewritten in amore compact form following Eq. (17) as

A1ðuÞutþDtðuÞ ¼ ptþDt þ A0ðuÞutðuÞ (22)

where ut1Dt 2RN 3Q is the ensemble of the stochastic displace-
ment, velocity, and acceleration vector of dimensionN5 3n (n is the
dimension of the discretized FE system); the integration operators
A1ðuÞ 2RN3N and A0ðuÞ 2RN3N are as defined in Eq. (19). This
form is used in the subsequent sections to formulate a solution
methodology using the different solution methodologies associated
with stochastic dynamical systems. Following the Newmark op-
erator given in Eq. (19), the equation for the displacement field in
Eq. (15) can be represented to be solved at each time step as

½a0MðuÞ þ a1CðuÞ þKðuÞ�utþDtðuÞ ¼ peqvtþDtðuÞ (23)

where peqvt1DtðuÞ5 equivalent force at time t1Dt, which consists of
contributions of the system response (displacement, velocity, and
acceleration fields) at the previous time step. The equivalent force at
each time step becomes a stochastic quantity because of the presence
of the stochastic system matrices on the right side and the system
response at previous time steps, which themselves are random
quantities.

Following the discussion of the expansion of the systemmatrices
in Eq. (15) in terms of their mean and perturbation components,
and expressing the structural damping in proportional form, CðuÞ
5 z1MðuÞ1 z2KðuÞ, the matrices A0 2Rn3 n and Ai 2Rn3 n;
i5 1, 2, . . . , M are defined as

A0 ¼ a0M0 þ a1C0 þK0 ¼ ða0 þ a1z1ÞM0 þ ða1z2 þ 1ÞK0

(24a)

Ai ¼
� ða0 þ a1z1ÞMi for i ¼ 1, 2, . . . , p1
ð1þ a1z2ÞKi2p1 for i ¼ p1 þ 1, p1 þ 2, . . . , p1 þ p2

(24b)

The linear structural system in Eq. (23) can be expressed as"
A0 þPM

i¼1
jiðuÞAi

#
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

AðuÞ

utþDtðuÞ ¼ peqvtþDt


jðuÞ� (25)

whereA0 and Ai 5 deterministic and stochastic parts of the system
matrices, respectively; A0 and Ai 2Rn3 n; i5 1, 2, . . . , M 5 sym-
metric matrices; ut1DtðuÞ 2Rn 5 solution vector; and peqvt1Dt


jðuÞ�

2Rn 5 forcing vector, which comprises of the deterministic forcing
function at each time step plus the stochastic system response at earlier
time steps. They have a nonlinear functional dependence on the
random variables, which have been used to model the parametric
uncertainty. The number of termsM in Eq. (25) can be selected based
on the accuracy desired for the representation of the underlying

randomfield. This is the specific form of the systemmatrices under the
Newmark time-stepping scheme. However, the general scheme of the
solution technique remains the same for this class of implicit time-
stepping techniques. The expressions forA0 andAi vary according to
the dampingmodel chosen for a particular application.Oneof themain
aims of stochastic dynamic analysis is to obtainut1DtðuÞ for u2Q and
for all time steps t 2 ½0, T � in an efficient manner, which is the primary
motivation for this work.

Overview of the Spectral Galerkin Approach for
Structural Dynamics

Several methods have been utilized to resolve the time-domain re-
sponse of stochastic systems. These include the direct MCS (Shi-
nozuka 1972), the perturbation-based stochastic FEMmethod (Wall
andBucher 1987), and theNeumann expansionmethod (Lei andQiu
2000). However, the spectral Galerkin methods have been studied
with particular enthusiasm over the last two decades. Spectral
Galerkin methods are used in conjunction with various time-
integration techniques to evaluate the time-domain response. The
long time-integration scheme has been used with gPC in Gerritsma
et al. (2010), which shows a growth of error with time. Lucor et al.
(2004) implemented the temporal discretization of a single DOF
linear oscillator with the implicit Newmark method, which shows
that a high polynomial degree is essential for accuracy of the
computed results. Xiu and Karniadakis (2003a) considered the
generalized chaos for transient response of FE thermal systems with
random heat conductivity and capacity. However, the use of implicit
time-integration schemes for stochastic FE structural dynamic
systems with Galerkin projection schemes remains a sparsely
studied area of research. The novelty of the approach described here
lies in the formulation of the stochastic time-integration operator in
conjunction with the spectral Galerkin approach, and the linear
algebraic system that results from the implementation is presented
here.

Here the solution of the assembled system of stochastic linear
algebraic equations, as given Eq. (22), is presented. From Eq. (25),
the appropriate function space in which the solution of the stochastic
problem exists can be identified. The random matrices Ai 2Rn3 n

inherit the continuity and coercivity properties from the governing
SPDE through the weak formulation. The forcing vector peqvt1Dt:Q
→Rn depends on the system response at earlier time steps, which in
turn can be assumed to be continuous. The spatially discretized
solution vectorut1Dt at each time step lies in the tensor product space
Rn ÄY, where Y is an ad hoc function space for real-valued random
variables. Given that the stochastic system has been discretized and
represented with a finite number of random variables jðuÞ5 fj1,
. . . , jMg [as, e.g., in Eq. (25)], the stochastic subspace reduces toYM ,
where YM ⊂Y. When each random component ji is independent,
then YM is a tensor product space Yð1Þ ÄYð2Þ Ä . . . ÄYðMÞ.
According to the approximate basis building techniques that focus
on expansion of the solution vector using some polynomial func-
tions, the solution vector can be expressed in the form

ut ¼ P
a2IM

Ha


jðuÞ�~ut,a; ~ut,a 2Rn (26)

whereHa


jðuÞ�5 basis inYM ; ~ut,a5 set of unknown coefficients to

be evaluated; and IM 5 subset of I with cardinal M. The form of
the polynomial functionsHa


jðuÞ� used in Eq. (26) varies according

to the chosen solution approach, and the well-known spectral ap-
proaches, such as PC and gPC, use orthogonal polynomial basis
from the Wiener-Askey scheme. When jðuÞ is a vector of inde-
pendent identically distributed Gaussian random variables, the
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functions Ha are finite-order Hermite polynomials, which are or-
thonormalwith respect to the joint probability density function of the
input vector jðuÞ. The same idea can be extended to non-Gaussian
random variables, provided that a more generalized functional basis
is used; therefore, the orthonormality with respect to the probability
density functions can be retained. Suppose the series in Eq. (26)
is truncated after P terms. The value of P depends on the number
of basic random variables M and the desired order of the PC ex-
pansion. There are P number of unknown vectors of dimension n.
The successive time derivatives of the displacement field can be
expressed as

∂iut
∂ti

¼ P
a2IM

Ha


jðuÞ� ∂i~ut,a

∂ti
i ¼ 1, 2 (27)

such that the same stochastic basis is used to formulate the time
derivatives of the response at all time steps. The inner product in
YM 3RN [where N is the dimension of the ensemble of the dis-
placement, velocity, and acceleration vector in Eq. (22)] is in-
troduced as

hv,ui¼def
ð
Q

vT

jðuÞ�ujðuÞ� dPj ¼ E

�
vT

jðuÞ�ujðuÞ�� (28)

where E½•� 5 expectation operator. The Galerkin formulation of
Eq. (22) for the single-step time-integration scheme is�

vTtþDt , A1utþDt
� ¼ �vTtþDt , ptþDt

�þ �vTtþDt , A0ut
�

" vtþDt 2YM � RN
(29)

where the Galerkin projection is implemented at each time step
t1Dt. The vector ut is as defined in Eq. (18), which is of the form
ut 5 hut; _ut; €uti.

After this, the mean-square error minimization is applied and the
unknown vectors are solved from the resulting linear algebraic
system. The linear system is given as2
666664
A1ð0,0Þ A1ð0,1Þ ⋯ A1ð0,PÞ

A1ð1,0Þ A1ð1,1Þ A1ð1,PÞ

« ⋱ «

A1ðP,0Þ A1ðP,1Þ ⋯ A1ðP,PÞ

3
777775

2
66664
utþDt,ð1Þ
utþDt,ð2Þ

«

utþDt,ðPÞ

3
77775

¼

2
66664
ptþDt,ð1Þ
ptþDt,ð2Þ

«

ptþDt,ðPÞ

3
77775þ

2
666664
A0ð0,0Þ A0ð0,1Þ ⋯ A0ð0,PÞ

A0ð1,0Þ A0ð1,1Þ A0ð1,PÞ

« ⋱ «

A0ðP,0Þ A0ðP,1Þ ⋯ A0ðP,PÞ

3
777775

2
66664
ut,ð1Þ
ut,ð2Þ
«

ut,ðPÞ

3
77775
(30)

whereA1ði, jÞ 5N3N blocks coefficient matrix of the linear system
of dimension NP3NP, and ut1Dt,ðiÞ and ut,ðiÞ 5 ith components of
the system response at time t1Dt and t, respectively. The co-
efficient matrices of the linear system in Eq. (30) are block sparse
matrices and symmetric in nature. This structure is conducive to the
numerical Krylov-based iterative techniques, such as the biconju-
gate gradient stabilized (BiCGStab) algorithm, which has been used
in this work to solve the linear systems resulting from the spectral
Galerkin method. The Krylov iterative techniques can exploit the
multicore architecture of modern day computational platforms for
performing the large matrix-vector operations. The performance

improvement obtained with this technique is subsequently illus-
trated while comparing the computation cost of the different
methods.

However, P increases exponentially with the order of chaos and
the number of input random variables M; therefore, the dimension
NP of the linear system obtained from Eq. (29) becomes very high.
As a result, several methods have been developed (Sachdeva et al.
2006; Blatman and Sudret 2010) to reduce the computational cost. In
the PC-based solution approach, the only information used to
construct the basis is the probability density function of the random
variables. In context of the discretized Eq. (25), more information,
such as the matrices Ai, i5 0, 1, 2, . . . , M, is available. Eq. (26)
also shows that the stochastic basis is independent of the time step
and lacks any adaptive properties, which may contribute to the
building up of errors for long time integration. This is because the
nonlinear effect of the input random variables on the stochastic
system response is compounded with each time step. It may be
possible to construct an alternative stochastic basis using the in-
variant properties of the linear system and the time step. Such an
approach is investigated here, where the solution is projected on to
a reduced number of eigenbasis obtained from the underlying de-
terministic system, weighted by a set of highly nonlinear stochastic
weighting functions termed as spectral functions.

Spectral Decomposition in Eigenspace: Derivation
of the Spectral Functions

Following the spectral stochastic FE method, an approximation to
the solution ofEq. (25) can be expressed as a linear combination of
functions of random variables and deterministic vectors. There is
a possibility of an optimal spectral decomposition, which has been
discussed in Nouy (2007, 2008). The aim is to use a small number
of terms to reduce the computation without losing the accuracy.
Recently, a reduced Galerkin approach for parabolic stochastic
systems has been proposed, which uses the eigenvectors of the
baseline model as the basis vectors (Adhikari 2013). This ap-
proach has been extended to structural dynamic systems in the
frequency domain in Kundu and Adhikari (2013). A reference to
the idea of stochastic Krylov space is relevant in this context and
can help the representation of the response vector in a reduced
subspace that can alleviate much of the computational burden. The
fundamental idea is to find the solution to a nonsingular linear
system of algebraic equation Ax5 b in a Krylov space whose
dimension is the degree of the minimal polynomial ofA (Ipsen and
Meyer 1998).

Definition 1: A minimal polynomial 5 of A is a unique monic
polynomial of minimal degree such that 5ðAÞ5 0. This minimal
polynomial of degree m can be constructed with the distinct
eigenvalues (lj) of A as

5ðAÞ ¼ ∏
d

j¼1


A2 ljI

�mj and m [
Pd
j¼1

mj (31)

This idea can be used to construct the inverse of a nonsingular matrix
A in terms of the powers of A as

A21 ¼ 2 1
a0

Pm21

j¼0
ajþ1Aj (32)

where the coefficientsai are evaluated from the minimal polynomial
given in Definition 1. This idea can be immediately utilized to
recognize that the solution vector x of the equationAx5 b lies in the
Krylov subspace of order m as
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KmðA, bÞ ¼ span
�
b, Ab, A2b, . . . , Am21b

�
(33)

Now the Krylov subspace dimension is a key factor that can in-
fluence the accuracy of the computed response, and it also plays
a key role in the computational efficiency of the solution technique,
that is, a low degree of the minimal polynomial would imply a small
Krylov solution space. This idea is of central importance to the so-
lution technique presented in this paper.

The stochastic linear set of equations presented in Eq. (25), for
which a solution of the response vector ut1DtðuÞ is sought, follows
directly from the aforementioned discussion that the solution at each
time step t1Dt can be projected on to a finite number of basis
spanning a stochastic Krylov space, which can be defined at that time
step as

Km

2
6666664
 
A0 þPM

i¼1
jiðuiÞAi

!
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

AðuÞ

, peqvtþDt


jðuÞ�

3
7777775 (34)

where jðuÞ5M-dimensional random vector jðuÞ5 fj1ðuÞ, j2ðuÞ,
. . . , jMðuÞgT . A choice of a finite number of Krylov basis depends
on the eigenspectrum of the coefficient of the system matrix AðuÞ.
Because the eigenvalues of the coefficient matrix AðuÞ are dis-
tributed over a long interval on the real axis, the required number of
basis functions (m) on which the solution would be projected would
become close to the number of DOFs (n) of the system. This
increases the computational cost substantially and, therefore, is
highly undesirable.

To alleviate this problem, it is suggested (Nair and Keane 2002)
to use a preconditioned stochastic Krylov space to arrive at a richer
stochastic subspace by using themean of the coefficientmatrix as the
preconditioner. It helps in transforming AðuÞ such that the proba-
bility density functions of its eigenvalues show a high degree of
overlap. However, as the variability of the random field increases, it
is desirable to incorporate some of the randomness of the system
matrices into the preconditioner such that the order of the spectral
basis functions can be kept low. This motivates the authors to use
a different preconditioner for the problem, as is demonstrated in
subsequent discussions.

To begin with, the eigenvectors fk 2Rn of the generalized ei-
genvalue problem has been utilized

K0fk ¼ lkM0fk; k ¼ 1, 2, . . . , n (35)

Because matrices K0 and M0 are symmetric and generally non-
negative definite, the eigenvectors fk for k5 1, 2, . . . , n form
a complete basis. In principle, any complete basis can be used. This
choice is selected because of the analytical simplicity, as will be
subsequently seen. For notational convenience, the matrices of the
eigenvalues and eigenvectors are defined as l0 5 diag½l1, l2,
. . . , ln� 2Rn3 n and F5 ½f1, f2, . . . , fn� 2Rn3 n. The eigenval-
ues of structural dynamic systems can be ordered in ascending order
so l1 , l2 , . . . , ln. The orthogonality property of the modal
matrix F can be used to write FTK0F5l0 and FTM0F5 I.
Because the damping matrix is assumed to be proportional, the
deterministic coefficient matrix given in Eqs. (24) and (25) is re-
duced to the diagonal form if the modal coordinate transformation is
applied. The following transformations are introduced:

FTA0F ¼ L0; A0 ¼ F2TL0F
21 and

~Ai ¼ FTAiF2Rn�n; i ¼ 1, 2, . . . , M
(36)

Each diagonal component ofL0 5 diag½L01 , L02 , . . . , L0n � 2Rn3 n,
that is, L0i can also be expressed as a linear function of the ei-
genvalue li obtained in Eq. (35). Suppose the solution of Eq. (25) is
given by ut1DtðuÞ5 ½A01

PM
i5 1jiðuÞAi�21peqvt1Dt


jðuÞ�. Using the

aforementioned discussions and the introduced transformations in
Eq. (36), the following is obtained:

utþDtðuÞ ¼
"
F2TL0F

21 þPM
i¼1

jiðuÞF2T ~AiF
21

#21

peqvtþDt


jðuÞ�

¼ FC

jðuÞ�FTpeqvtþDt


jðuÞ�

(37)

where C½jðuÞ�5 ½L01
PM

i5 1jiðuÞ~Ai�21. Separating the diagonal
and off-diagonal terms of the ~Ai matrices as ~Ai 5Li 1Di,
i5 1, 2, . . . , M, where the diagonal matrix is given asLi 5 diag½~Ai�
5 diag½Li1 , Li2 , . . . , Lin � 2Rn3 n and thematrix containing only the
off-diagonal elements Di 5 ~Ai 2Li is such that trace ðDiÞ5 0.
Using these, it can be written that

C

jðuÞ� ¼

2
6666664L0 þPM

i¼1
jiðuÞLi|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

L

jðuÞ
�

þPM
i¼1

jiðuÞDi|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
D

jðuÞ
�

3
7777775

21

(38)

where L½jðuÞ� 2Rn3 n 5 diagonal matrix; and L

jðuÞ�2Rn3 n

5 off-diagonal only matrix.
The diagonal matrix L


jðuÞ� is treated as the preconditioner to

the stochastic Krylov space, such that the solution can be projected
onto a very few basis functions; however, it would be possible to
predict an accurate solution of the response vector using this left
preconditioned stochastic Krylov subspace. The diagonal domi-
nance of thematrices ~Ai is conducive to the approach being proposed
here. When the mean of the coefficient matrix has been used as the
preconditioner, the terms of the Neumann series also span the left
preconditioned stochasticKrylov space (Nair 2002). It can be readily
extended to include the case using L


jðuÞ� as the preconditioner

giving

Km

L21C, L21peqvtþDt

�
¼ span

h
FTL21FpeqvtþDt, F

TR

jðuÞ�L21FpeqvtþDt ,

FTR

jðuÞ�2L21FpeqvtþDt , . . . , F

TR

jðuÞ�m21

L21FpeqvtþDt

i
(39)

where

R

jðuÞ� ¼ �L21jðuÞ�DjðuÞ�� (40)

Eq. (39) shows that the Krylov basis is the temporally adaptive
stochastic basis function because of the equivalent forcing term
peqvt1Dt, which inherits the response characteristics from the previous
time step. The equivalent infinite Neumann series representation of
this equation is

C

jðuÞ� ¼ P‘

s¼0
ð21Þs�RjðuÞ��sL21jðuÞ� (41)

Taking anarbitrary rth element of uðt, uÞ, Eq. (37) can be rearranged
to have
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urtþDtðuÞ ¼
Pn
k¼1

Frk

(Pn
j¼1

Ckj

jðuÞ�hfT

j p
eqv
tþDt


jðuÞ�i

)
(42)

Vector Gt1Dt


jðuÞ� of dimension n3 1 is defined as

GtþDt

jðuÞ� ¼ C


jðuÞ��FTpeqvtþDt


jðuÞ�� (43)

where Gt1Dt


jðuÞ� 5 vector of highly nonlinear functions of the

random variables fjiðuÞ: i5 1, . . . , Mg and is expressed in terms of
the spectral properties of the system matrices. Combining Eqs. (42)
and (43) gives

utþDtðuÞ ¼
Pn
k¼1

Gk
tþDt


jðuÞ�fk (44)

where Gk
t1Dt


jðuÞ�5 kth element of the vector of stochastic func-

tions contained in Gt1Dt


jðuÞ�; and fk 5 kth eigenmode of the

deterministic structural system. The time-domain response of the
structural system is projected on to the deterministic eigenmodes of
the structural system and weighted by a set of spectral functions
Gk
t1Dt


jðuÞ�.

Assume that the series in Eq. (41) is truncated after the mth term.
This is equivalent to takingm terms of theminimal polynomial of the
left preconditioned stochastic Krylov space. The truncated function
is defined as CðmÞjðuÞ�5Pm

s50ð21Þs�L21jðuÞ�DjðuÞ��sL21
jðuÞ�. From this, one can obtain a sequence for different values
of m as

uðmÞtþDtðuÞ ¼
Pn
k¼1

G
k,ðmÞ
tþDt


jðuÞ�fk; m ¼ 1, 2, 3, . . . (45)

Because u2Q is arbitrary, in comparing Eq. (25) and (37), it is
observed that uðmÞt1DtðuÞ is the solution of Eq. (25) for every u as
m→‘. The proposed solution technique is not limited to any
particular choice of the probability measure of the input parametric
randomness; hence, it is applicable to almost all random fields, as
long as the solution exists.

Thematrix power series in Eq. (41) is different from the classical
Neumann series (Yamazaki et al. 1988) or the spectral Galerkin
approach. In the former case, the elements of the matrix power series
are polynomials in jiðuÞ, whereas for the latter case, the solution is
projected on to a set of orthogonal polynomials of the input random
variables spanning the reduced stochastic solution space. In contrast,
the series in Eq. (41) is in terms of

�
L21jðuÞ���DjðuÞ��, where

both terms are random and the elements of this matrix series are not
simple polynomials in jiðuÞ, but are in terms of a ratio of poly-
nomials, as seen in the following equations. The convergence of this
series depends of the spectral radius ofR


jðuÞ� in Eq. (40).LjðuÞ�

is a diagonal matrix, and its inverse is also a diagonal matrix. Recall
that the diagonal of D


jðuÞ� contains only zeros. A generic term of

this matrix can be obtained as

Rrs ¼ Drsð12 drsÞ
Lrr

¼
PM

i¼1jiDirsð12 drsÞ
L0r þ

PM
i¼1jiLir

¼
PM

i¼1ji
~Airsð12 drsÞ

L0r þ
PM

i¼1ji
~Airr

¼
PM

i¼1ji
~Airsð12 drsÞ

ða0 þ a1z1Þlr þ ða1z2 þ 1Þ þPM
i¼1ji

~Airr

(46)

where lr 5 rth eigenvalue of the deterministic system, as per
Eq. (35); and drs5Kronecker delta. InEq. (46), the spectral radius of
R is also controlled by the diagonal dominance of the ~Ai matrices. If

the diagonal terms are relatively larger than the off-diagonal terms,
the serieswill converge faster, even if the relativemagnitude ofL0r is
not large. This is true at all time steps.

Eq. (46) also shows that the spectral radius depends on the
implicit time-integration parameters (a andg) and the time-step size,
Dt. When Eq. (46) is expressed explicitly in terms of these pa-
rameters, the following simplifications occur:

Rrs ¼
aDt2

hPM
i¼1ji

~Airsð12 drsÞ
i

lr þ ðlrz1 þ gz2ÞDt þ

PM

i¼1ji
~Airr

�
aDt2

(47)

This equation is analyzed for the effect of the time-step size onR for
a given fixed structural system. Because the constants a and g are
positive quantities, and assuming that the time-step size chosen is
generally quite small

Rrs ¼ O

Dt2
�

for 0,Dt� 1 (48)

This indicates that a smaller time-step size improves the conver-
gence behavior of the spectral functions following Eq. (50). How-
ever, smaller time steps incur higher computational cost.

The novelty of the proposed approach for the resolution of the
dynamic response of structural systems under the action of transient
excitation can be listed as follows:
• The eigenmodes utilized in this problem are the physical vibra-

tion modes of the structural system and can be determined
experimentally. This offers a significant advantage because of
the fact that the spectral functions can now be calculated from
experimental measurements and compared with the theoretical
values.

• A left preconditioned Krylov subspace projection approach is
utilized here with a stochastic preconditioner to express the
solution in terms of the highly nonlinear rational functions of
the basic random variables.

• The forcing function at each time step inherits the system ran-
domness from the stochastic response of the previous time step;
therefore, the stochastic Krylov bases are temporally adaptive.

• The stochastic preconditioner utilized here depends on the time-
step size and the integration constants chosen for the problem [as
can be seen from Eqs. (22)–(25)], which results in the conver-
gence being a function of the integration parameters.

• The expression for the spectral functions has been expressed
explicitly in terms of these parameters and is presented in
Eq. (46).
The functionsGk

t1Dt


jðuÞ�, k5 1, 2, . . . , n are called the spectral

functions because they are expressed in terms of the spectral pro-
perties of the coefficient matrix of the discretized system equation.

In truncating the series in Eq. (41) up to different terms, spectral
functions of different orders are defined. Using the expression in
Eq. (43), the first-order spectral functions at each time step can be
explicitly obtained as

G
k,ð1Þ
tþDt


jðuÞ� ¼ Pn

j¼1
C

ð1Þ
kj


jðuÞ�hfT

j p
eqv
tþDt


jðuÞ�i

¼ fT
k p

eqv
tþDt


jðuÞ�

ða0 þ a1z1Þlr þ ða1z2 þ 1Þ þPM
i¼1jiðuÞLik

(49)

Here the spectral functions are rational functions of the basic random
variables and change at each time step as a result of the associated
forcing function peqvt1Dt


jðuÞ�. The diagonal dominance of the
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perturbation matrices Lik ensures that the spectral functions have
a high radius of convergence, which can efficiently tackle high
degrees of variability of the input randomness. The solution can be
expected to be approximated to a high degree of accuracy even with
low-order spectral functions.

The vector of spectral functions of order m can be obtained
by retainingm terms in the series [Eq. (41)], and can be expressed
as

G
ðmÞ
tþDt


jðuÞ� ¼ hIn2R


jðuÞ�þ R


jðuÞ�2 2R


jðuÞ�3

. . .mth term
i
G
ð1Þ
tþDt


jðuÞ� (50)

where In 5 n-dimensional identity matrix; and R is defined in
Eq. (40). Different terms of this series can be obtained recursively
from the previous term (Yamazaki et al. 1988). Because of the
availability of the recursive formula, the calculation of the higher-
order spectral functions is expected to be less involved. The com-
putational efficiency and accuracy in using different orders of
spectral functions to formulate the approximate solution of the
stochastic system is subsequently demonstrated with numerical
examples. In the following subsection, the calculation of the dif-
ferent orders of the statisticalmoments of the solution and the closed-
form expressions utilized to evaluate them is presented.

The computational complexity involved in calculating the pro-
posed spectral function is presented here. If the stochastic FE system
solution is projected on to its modal coordinates with the first nr
modes [from Eq. (35)], and Ns is the number of stochastic samples
points where the system is solved in the direct MCS approach,
then the total computational complexity is ðT=DtÞNsOðn3r Þ, where T
is the total time for which the system response is evaluated, andDt is
the time-step size. For the spectral method, the calculation of the
various orders of the spectral functions requires the evaluation of
the quantity L21jðuÞ�DjðuÞ� in Eq. (40), whose complexity is
given as Oðn2r Þ. The complete system response resolution using
the mth-order spectral functions is ðT=DtÞNsðm2 1ÞNtOðn2r Þ. The
computational complexity of the spectral function approach is found
to be growing as a cube of the dimension of the reduced eigenspace,
which is approximately one ordermore efficient than the directMCS
calculations.

Statistical Moments of the Response Vector

Given that the stochastic displacement vector is a function of the
sequence of the input random variables, at each time step t, the mean
and higher-order statistical moments of the solution uðmÞt :Rn 3Q
→Rn about a given point j0 in the stochastic space can be con-
structed using the relationship

S
ðmÞ
p,t ¼

ð
u

h
uðmÞt


jðQÞ�2 uðj0Þ

ip
dP

jðuÞ� p ¼ 1, 2, 3, . . . (51)

where SðmÞ
p,t 2Rn3 n 5 pth-order statistical moment of the solution

about uðj0Þ5Rn, calculated with themth-order spectral function at
time step t; and P 5 joint density function of the input random
variables. From these expressions, the mean [ p5 1, uðj0Þ5 0] and
variance ½ p5 2, uðj0Þ5S

ðmÞ
1,t � of the stochastic solution vector can

be written as

S
ðmÞ
1,t ¼ Pn

k¼1
E

h
G
k,ðmÞ
t


jðuÞ�ifk (52)

S
ðmÞ
2,t ¼ E

 (Pn
k¼1

G
k,ðmÞ
t


jðuÞ�2E

h
G
k,ðmÞ
t


jðuÞ�i

)
fk

!
¼ FJtF

T

(53)

where F 5 matrix of eigenvectors; Jt 5 temporal variance-
covariance matrix at time t of the vector G

ðmÞ
t 5 ½G1,ðmÞ

t , G2,ðmÞ
t ,

. . . , Gn,ðmÞ
t �, such that Jt,ij 5E½Gi,ðmÞ

t Gj,ðmÞ
t �; and E½•� 5 expectation

operator associated with the stochastic space. If the components of
the randomvectorGðmÞ

t are uncorrelated, thenJt becomes a diagonal
matrix. However, because the spectral functions considered here are
correlated random variables, a fully populated Jt matrix at every
time step is obtained. For this correlated nature of the spectral
functions, integration in the stochastic space defined in Eq. (51) calls
for efficient sampling techniques or metamodeling strategies, which
can be used in conjunction with the solution methodology proposed
here.

In the following section, some numerical examples are provided
to highlight the performance and computational accuracy of the
spectral Galerkin approaches and the proposed spectral function
approach with the implicit time-integration scheme. The directMCS
results have also been obtained, which serve as the benchmark so-
lution. The appropriate error estimates, convergence behavior, and
simulation times of the solution are presented for effective com-
parison of the different solution methodologies.

Here Algorithm 1 is presented, which summarizes the proposed
spectral function approach used to resolve the stochastic system
response using an implicit time-integration technique.

Algorithm 1: Transient Stochastic FEM with Spectral
Functions

Input: Choose time-step size (Dt) and discretize time axis T into
Nt points, Nt 5T=Dt.

Input: Stochastic input parameter aðu,rÞ 2R3QðMÞ using KL
modes [Eqs. (4)–(7)].

Input: Calculate the systemmatrices fromBðun,vn; uÞ5Lðvn; uÞ
using Eqs. (10)–(15).

Input: Choose parameters a and b and evaluate integration
constants from Eq. (19).

Output: System response ut1DtðuÞ, _ut1DtðuÞ, €ut1DtðuÞ 2Rn 3Q
at each t 2 ½0,T �.
1. Evaluate the first nr eigenpairs [l0, F] from Eq. (35).
2. Construct R


jðuÞ� and its successive powers Rk


jðuÞ� for

k5 1, . . . , m using Eq. (40).
3. Initialize u0ðuÞ, _u0ðuÞ, €u0ðuÞ.
4. for j5 1 to Nt do
5. Calculate peqvt1Dt with utðuÞ, _utðuÞ, €utðuÞ following Eqs. (19)

and (23).
6. for r5 1 to m do
7. Construct the Krylov basis following Eq. (39) using

Rr

jðuÞ�, F, and peqvt1Dt.

8. Create themth-order spectral function vectorGðmÞ
t1Dt


jðuÞ�

from Eq. (43).
9. end for

10. Project the system response ut1DtðuÞ in the eigenspace
using G

ðmÞ
t1Dt


jðuÞ� from Eq. (44).

11. Evaluate _ut1DtðuÞ, €ut1DtðuÞ at t5 jDt from Eq. (19).
12. Evaluate the moments of the response using Eqs. (52)

and (53).
13. Make utðuÞ, _utðuÞ, €utðuÞ equal to ut1DtðuÞ, _ut1DtðuÞ,

€ut1DtðuÞ, respectively.
14. end for
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Illustrative Example: Transient Dynamic Analysis of
an Euler-Bernoulli Beam

To demonstrate the applicability of the methods previously detailed,
a prototype problem of the dynamic uniplanar flexural vibration of
a one-dimensional Euler-Bernoulli cantilever beam is considered.
This application is used to demonstrate the effectiveness of the
proposed spectral solution method to this class of SPDEs. The so-
lution is obtained for a specified value of the correlation length and
for different degrees of variability of the input random field. The
spatially varying stochastic field has been discretized using a finite
number of zero mean uncorrelated standard Gaussian variables us-
ing the KL expansion theorem. For the beam problem, the elastic
modulus EIz is chosen as the stochastic parameter. The beam
problem has been solved for its transient response in the time domain
under the action of an impulse loading. Direct MCS has been
performed for these cases and is taken as the benchmark solution
with respect to which the appropriateness of the different methods
has been analyzed. A comparison between the PC method and the
proposed spectral decomposition technique is presented for the
beam problem.

The cantilever beam is taken to be clamped at one end (where the
displacement and the rotational DOFs are both taken to be zero).
Fig. 1(a) shows the configuration of the cantilever beam with an
impulse load at its free end in the z-direction. The beam bending
occurs in the x-z plane. Assume that the bending modulus (EIy) is
a stationary Gaussian random field of the form

EIyðx, uÞ ¼ EI0½1þ aðx, uÞ� (54)

where x 5 coordinate along the length of the beam; EI0 5 mean
bending modulus; and aðx, uÞ 5 zero-mean stationary Gaussian
random field. Although the Gaussian random field model is not
physically meaningful in the strict sense because the physical
quantities being modeled are strictly positive, the model has been
used extensively in the existing stochastic FE literature (Ghanemand
Spanos 1991; Sarkar and Ghanem 2003). However, when the
number of KL expansion terms is chosen carefully, the truncated
statistical models are strictly positive (Powell and Elman 2008).

The autocovariance function of this random field is assumed to
be

Ca ðx1, x2Þ ¼ s2
ae

2ðjx12x2jÞ=ma (55)

where ma 5 correlation length; and sa 5 SD. The following base-
line parameters are used: length L5 1m, cross section (b3 h) is
393 5:93 mm2, and Young’s modulus is E5 23 1011 Pa. In this
study, deflection of the tip of the beam under an impulse load of
IFðtÞ 5 1:0N × s at t5 0 is considered. In this paper the forcing is
assumed to be deterministic in nature. The case when the forcing is
random has been treated extensively in the literature within the scope
of randomvibration (Lin 1967). For example, if the forcing function is
independent of the parametric uncertainty, the proposed spectral
function approach could be applied at chosen points in the stochastic
space associated with the excitation, and the second-order response
statistics can be constructed from it. The correlation length considered
in the numerical study for comparison with the PC expansion method
isma 5 L=2, and for this case the number of terms retained (M) in the
KL expansion Eq. (7) is two. Therefore, the input stochastic space is
two-dimensional in this case. For the FE discretization, the beam is
divided into 100 elements. A standard four DOF Euler-Bernoulli
beam model is used. After applying the fixed boundary condition at
one edge, the number ofDOFs of themodel is obtained to be n5 200.
It has been verified that this spatial resolution is sufficient to capture
the excitation response of the system completely.

The solution obtained with the proposed reduced basis spectral
function has been compared with the direct MCS results and the
fourth-order PC expansion. The MCS in the stochastic space is
performed with 10,000 samples. The calculations have been per-
formed for four values of input SD, sa 5 f0:05, 0:10, 0:15, 0:20g,
which simulates increasing input uncertainty.

Fig. 1(b) presents the distribution of the natural frequencies of the
cantilever beam from the generalized eigenvalue problem given in
Eq. (35). The reduced basis of the problem has been chosen based on
the time-step size or the sampling frequency of the problem, that is,
all the eigenmodes that cover up to 1,200 Hz have been chosen. The
time-step size for the numerical integration scheme has been chosen
as 1=800 s. A constant modal damping with a 1% damping factor for
all the modes has been applied.

Fig. 2 shows the time-domain response of the deflection of the tip
of the cantilever beam under the action of an unit impulse around
time t5 0 for the different input SD values. The proposed spectral
method and the directMCS results shows good agreement at all time
steps. However, the solution generated by the PC method, while
closely approximating theMCS solution at earlier times, diverges for
higher values of t. For a high input SD (sa), this discrepancy sets in
even earlier.

Fig. 1. (a) Schematic diagram of the cantilever beam with a point load at the free end; (b) natural frequency of the cantilever beam; the number of
reduced eigenvectors chosen is q5 10, which covers the frequency of up to 1,200 Hz; the fundamental frequency is found to be 4.85 Hz
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Similar behavior is seen inFig. 3 in the plot for SD of the deflection
of the free end of the beam. The values predicted by the proposed
spectral function method are in good agreement with the direct MCS
results, whereas the fourth-order PC results show inconsistencies,
especially for longer values of t. The accurate prediction of higher-
order moments using the spectral Galerkin approaches requires a high
order of the chaos to be used with the solution. It is expected that the
higher moments of the response would tend to deviate significantly.

In Fig. 2, the higher values of input SD produce an effect
equivalent to that of damping on the mean deflection values. This is
because the randomness in the system parameters tends to distribute
the peak response around a neighborhood of the resonance fre-
quency of the deterministic system, and the subsequent averaging
smooths out or damps the response at those frequencies. The re-
sponse is largely comprised of the fundamental frequency (4.85 Hz)
of vibration of the beam because the higher-order modes decay out
rapidly. Although the mean response for higher values of sa shows
an added damping-kind behavior, in reality any random sample
would still produce high levels of vibration in the response.

The fact that the higher-order moments are not properly repro-
duced by the fourth-order PC method is also verified from the plots
of the probability density function of the deflection of the free end of
the beam at t5 0:119 and 0:134 s, as shown in Fig. 4. Although the
mean value is closely approximated by the PC solution, the values of
the higher-order moments are significantly different from those
obtained with the MCS and spectral methods. A very good
agreement of the density functions given by the latter twomethods is
found. The error in the density function produced using the fourth-
order PC is much larger (compared with the direct MCS solution) at
t5 0:134 s in Fig. 4(b) than at t5 0:119 s in Fig. 4(a). This indicates
that as the time integration proceeds, the polynomial order of the
solution needs to be enhanced to account for the compounded
stochastic nonlinearity of the transient system. Similar observations
have been reported in the literature (Najm 2009; Gerritsma et al.
2010) for long time integration, which tends to generate un-
acceptable error levels if higher-order chaos functions are not used
for projection of the solution in the stochastic subspace. This,
however, has detrimental effects in terms of the computational

Fig. 2.Mean deflection of the free end of the cantilever beam under an unit impulse load at time t5 0 for the duration of 1=800 s; the response of the
reduced-order spectral function method is obtained with 10,000 samples and for sa 5 f0:05, 0:10, 0:15, 0:20g; (a) mean deflection, sa 5 0:05;
(b) mean deflection, sa 5 0:10; (c) mean deflection, sa 5 0:15; (d) mean deflection, sa 5 0:20
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efficacy of the solution. Hence, it might be desirable to have some
time-adaptivity characteristics in the stochastic basis functions. The
accurate estimation of the density curve using a different order of
spectral functions is found to be highly conducive to this effect
because the stochastic spectral functions changewith each time step.

Table 1 presents a comparison of the calculation time of the
different methods used in this study to demonstrate the relative
computational efficacy of the proposed method. The calculation
times are shown for a single time step, performed on a single core of
a computational platform. The last entry fourth-order PC (parallel
BiCGStab) denotes the time taken in solving the linear block-sparse
system obtained from the spectral Galerkin approach using a parallel
implementation of the BiCGStab algorithm on eight computational
cores, where each core is identical to the single core used in solving
the other linear systems mentioned in the table. The table shows that
the second-order spectral function approach is, on average, 10 times
more efficient than the direct MCS and about 3.524 times more
efficient than the fourth-order PC method. When the PC is imple-
mented with parallel BiCGStab, the speed obtained is around that of
the second-order method. As the order of the spectral function is
increased, the computational time increaseswith it. The performance

of the spectral function method can potentially be enhanced sig-
nificantly using the efficient sampling techniques. The choice of the
fourth-order PC to compare the accuracy of the results is justified
from this comparison of computational efficacy.

The ACF, which is useful for identifying the relationship be-
tween time signals separated by a finite space in time t, is defined as

ACFðt, tÞ ¼ E
�ðut 2mtÞ


utþt 2mtþt

��
st stþt

(56)

where ut 5 system response at time t;st 5 SDof the response at time
t; and E½•� 5 expectation operator defined over the sample space.
The ACF gives important information about the harmonic com-
ponents contained in the signal and the stationarity of the signals.
Fig. 5 shows the autocorrelation surface of the transient response of
the free end of the cantilever beam under the unit impulse load for
two different values of SD of the input randomness [sa 5 0:15 in
Fig. 5(a) and sa 5 0:20 in Fig. 5(b)]. The ACF surface is plotted
against time t and parameter t for the length of the time-domain
response (0:0e2:0 s), as shown in Figs. 2 and 3. The ACF surface is
triangular in shape, that is, time t and parameter t vary between 0.0

Fig. 3. SD of the deflection of the free end of the cantilever beam under unit impulse load at time t5 0 for the duration of 1=800 s; the response of
the reduced-order spectral function method is obtained with 10,000 samples and for sa 5 f0:05, 0:10, 0:15, 0:20g; (a) SD of deflection, sa 5 0:05;
(b) SD of deflection, sa 5 0:10; (c) SD of deflection, sa 5 0:15; (d) SD of deflection, sa 5 0:20
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and 2.0 s. The definition of the ACF in Eq. (56) ensures that the ACF
response surface remains between 21 and 1 because of normali-
zation with the SD of the response. For very small values of t, the
correlation between the signals for all values of t is almost perfect,
which leads to an ACF being close to 1 along t� 0. The correlation
attenuates with increase in t, and the attenuation ismore rapid for the
case of higher variability of input randomness, that is, for sa 5 0:20.
This is expected as higher input randomness results in the less
correlated response with time. This also explains the rapid attenu-
ation of the mean response for a higher degree of variability of the
input randomness (say for sa 5 0:20), as was observed in Fig. 2.

Fig. 6 shows theACF for specific values of time t and parameter t
and for the random field variability of sa 5 0:20, which corresponds
to the response on specific planes placed perpendicular to the t-axis
and the t-axis in Fig. 5(b). Fig. 6(a) shows that the autocorrelation
attenuates with t for all values of t and this attenuation is more rapid
for higher parametric uncertainties (as established in Fig. 5). The
ACF obtained with different orders of the spectral functions are in
very good agreement with the direct MCS results. The fourth-order
PC produces slower attenuation of the ACFwith increasing t, as can

be seen in Fig. 6(a) (which is consistent with the fourth-order PC
results seen in Fig. 2).Also, fromFig. 6(b), for very small values of t,
the correlation is quite high and the time response becomes almost
stationary as the value of t increases, which indicates the transition
of the transient response toward a steady state. In other words, the
ACF becomes a function of the parameter t only for sufficiently
large values of t. The fourth-order PC, however, does not produce
this tendency toward stationarity, which is contrary to the physics
of the structural dynamic system. This discrepancy can be at-
tributed to the growing error associated with the time-integration
scheme and would have to be addressed with an enhanced order of
the PC expansion.

The Galerkin method involved in approximating the solution
with the fourth-order Hermite polynomials requires the solution of
a linear system of equation of size 3,0003 3,000 at each time step
(compared with the original discretized FE system of 200 DOFs).
This can impose a stringent condition on the upper boundof the time-
step size Dt and, as explained in context of Eq. (21), can result in
a growth of the error associated with the time-integration scheme.
This can lead to a growth of the error associated with spectral
Galerkin methods faster than that associated with other sampling-
based techniques, where the dimension of the linear system to be
solved remains the same as the original deterministic system. Similar
behavior is also observed in the SD results shown in Fig. 3, where for
higher values of variability of the input randomness (indicated by
large sa), there is a tipping point beyond which the discrepancy of
the fourth-order PC result grows, and this point arrives earlier for
higher values of input variability. This can be tackledwith increased-
order PC expansion, however, the high dimension of the resulting
linear system can significantly increase the computational cost of the
time-integration scheme because of the enhanced limitation on the
maximum time-step size.

The convergence behavior of the proposed spectral function
approach with an order of expansion of the spectral functions can be
studied with an error indicator. A relative L2 error for the system
response eðmÞSj

ðtÞ, at each time step t formth-order spectral function is
defined as

Fig. 4. Probability density function of the deflection of the free end of the cantilever beam at (a) t5 0:119 and (b) 0:134 s under a unit impulse load at
time t5 0 for a duration of 1=800 s; the response of the reduced-order spectral function method is obtained with 10,000 samples and for an input SD of
sa 5 f0:05, 0:10, 0:15, 0:20g of the parametric random field

Table 1. Comparison of Calculation Time (in Seconds) of the Proposed
Reduced-Order Spectral Function Approach with Direct MCS and Fourth-
Order PC

Calculation
Average
time (s)

Minimum
time (s)

Maximum
time (s)

Direct MCS 13.589 13.506 13.798
Second-order spectral 1.375 1.345 1.396
Third-order spectral 1.445 1.414 1.465
Fourth-order spectral 1.500 1.481 1.523
Fourth-order PC 5.117 4.975 5.327
Fourth-order PC (parallel BiCGStab) 1.329 1.201 1.477

Note:All calculations were performed using a single processor core. The last
entry, fourth-order PC (parallel BiCGStab), indicates the block sparse linear
system solved with parallelized biconjugate gradient algorithm on eight
computational cores.
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e
ðmÞ
Sj

ðtÞ ¼
����SðmÞ

jSF ðtÞ2SjMCSðtÞ
����
L2ðDÞ����SjMCSðtÞ

����
L2ðDÞ

for j ¼ 1, 2 (57)

where SðmÞ
jSF ðtÞ is the mean (j5 1) or the SD (j5 2) of the system

response vector, and SjMCSðtÞ is the same calculated with the direct
MCS result. The norm L2ðDÞ covers the discretized FE spatial
domain D. Here, the cases for which the spectral function order
varies as m5 1, . . . ,8 are studied, and the convergence of the L2 re-
lative error as functions of the spectral function order are presented.

For the sake of rigor, the authors study a beam vibration problem
where a shorter correlation length of the input random parameter
(bending modulus) has been assumed. This results in an increase in
dimension of the input stochastic space such that for the same ap-
proximation error to have a higher value of m is needed while
choosing a finite spectrum from the KL expansion in Eq. (7). In the
present case, the correlation length is taken to be ma 5L=5 in

Eq. (55); for this, the random bending modulus EIy is approximated
with 20 random variables using the KL expansion. Fig. 7 shows the
L2 error calculatedwith themean andSDof the response for different
orders of the spectral functionswith time t for the highest value of the
input randomness considered in this study (sa 5 0:20). The higher-
order spectral functions definitely provide a better approximation of
the results. The same behavior is highlighted at certain time steps,
t5 1:375 and 2:000 s, in Fig. 8 for different degrees of variability of
input randomness sa 5 f0:05, 0:10, 0:15, 0:20g. However, the
higher-order spectral functions have enhanced computational cost
associatedwith them and have to be chosen prudently. The error norm
can be used to determine a desired order of expansion for approxi-
mating the solution of the system at each time step.

The aforementioned results show that the solution obtained using
the spectral functions and a set of orthonormal vector basis functions
is well suited for obtaining the unsteady dynamic response of ran-
dom structural systems, both in terms of accuracy and computational

Fig. 5. Autocorrelation function of the beam response under an unit impulse load at time t5 0 as a function of t and t as given in Eq. (56); the ACF
surface has been obtained with direct MCS and is very closely approximated by the results obtained with the spectral function approach; (a) ACF,
sa 5 0:15; (b) ACF, sa 5 0:20

Fig. 6.Autocorrelation function of the cantilever beam response under an unit impulse load at time t5 0 for input parametric randomness ofsa 5 0:20;
(a) ACF as a function of t at specific time steps t5 0:0025, 0:025, 0:125, 0:625 for sa 5 0:20; (b) ACF as a function of time t at specific values of the
parameter t5 0:0025, 0:025, 0:125, 0:625 for sa 5 0:20
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Fig. 7. L2 relative error calculated with the (a) mean and (b) SD of the cantilever beam response for different orders of expansion of the spectral
functions for an input random field variability of sa 5 0:20

Fig. 8. L2 relative error calculated with the (a) and (c) mean and (b) and (d) SD of the cantilever beam response at t5 1:375 and 2:000 s for different
orders of expansion of the spectral functions
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efficiency. Compared with the direct MCS solution method or the
spectral Galerkin techniques, the computational cost is favorable
because of the reduced order of the system and the finite-order ap-
proximation of the solution in the stochastic space. It is found that
the estimated solution closely matches the direct MCS solution at all
time steps for all values of variability of the system parameters. For
the PCmethod, the growth in the errors on time integration has to be
eliminated with enhanced-order expansion of the stochastic basis,
which incurs a heavy computational cost. The possibility of using
the parallel implementations of the iterative linear system solvers to
address the issue of computational cost is highly promising.

Conclusions

Two distinct solution strategies for the resolution of the transient
response of stochastic dynamic systems have been proposed. In the
classical spectral stochastic finite-element approach, the solution is
projected on to a finite set of orthonormal basis functions spanning
a reduced stochastic space using a finite order of the chaos functions
from the Wiener-Askey scheme. Second, an efficient reduced-order
left preconditioned Krylov subspace projection of the stochastic
solution on to a finite set of deterministic eigenbasis, which are
weighted by dynamic stochastic coefficient functions known as
spectral functions, is proposed. A single-step implicit uncondi-
tionally stable time-integration scheme has been utilized here with
the integration operators being stochastic in nature. Hence, the ap-
proach utilizes stochastic temporally adaptive Krylov bases.

The results obtained with the spectral function approach demon-
strate good agreement with the direct MCS at all time steps and for
different values of input SD sa. The fourth-order PC, on the other
hand, shows a rapid growth of error for long time integration and for
higher-order moments of the solution, which has to be addressed with
higher-order chaos expansions,which incur higher computational cost
(as found in Table 1). Also, the high dimension of the linear algebraic
system encountered in the PC expansion restricts the time-step sizeDt
of the time-integration scheme, which further enhances the associated
computational cost. This demonstrates the applicability and compu-
tational efficacy of the proposed spectral function approach in context
of the unsteady dynamical response of stochastic structural systems.

The future work along this direction would look to improve the
proposed stochastic Krylov subspace projection approach using
more efficient reduced-order stochastic rational interpolation func-
tions, which could ensure faster convergence of the solution. Further
research on a priori error analysis and study of convergence behavior
can also give important intuitive guidance in moving toward a
choice of a more efficient set of stochastic functions suitable for this
class of stochastic problems. Finally, the extension of the proposed
methodology to nonlinear structural dynamics problems could con-
stitute an interesting research avenue.
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