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a b s t r a c t

A novel Galerkin subspace projection scheme for linear structural dynamic systems with stochastic
coefficients is developed in this paper. The fundamental idea is to solve a discretized stochastic system in
the frequency domain by projecting the solution on a reduced subspace of eigenvectors of the de-
terministic operator weighted by a set of frequency dependent stochastic functions, termed as the
spectral functions. These spectral functions are rational functions of the input random variables and a
study of the different orders of spectral functions are presented. A set of undetermined Galerkin coef-
ficients are utilized to orthogonalize the residual to the reduced eigenvector space in the mean sense. The
complex system response is represented explicitly with these Galerkin coefficients in conjunction with
the modal basis and the associated stochastic spectral functions. The statistical moments of the solution
are evaluated at all frequencies and the solution accuracy is verified in terms of a relative error norm.
Two examples involving a beam and a plate with stochastic parameters subjected to harmonic excita-
tions have been studied. The results are compared with the direct Monte-Carlo simulation, the classical
Neumann expansion technique and the polynomial chaos method for different orders stochastic func-
tions and varying degrees of variability of input randomness.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Computational models of physical systems often use idealized
approximations, such as in parameter values and boundary con-
ditions, which cannot be known for certain. This has led to in-
vestigation into stochastic computer models which incorporate
probabilistic description of the uncertain quantities into the model
(such as [1–3]). In this study we concentrate on the frequency
domain response of damped structural dynamic systems with
parametric uncertainty which is multiplicative in nature. The ob-
jective is to propose a novel uncertainty propagation scheme for
probabilistic inputs to the structural dynamic model (as para-
metric uncertainty) and investigate the accuracy, convergence and
computational cost of the proposed method. There are two broad
classes of the uncertainty propagation techniques for the sto-
chastic systems – statistical sample based simulations and the
non-statistical analytical methods.

Various Monte Carlo Simulation (MCS) techniques belong to
the class of non-intrusive sample based methods and have been
used in context of the structural dynamics problems [4]. The slow
du),
convergence rate of MCS makes it unfeasible for practical im-
plementation and various improved sampling techniques such as
the importance sampling, Latin hypercube sampling, have been
proposed which can be regarded as the “variance reduction
techniques” [5]. The limitations of these techniques are dictated by
the dimension of the stochastic space. Uncertain structural sys-
tems represented by few random variables subjected to determi-
nistic loading can be well-suited for such variance reduction pro-
cedures [6].

The alternatives to the sampling techniques provide an explicit
functional relationship between the input random variables which
allows easy evaluation of the functional statistics. Such solvers
include perturbation method [7], or equivalently the lower-order
Taylor approximation and the Neumann expansion method, [8,9]
all of which comes down to the estimation of response surface in a
parameter space. On the other hand the stochastic Galerkin
methods [10–12] allows the response to be expressed with or-
thogonal basis functions spanning the stochastic space. The accu-
rate estimation of the high order statistical moments, or the full
probability distribution function, of the response requires high
degree polynomials, which in turn results in high dimensional
block sparse linear system of equations. Krylov-type iterative
techniques have been proposed to solve such systems efficiently
by exploiting the sparsity of the system [13,14]. However, the
difficulty to build efficient preconditioners and the memory
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requirements induced by these techniques are still challenging
and active areas of research.

We consider a bounded domain d∈ with piecewise Lip-
schitz boundary ∂ , d 3≤ is the spatial dimension and t ∈ + is the
time. We take P( , , )Θ as the probability space where θ Θ∈ is a
sample point from the sampling space Θ, is the complete Borel
s-algebra over the subsets of Θ and P is the probability measure.
We consider here the linear stochastic partial differential
equation (pde) for elastodynamic systems with parametric un-
certainty:
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u t
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u t

t
div u t
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r r
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with the associated Dirichlet condition u tr( , , ) 0θ = ; r on ∂ . Here
u tr( ( , , ))σ θα is the stress tensor with stiffness coefficient r( , )α θ

modeled as a stationary, square integrable random field such that
 : dα Θ× → . The operator div( )aσ is taken to be a self-adjoint

stochastic stiffness operator. Lc is the damping operator containing
the stochastic coefficient vector c r( , )θ . The damping operator
along with its coefficients can be utilized to represent various
damping models like the strain rate dependent viscous damping
or the velocity dependent viscous damping. p tr( , ) is the de-
terministic excitation field for which the solution u tr( , , )θ is
sought. To perform harmonic analysis, Eq. (1) is transformed to the
frequency domain as
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where Ω denotes the frequency space of the problem, with p∼ and u∼

representing the complex harmonic amplitudes. E( )α in the stress–
strain relationship E( ):σ α ε=α is the symmetric positive definite
elasticity tensor which depends on the scalar random parameter α
with ε being the strain tensor expressed as Duε = ∼. Well estab-
lished techniques of variational formulation of the displacement-
based deterministic finite-element methods [7,15] gives the fol-
lowing bilinear form for the elastodynamic system:

L { }d i d dv u v r u v u Dv E Du( , ; ) ( , ) { } ( )
(3)

Tc2 ∫ ∫ ∫θ ω ρ θ ω α= − + +∼ ∼ ∼ ∼∼ ∼ ∼ ∼
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where [ ] is the space of admissible trial functions which have
finite strain energy on the spatial domain and satisfying the pre-
scribed boundary conditions. Eq. (4) gives a set of discretized
linear algebraic equations in terms of the mass, damping and
stiffness matrices. These can be expressed in a compact form as

 A u p A u p( , ) ( , ) ( ); ; ; ; , (5)n n nω θ ω θ ω θ Θ ω Ω= ∀ ∈ ∈ ∈ ∈∼ ∼∼ ∼×

where A( , )ω θ is the complex frequency dependent coefficient
matrix which inherits the uncertainty of the random parameters
involved in the governing pde. The detailed description of these
matrices is given in Section 3.1.

The paper has been arranged as follows. In Section 2 a brief
overview of the stochastic finite element method is presented. The
spectral decomposition technique in space of eigen vectors adopted
in this study is detailed in Section 3 along with a description
of the spectral functions proposed here. In Section 4 a redu
ced Galerkin error minimization approach is proposed. The post-
processing of the results to obtain the response moments are dis-
cussed in Section 5. Based on the theoretical results, a simple com-
putational approach is shown in Section 6 where the proposed
method of reduced spectral basis is applied to the stochastic
dynamical system of an one-dimensional Euler–Bernoulli beam and
a two-dimensional Kirchhoff–Love thin plate. A summary of the re-
sults and major conclusions arising from this study are given in
Section 7.
2. Brief review of the stochastic finite element method

2.1. Discretization of random fields

The parametric uncertainty is generally associated with a cov-
ariance function cov a[ ]: × → defined on the open, bounded
polygonal domain in . For second order random fields, there is a
compact self-adjoint operator:

T v cov a v d v Lr r r( ) [ ]( , ) ( ) ( ) (6)a
2∫· = · ∀ ∈

along with a sequence of non-negative eigenpairs {( , )}i i i 1λ φ =
∞ which

describes the eigenvalue problem as

T , ( , ) (7)a i i i i j L ij( )2φ λ φ φ φ δ= =

The truncated Karhunen–Loève (KL) expansion of the stochastic
process a r( , )θ using these eigen-functions is expressed as

a E a mr r r( , ) [ ]( ) ( ) ( )
(8)

m
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where E a r[ ]( ) is the mean function, { ( )}i i
m

1ξ θ = are a set of mutually
independent, uncorrelated standard Gaussian random variables
with zero mean (E( ) 0iξ = ) and unit variance (E( ) 1i

2ξ = ). The ei-
genfunctions r( )iφ can be assumed to have sufficient smoothness
for smooth covariance functions, and if the eigenpairs are de-
caying according to at least k(1/(1 ))k k L

s

( )
λ φ = +∞ for some

decay exponent s 1> , then a a 0m L ( )
− ^ →∼∞ , [11]. For practical

engineering problems, the parametric randomness is modeled
with a finite set of random variables ( , , , ):m

m
1 2ξ ξ ξ ξ Θ= … → ,

using first few largest eigenpairs in the reduced probability
space [16].

For arbitrary random field models, the random parameter can
be expressed in a mean-square convergent series using a finite
order chaos-expansion in terms of the basic independent identi-

cally distributed (iid) random variables ( ) { , , }
n(1) ( )

ξ θ ξ ξ^ = ^ … ^ as

a ar r( , ) ( ( )) ( )i
p

i i0 ξθ θ= ∑ ^
= where ( ( ))i ξ θ^ are the multivariate or-

thogonal polynomial functions depending on the joint probability
density function of the stochastic Hilbert space. The solution
methodology presented in this paper is applicable to this kind of
general decomposition of the random field.
2.2. Spectral methods and other solution techniques

The spatially discretized solution vector u( , )ω θ∼ lies in the
tensor product space n Υ⊗ , where Υ is an ad-hoc function space
for real-valued random variables [10]. Since the stochastic system
is represented with finite set of iid random variables

( ) { , , }
p(1) ( )

ξ θ ξ ξ^ = ^ … ^ as in Section 2.1, the stochastic space is given

as pΥ Υ⊂ . Given that each random component
i( )

ξ̂ is independent,

pΥ is of the tensor product form p1 2Υ Υ Υ⊗ ⊗ … ⊗ . The solution
vector in Eq. (5) can be expressed in the form:

u uu( , ) ( , ) ( ); ( )
(9)a

n

p
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α α α
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where α are the bases in pΥ ( p being the cardinality of the set
consisting of α) and u ( )ω∼

α are the set of unknown coefficients to
be evaluated. It is evident from the above steps that the approx-
imate basis functions can be chosen to depend on frequency which
can allow for the efficiency of the solution technique to be fre-
quency adaptive and hence well suited for applications over a wide
frequency range.

The form of the stochastic bases ( , )ω θα in Eq. (9) varies ac-
cording to the chosen solution approach. The stochastic Galerkin
approaches use orthogonal polynomial bases ( )θα [17]. Thus the
stochastic spectral Galerkin method poses the problem as it is
necessary to find u ( ) n

pω Υ∈ ⊗∼
α such that

 uA p( ) ( )
(10)

p

p

∑ β= ∀ ∈∼ ∼

α
β α α β

∈

which gives a set of linear algebraic equations. Frequency domain
analysis of stochastic systems has been studied using this method
[18] for the medium-frequency structural dynamic analysis. How-
ever, the computational cost associated with the inversion of the
coefficient matrix in Eq. (10) can become prohibitive for systems
with large dimensions and near resonance frequencies even for
moderate values of variability of the input random field. Precon-
ditioning can often improve the efficiency of the linear system
solver, but the availability of optimal pre-conditioners is often
limited to systems with low variance.
3. Projection of stochastic dynamic response in the modal
space

3.1. Finite element modeling of structural dynamic systems

Using the discretized random field model illustrated in Section
2.1, the stochastic system matrices can be derived from Eq. (1)
using the well-established standard methods found in the sto-
chastic FEM literature [19,11,12]. Following those developments,
the stochastic PDE along with the boundary conditions would
result in a set of equations in the frequency domain as

iM C K u f[ ( ) ( ) ( )] ( , ) ( ) (11)2
0ω θ ω θ θ ω θ ω− + + =

∼∼

where M M M( ) ( )i
p

i i i
n n

0 1
1θ μ θ= + ∑ ∈=

× is the random mass matrix,
K K K( ) ( )i

p
i i i

n n
0 1

2θ ν θ= + ∑ ∈=
× is the random stiffness matrix along

with C( ) n nθ ∈ × the random damping matrix. Here M( 0 and K )0 are
the deterministic components while M( i and K )i are the random
contributions. The random mass and the stiffness matrices have
been modeled with p1 and p2 random variables respectively. In the
present work proportional damping is considered for which
C M K( ) ( ) ( )1 2θ ζ θ ζ θ= + , where ζ1 and ζ2 are deterministic scalars.
u( , )ω θ∼ is the complex frequency domain system response ampli-
tude, f ( )0 ω

∼
is the amplitude of the harmonic force and ω is the

frequency.
The random variables associated with the mass and stiffness

matrices are grouped as ( ) ( )i iξ θ μ θ= for i p1, , 1= … and
( ) ( )j j p1

ξ θ ν θ= − for j p p p1, ,1 1 2= + … + . The linear structural sys-
tem in Eq. (11) can then be expressed as
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where A n n
0 ∈ × and A i

n n∈ × represent the complex determi-
nistic and stochastic parts of the system matrix and M p p1 2= + is
the total number of random variables used to represent the input
random parameters. The expressions for A0 and A i vary according
to the damping model chosen for a particular application. For the
case of proportional damping, the matrices A0 and A i are given as
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Eq. (12) together with the above equations completely define the
discretized system considered in this study. Here A ( )0 ω and

 i MA ( ) ; 1, 2, ,i
n nω ∈ = …× are complex symmetric frequency de-

pendent matrices. The aim of this study is to efficiently obtain
u( , )ω θ for θ Θ∈ and for all frequency values ω.

3.2. Derivation of the frequency-dependent spectral functions

An approximation to the solution of Eq. (12) can be construed
as a linear combination of stochastic functions weighted with
deterministic vectors which has been studied previously in con-
text of statical systems in [20]. We extend that to the study of
dynamical systems here using a reduced order stochastic ap-
proximation in conjunction with a Galerkin approach. A hy-
bridization of the stochastic spectral function method with the
Bayesian metamodeling approach has been studied in [21] to
mitigate the computational cost of evaluation of the expensive
high order stochastic functions. The present work is concerned
with the detailed investigation of the properties of spectral
functions in stochastic structural dynamic systems and the ac-
curacy of the approximated response. The interpretation of
spectral functions as the stochastic modal contribution factors,
their property of frequency adaptivity, comparison of con-
vergence properties with classical Neumann type expansions
have been presented here.

We consider the generalized eigenvalue problem with the
baseline deterministic system matrices as

k nK M ; 1, 2, (15)k k k0 0ϕ ϕλ= = …

The eigenvalue and eigenvector matrix of the above system is denoted
as ⎡⎣ ⎤⎦diag , , , n

n n
0 1 2λ λ λ λ= … ∈ × and ⎡⎣ ⎤⎦, , , n

n n
1 2ϕ ϕ ϕΦ = … ∈ × .

Here n1 2λ λ λ< < … < with orthonormal modal matrix Φ which gives
KT

0 0λΦ Φ = and M IT
0Φ Φ = . Since the undamped eigenvectors kϕ for

k n1, 2,= … form a complete basis, the solution of Eq. (12), u( , )ω θ∼

can be projected to on this basis. Using the relations in Eqs. (13) and
(15) we have
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also introduce the transformations:
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Note that A0 0Λ=͠ is a diagonal matrix. Substituting the expres-
sions given in Eqs. (16) and (17) to Eq. (12) we can write
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where A( , ( )) [ ( ) ( ) ( )]i
M

i i0 1
1ξω θ ω ξ θ ωΨ Λ= + ∑ ͠

=
− and the M-dimen-

sional random vector ( )ξ θ is given as ( ) { ( ), ( ), , ( )}M
T

1 2ξ θ ξ θ ξ θ ξ θ= … .
The matrix A i

͠ can be written in terms of it's diagonal and off-di-
agonal terms as A i i iΛ Δ= +͠ , i M1, 2, ,= … . Here the diagonal
matrix is Adiag[ ] diag[ , , , ]i i i i i

n n
n1 2

Λ Λ ΛΛ = = … ∈͠ × and the matrix

containing only the off-diagonal elements Ai i iΔ Λ= −͠ is such that
Trace( ) 0iΔ = . Using these, from Eq. (18) one has
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where ( , ( )) n nξω θΛ ∈ × is a diagonal matrix and ( , ( ))ξω θΔ
is an off-diagonal only matrix. Thus ( , ( ))ξω θΨ =
[ ( , ( )) ( , ( ))] 1ξ ξω θ ω θΛ Δ+ − .

We introduce the transformation of the stochastic system re-
sponse to the modal coordinates such that

cu c( , ) ( , ) [ ]{ ( , )}i i i iω θ Φ ω θ ω θΦ= ∑ =∼ , where c( , ) nω θ ∈ is the
complex, frequency dependent modal response vector and fol-
lowing from Eqs. (18) and (19) we have
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The m-th order Neumann matrix series representation of c( , )ω θ in
the above equation is given as

( ) ( )c f( , ) , ( ) ( ) , ( ) (21)
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0
( )ξ ξω θ ω θ ω ω θΨ Φ Γ= =
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where ( , ( )) { ( , ( )), , ( , ( ))}m m
n

m T( )
1
( ) ( )ξ ξ ξω θ Γ ω θ Γ ω θΓ = … is the vector

of complex frequency dependent stochastic coefficients. The sto-
chastic response vector is thus given as

u ( , ) ( , ( ))
(23)

m

k

n

k
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k
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1

( )∑ ξ ϕω θ Γ ω θ=∼

=

The solution vector u( )θ∼ is projected in the space spanned by kϕ
and weighted by ( , ( ))k

m( ) ξΓ ω θ which are referred to as m-th order
‘spectral functions’ [20]. Computational efficiency demands that a
good solution approximation is obtained even when using a
moderate value of m. It can be seen from Eq. (23) that the
stochastic system response is given by a linear combination of
fundamental vibration modes kϕ weighted by the stochastic
spectral functions kΓ .

3.3. Properties of the frequency-dependent spectral functions

A closer look at these spectral functions (from Eq. (22)) in-
dicates that ( , ( ))1 ξω θΛ− is a diagonal matrix with stochastic ele-
ments while ( , ( ))ξω θΔ is a stochastic off-diagonal only matrix. This
results in the spectral functions to be a rational functions of the
basic random variables. In contrast the classical Neumann expan-
sion technique or the polynomial chaos based methods
expands the stochastic solution using series of polynomials
of the basic random variables. The convergence of the series
in Eq. (22) depends of the spectral radius of R( , ( ))ξω θ =
( , ( )) ( , ( ))1 ξ ξω θ ω θΛ Δ− a generic term of which is given as

R
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A
r s;
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=

This indicates that the spectral radius of R( , ( ))ξω θ is controlled by
the diagonal dominance of the A i

͠ matrices. Especially near the re-
sonance frequencies, where the radius of convergence of the system
in classical Neumann expansion becomes quite small, the latter fails
to converge. As a result the diagonal parts of the perturbation
matrices have a significant role to play in the proposed methodol-
ogy (demonstrated later in Fig. 11). Also since the spectral functions
are frequency dependent, it ensures that their spectral radius is
frequency adaptive in nature which is a significant advantage
compared to the classical Neumann expansion technique.

A one term approximation of the series comprising the n ele-
ments of ( , ( ))m( ) ξω θΓ in Eq. (23) such that m¼1 is termed as the
first-order spectral functions. This gives from Eq. (22) the first-
order spectral functions as

k n
f
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; 1, ,

(25)
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0 1k k
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Γ ω θ
ω
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+ ∑
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=

Thus, ( , ( ))k
(1) ξΓ ω θ are correlated and non-Gaussian random vari-

ables, which are rational function of the iid random variables ( )iξ θ .
The response vector in terms of these spectral functions can be
simplified to
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Λ

ω=
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The above equation shows that the response vector approximated
with first order spectral functions does not involve the ‘interaction’
between the different eigenmodes. The modal coefficients (spec-
tral functions in this case) are stochastic in nature. This is different
from the classical Neumann expansion scheme in that, for this
same order of expansion, the system response for the latter case is
exactly equal to the deterministic case and hence fails to capture
any effect of parametric uncertainty. It would be seen in sub-
sequent discussions that the system response when captured with
these first order spectral functions only and facilitated by the
Galerkin method produces results which are agreeable with the
direct MCS simulation.

A two term approximation of the series in Eq. (22) gives the
second-order spectral functions ( , ( ))k

(2) ξΓ ω θ for k¼1,…,n in terms

of ( , ( )) ( , ( )) ( , ( )) ( , ( )) ( , ( ))(2) 1 1 1ξ ξ ξ ξ ξω θ ω θ ω θ ω θ ω θΨ Λ Λ Δ Λ= −− − − . A
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( )( )

( , ( ))
( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

kj
kj

i
M

i i

i
M

i i

i
M

i i i
M

i i

(2)

0 1

1

0 1 0 1

k k

kj

k k j j

ξΨ ω θ
δ

Λ ω ξ θ Λ ω

ξ θ Δ ω

Λ ω ξ θ Λ ω Λ ω ξ θ Λ ω

=
+ ∑

−
∑

+ ∑ + ∑

=

=

= =

Hence the second-order spectral functions can be written in ex-
plicitly as
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The second-order terms can be viewed as adding the modal cou-
pling in the approximation of the system response when compared
to Eq. (25). The stochastic response vector can thus be written as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟Qu u f( , ) ( , ) (1 ) ( ( ))

(27)i j
ij ij j

T
i

(2) (1)
0∑ ∑ ϕ ϕω θ ω θ δ ω= − −

∼∼ ∼

where Qij is are the elements of the matrix

( ) ( ) ( )Q , ( ) , ( ) , ( )1 1ξ ξ ξω θ ω θ ω θΛ Δ Λ= − − which is the second term in

the expression for ( ), ( )k
(2) ξΓ ω θ . The matrix Q is an off-diagonal

only matrix and (1 )ijδ− has been introduced to indicate this
clearly. Hence from Eq. (27) it is clear that the introduction of the
second order terms helps to take into account the stochastic
coupling of the eigen modes of the system.

The vector of spectral functions of order m can be obtained by
retaining m terms in the series Eq. (22) and can be expressed as

⎡⎣ ⎤⎦mI R R R( , ( )) ( , ( )) ( , ( )) ( , ( )) term

( , ( )) (28)

m n( ) 2 3 th

(1)

ξ ξ ξ ξ

ξ

ω θ ω θ ω θ ω θ

ω θ

Γ

Γ

= − + − …

where In is the n-dimensional identity matrix with R defined in Eq.
(24). It can be noted that in general
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where Q ij
m( ) are the elements of the matrix

Q ( ( , ( )) ( , ( ))) ( , ( ))m m( ) 1 1 1ξ ξ ξω θ ω θ ω θΛ Δ Λ= − − − . The matrix Q m( ) is a full
rank matrix and denotes the coupling of the eigen modes of the
deterministic system to represent the solution of the stochastic
system.

The essential features of the proposed approach for the re-
solution of the frequency domain response of randomly para-
meterized systems can be summarized as follows:
�

Fig.
stan
The frequency domain response of the randomly para-
meterized vibrating system has been expressed with non-lin-
ear, frequency adaptive, rational functions of the basic random
variables, called spectral functions.
�
 The stochastic system response is expressed with a set of ei-
genmodes of the model weighted by the spectral functions.
�
 The convergence radius of these spectral functions is frequency
adaptive which ensures good convergence of the solution even
near the resonance frequencies of the system.
1. The amplitude of the first seven spectral functions of order 4 for a particular rando
dard deviation levels of the underlying random field: {0.05, 0.20}aσ = . (a) Spectral
�
 The expression for the low-order spectral functions have been
obtained explicitly in terms of the stochastic parameters which
highlights the stochastic coupling of the eigenmodes of the
system.

The above points distinguish the proposed approach from the
existing Galerkin projection schemes in terms of novelty and
computational efficiency. It must be highlighted though that when
using higher order spectral functions to approximate the sto-
chastic response system, the additional computational cost can be
offset by using a Bayesian metamodel [21]. In the following section
we discuss the aspect of frequency dependence of the spectral
functions.

3.4. Frequency dependence of the spectral functions

From Eq. (23), it can be observed that the spectral functions are
not general basis functions, but are specific to the stochastic system
being solved. The frequency content, as well as the forcing func-
tion, has a significant influence on the behavior of the spectral
functions. Here we consider the applied force to be uniform in the
frequency domain which helps in understanding the general nat-
ure of the frequency dependence of the spectral functions clearly.

Fig. 1 shows the plot of the absolute values of the first seven
complex spectral functions obtained for a particular random
sample and for different values of standard deviation sa of the
underlying random field.

These spectral functions have been calculated for the bending
vibration of the Euler-Bernoulli cantilever beam presented later in
Section 6.1. A unit harmonic force applied at the free end of the
cantilever beam is considered. The frequency response of each
spectral function shows that their peaks correspond to the fre-
quencies of the fundamental eigen modes with which they are
associated. Also it is observed that for higher values of sa, the
modal coupling increases, as is demonstrated by an increase in the
spectral function amplitudes at other modal frequencies than
those with which they are associated individually. This can be
explained as follows: an increases in the variability of the random
field results in a greater contribution of the deviatoric parts of the
system matrices in Eq. (12). This modification of the system ma-
trices would be reflected in an enhanced interaction between the
structural modes of the beam which can be seen from Eq. (22).

Fig. 2 shows the different orders (2, 3 and 4) of the spectral
function associated with the eigen modes i.e. ( , ( ))k

m
j

( ) ξΓ ω θ for
m 2, 3, 4= ; k 2, 3, , 7= … and θj being a sample realization in the
probability space.
m sample under applied force. The spectral functions are obtained for two different
functions for 0.05aσ = . (b) Spectral functions for 0.2aσ = .
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It shows the effect of the sample modal contributions expressed
in terms of the stochastic spectral functions. Increasing the order of
the spectral functions would give a better solution approximation,
especially near the resonance frequencies, but involves added
computational cost. Thus the model reduction has to be performed
judiciously which is discussed in the following section.
4. Model reduction and Galerkin error minimization
technique

4.1. Modal truncation

The classical approach on reducing the number of modal basis
used for the construction of the approximate solution is guided by
the cut-off frequency (Nyquist frequency), wherein the higher
mode shapes are considered unimportant and done away with.
Thus the system response is formulated with the nr truncated
modal basis so that

j n1, for
(30)j

r
ω
ω

< < >

where ωj is the natural frequency of the jth mode and ω Ω∈ is the
frequency domain. Thus, n nr ≤ results in lower computational
cost for resolving the system equations.

For the stochastic system, parametric uncertainty results in the
distribution of the stochastic natural frequencies around those of the
baseline model. The spectral functions weighting the eigen basis are
stochastic in nature and hence the contribution of the various modes
may vary with the sample number. Using the first order spectral
function f( , ( )) ( ( ))/( ( ) ( ) ( ))k k

T
i
M

i i
(1)

0 0 1k k
ξ ϕΓ ω θ ω Λ ω ξ θ Λ ω= + ∑

∼
= , it is ob-

served that the stochastic weighting coefficients modify the con-
tributions of the individual vibration modes based on the nature of the
element perturbation matrices ( )ik

Λ ω . For higher values of standard
deviation, the effect becomes more significant. Hence, it is suggested
Fig. 2. The frequency domain response of the spectral functions, ( , ( ))k
m( ) ξΓ ω θ of orders m

for 0.20aσ = . (a) Different orders of ( , ( ))2 ξΓ ω θ . (b) Different orders of ( , ( ))3 ξΓ ω θ . (c) Diff
( , ( ))6 ξΓ ω θ . (f) Different orders of ( , ( ))7 ξΓ ω θ .
to go beyond the Nyquist criterion and include a greater number of
modal bases in approximating the stochastic system solution.

Following from Eq. (23), the approximate solution can be re-
presented with a reduced number (nr) of modal basis as

u( , ) ( , ( ))
(31)k

n

k
m

k
1

( )r

∑ ξ ϕω θ Γ ω θ≈∼

=

where ( , ( ))k
m( ) ξΓ ω θ are m-th order stochastic spectral functions

and kϕ are the eigen vectors of the deterministic system respec-
tively. The accuracy of this series in Eq. (31) can be improved in
two ways: (a) by increasing the number of modal basis (nr) or

(b) by increasing the orderm of the spectral functions ( ( , ))k
m( ) ξΓ ω θ .

This study has made use of the eigen modes that are within three
to four times the frequency range of interest of the problem at
hand. It should be noted, though, that the truncation of the series
given in Eq. (31) introduces approximation errors into the solution
vector which has been analyzed for the examples considered in
this paper.

4.2. Galerkin type error minimization

It has been shown from the discussion in previous sections that
various orders of spectral functions obtained by truncating an in-
finite series expansion as well as using the well-established model
reduction techniques help alleviate much of the computational
burden by reducing the dimensionality of the stochastic system.
However, the error introduced due to the finite order approx-
imation of the spectral functions and the use of a reduced number
of modal basis induces solution errors. The idea here is to in-
troduce a Galerkin-type orthogonalization of the residual to the
modal basis functions with the aim of reducing this truncation
error. We express the solution vector by the series representation:

cu( , ) ( ) ( , ( ))
(32)k

n

k k k
1

r

∑ ξ ϕω θ ω Γ ω θ=∼

=

2, 3, 4= . The spectral functions are obtained for a particular random sample and
erent orders of ( , ( ))4 ξΓ ω θ . (d) Different orders of ( , ( ))5 ξΓ ω θ . (e) Different orders of
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where the functions kΓ are the spectral functions of finite order (as
given in Eq. (31)), k

nϕ ∈ are the eigenvectors introduced earlier
in Eq. (15) and the constants c ( )k ω ∈ for a given value of the
frequency has to be obtained using the Galerkin approach. Sub-
stituting the expansion of u( , )ω θ∼ in the governing equation (12),
the residual vector is given by
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⎝
⎜⎜

⎞
⎠
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⎛
⎝
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⎠
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k k k
n

0 1
0

r

∑ ∑ε ξ ϕω θ ω ξ θ ω Γ ω θ ω= − ∈
∼

= =

where 10ξ = is used to simplify the first summation expression.
The expression in Eq. (32) can be viewed as a projection of the
solution vector on to the deterministic modal basis weighed by the
complex frequency dependent stochastic weighting functions

( , ( ))k ξΓ ω θ . Thus we wish to obtain the coefficients c ( )k ω using the
Galerkin approach so that the residual is made orthogonal to the
eigen basis in the mean sense at each frequency step, i.e.
mathematically

j n, ( , ) 0 1, 2, , (34)j rϕ ε ω θ〈 〉 = ∀ = …

Here Pu v u v( ), ( ) ( ) ( ) (d )∫θ θ θ θ θ〈 〉 = Θ defines the inner product

norm. Imposing this condition and using the expression of ( , )ε ω θ
from Eq. (33) one has
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Interchanging the [ ]• and summation operations, this can be
simplified to
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Defining the vector c c cc( ) { ( ), ( ), , ( )}n
T

1 2ω ω ω ω= … , these equations
can be expressed as

S c b( ) ( ) ( ) (37)ω ω ω=

with S A D j k n( ) ( ) ( ); , 1, 2, ,jk i
M

i ik r0 jk
ω ω ω= ∑ ∀ = …

∼
= where the ex-

pressions A A( ) ( )i j
T

i kjk
ϕ ϕω ω=

∼
, ⎡⎣ ⎤⎦D ( ) ( ) ( , ( ))ik i k ξω ξ θ Γ ω θ= and

( )b f( ) ( )j j
T

0ϕω ω=
∼

. The number of equations to be solved for the

unknown coefficients in Eq. (37) is nr which is the dimension of
the reduced system in the modal coordinates represented by Eq.
(32).
5. Calculation of the dynamic response statistics

For practical application of the method developed here, the
efficient computation of the response moments and pdf is im-
portant. A simulation based algorithm is proposed in this section.
The coefficient vector c nr∈ in Eq. (32) can be calculated from a
reduced set of equations given by Eq. (37). Once these coefficients
are calculated, the statistical moments of the solution can be ob-
tained from Eqs. (38) and (39) using the Monte Carlo simulation.
The spectral functions used to obtain the vector c itself can to be
reused to obtain the statistics and pdf of the solution. The mean
vector can be obtained as
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where • is the absolute value of the complex quantities. The
covariance matrix of the solution vector is
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where the elements of the covariance matrix of the spectral
functions are given by
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Considering the fact that the elements of the vector u( , )ω θ∼ are
complex valued non-stationary random processes, further statis-
tical properties can also be obtained. For example one can calcu-
late the two-point auto-correlation function of the absolute value
as
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where the elements of the covariance matrix of the spectral
functions are given by
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Based on the results derived in the paper, a hybrid reduced
simulation-analytical approach can thus be realized in practice.
The method is applicable to general structural dynamics problems
with general non-Gaussian random fields. In the following section
this approach has been applied to two physical problems.
6. Illustrative application: The stochastic analysis of an Euler–
Bernoulli beam and a Kirchhoff–Love plate

We present some numerical studies with classical structural
dynamic systems to demonstrate the effectiveness of the proposed
spectral function approach. The solution is obtained for a random
field model of the input parametric uncertainty for various degrees
of input variability. Direct MCS solution has been performed for
these cases and is taken as the benchmark solution with respect to
which the accuracy of the proposed methods have been analyzed.
A comparison between the Polynomial Chaos expansion, Neu-
mann expansion and the proposed approach has also been
presented.

6.1. Case I: Euler–Bernoulli beam

In this section we apply the computational method to a canti-
lever beam clamped at one end (where the displacement and the
rotational degree of freedom is set to zero). Fig. 3(a) shows the
configuration of the cantilever beamwith a harmonic point load at
its free end. We assume that the bending modulus (EI) is a sta-
tionary Gaussian random field of the form:

EI x EI a x( , ) (1 ( , )) (43)0θ θ= +
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where x is the coordinate along the length of the beam, EI0 is the
mean bending modulus, a x( , )θ is a zero mean stationary Gaussian
random field.

The covariance kernel of this random field is taken to be of the
form:

C x x e( , ) (44)a a
x x

1 2
2 ( )/ a1 2σ= μ− | − |

where μa is the correlation length and sa is the standard deviation.
The base-line parameters are chosen as L¼1 m, cross-section
b h( )39 5.93 mm2× × and Young's modulus E 2 10 Pa11= × . In
study we consider deflection of the tip of the beam under har-
monic loads of amplitude f N1.00

˜ = . The correlation length con-
sidered in this numerical study is L/2aμ = . The number of terms
used to represent the discretized random field in the spatial do-
main is chosen as M¼2. For the finite element discretization, the
beam is divided into 100 elements. Standard four degrees of
freedom Euler–Bernoulli beam model is used. After applying the
fixed boundary condition at one edge, we obtain the number of
degrees of freedom of the model to be n¼200. It has been verified
that this spatial resolution is sufficient for the frequency of ex-
citation considered in this study.

The dynamic analysis of the cantilever beam has been done for
the case of unit amplitude harmonic point load acting on the free
end of the beam over a frequency range of 0–600 Hz at an interval
of 2 Hz. The solution of the proposed reduced basis spectral
method has been compared with the direct MCS results and the
4th order PC expansion. The simulations have been performed
with 10,000 MCS samples and for four different values of sa, which
is the standard deviation of the random bending stiffness of the
beam, with the aim of simulating different levels of uncertainty.

Fig. 3(b) presents the distribution of the natural frequencies of
the cantilever beam, which are the square root of the eigenvalues
λk of the generalized eigenvalues (Eq. (15)) of the dynamic beam
problem. The reduced basis of the problem should be chosen
Fig. 3. Schematic diagram of the cantilever beamwith a harmonic point load at the
free end along with its natural frequencies. The number of reduced eigenvectors
chosen is q¼10 which covers upto twice (1200 Hz) the frequency range of interest
(600 Hz). (a) Schematic diagram of the beam with a point load at the free end.
(b) Natural frequency of the cantilever beam.
based on the frequency range of interest of this particular problem,
i.e. all the eigen modes that covers up to 1200 Hz must be included
in the formulation (given that the maximum frequency in the
study is 600 Hz). However, based on the discussion given in Sec-
tion 4.1, 10 eigen modes have been selected. We have applied a
constant modal damping matrix with 1% damping factor for all the
modes. Here the mass and damping matrices are assumed to be
deterministic in nature. However, the proposed theoretical ap-
proach is general and equally applicable for random mass, stiffness
and damping matrices.

The frequency response of the mean deflection of the tip of the
beam is shown in Fig. 4 for two values of sa and for unit amplitude
harmonic point load at the free end. The figures show a compar-
ison of the reduced basis spectral method results with the direct
MCS simulation and the 4th order polynomial chaos solution. A
plot of the deterministic system response is also included for re-
ference. The spectral solution has been obtained for different or-
ders of the solution following Eq. (22), where the orders s ¼ 2, 3,
4. Since we consider the first 10 eigenmodes of the solution, the
Galerkin method necessitates the solution of a 10�10 linear sys-
tem of equations to obtain the undetermined coefficients asso-
ciated with the response, as given in Eq. (37). In contrast, for the
PC solution technique using 4th order polynomial functions, it is
essential to solve a 3000�3000 dimensional linear system of
equations in order to obtain the undetermined coefficients asso-
ciated with the Hermite polynomials at every frequency step.

A good agreement between the MCS simulation and the pro-
posed spectral approach can be observed in Fig. 4. When com-
pared with the deterministic system response, it shows that the
uncertainty has an effect similar to that of damping at the re-
sonance peaks. This can be explained by the fact that the para-
metric variation of the beam, results in its peak response for the
different samples to get distributed around the resonance fre-
quency zones instead of being concentrated at a particular fre-
quency. As a results, when the subsequent averaging is applied, it
smooths out the resonance peaks. The same explanation holds for
the anti-resonance frequencies. It should however be pointed out
that this is not a phenomenon of physical damping and there
might still be a high amplitude deflection obtained for a particular
random sample in practical problems. The 4th order PC solution
shows an accurate mean response estimation at low frequencies
for small variability (like for 0.05aσ = ) of the random field. How-
ever, the response becomes inconsistent for higher value of
variability, especially at the resonance frequencies. This can lead to
serious practical problem as the response near the resonance
frequency is often the most crucial quantity of engineering
interest.

As the response of the system is in terms of the spectral
functions, it is now useful to understand the stochastic system
response in terms of the statistical properties of the spectral
functions. We show the plot of the first seven 4th order mean
spectral functions E[ ( , ( ))]k ξΓ ω θ in Fig. 5 as function of frequency for
two different values of variability of the random field. It is found
that the resonance peak of each spectral function is obtained at the
natural frequencies of the vibration modes with which they are
associated and denotes mean of the stochastic modal amplitudes
of the beam. Also, the amplitude of the functions at the resonance
peaks is found to decrease for higher values of sa which is con-
sistent with the observation in Fig. 4 that the effect of increased
variability of the random field results in a damping type effect on
the mean response. The ratio of the amplitudes of consecutive
spectral functions at a resonance frequency increases with an in-
crease in the value of sa. For e.g. the ratio of
E E[ ( , ( ))]/ [ ( , ( ))]6

4
5
4ξ ξΓ ω θ Γ ω θ around 400 Hz is found to decrease

with sa. This shows that the coupling of the vibration modes tend
to increase with the increasing variability of the random field as



Fig. 4. The mean deflection amplitude of the tip of the Euler-Bernoulli beam under unit harmonic point load at the free end. The response is obtained with 10,000 random
samples and for {0.05, 0.20}aσ = . The response for different order of spectral functions is shown. For this problem the degrees of freedom n¼200 and the number of random
variables M¼2. The proposed Galerkin approach needs solution of a 10�10 linear system of equations only. (a) Beam deflection for 0.05aσ = . (b) Beam deflection for 0.2aσ = .
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has also been mentioned in discussion of spectral functions in
Section 3.3.

Fig. 6 shows the standard deviation of the frequency domain
response of the tip deflection for different spectral orders of so-
lution of the reduced basis approach and is compared with the
direct MCS and 4th order PC for different values of sa. We find that
the standard deviation is maximum at the resonance frequencies
which is consistent with Fig. 4. It is again observed that the direct
MCS solution and the reduced order approach give almost iden-
tical results, which demonstrate the effectiveness of the proposed
approach. The 4th order PC results however, show significant in-
consistencies for higher values of sa and especially at high fre-
quencies. Both these observations suggest that the PC expansion of
a similar order to this proposed spectral function approach may
not be well suited to handle the dynamic problem at high fre-
quencies and for high degrees of variability of the random field
involved.

It can also be considered that the system response constructed
with the first order spectral functions corresponds to a zeroth
order expansion in the classical Neumann scheme. Thus, it would
correspond to the deterministic system response shown in
Figs. 4 and 6. It can be seen that the response with the first order
spectral functions on the other hand gives a better approximation
of the solution even at high values of standard deviation of the
random field. This is a significant advantage of the proposed
method over the classical Neumann expansion technique, and the
Fig. 5. The mean of the amplitude of the first seven spectral functions of order 4. The spe
for {0.05, 0.20}aσ = . (a) Mean spectral functions for 0.05aσ = . (b) Mean spectral functio
results obtained with the latter is given later in this section.
Fig. 7 shows the standard deviation of the response of the beam

at four different frequencies, 50 Hz, 168 Hz, 246 Hz and 418 Hz, as
a function of the standard deviation of the random field. 180 Hz
and 418 Hz correspond to the resonance frequencies of the canti-
lever beam, while 246 Hz corresponds to the anti-resonance
frequency.

The relative standard deviation values have been obtained for a
set of 4 values of sa, which represents the different degrees of
variability of the system parameters. The results obtained with the
Galerkin approach for the different order of spectral functions
have been compared with the direct MCS, and a good agreement is
observed. However, the 4th order PC result points to the fact that
at high frequencies and for high values of the variance of the
random field, the PC results provide a less accurate prediction of
the solution moments for the same order of expansion of the
polynomials of the random variables. It may be pointed out that
the standard deviation decreases with the values of sa for the
resonance frequency while it increases for the anti-resonance
frequencies. This is once again consistent with the results shown
in Fig. 4 which shows that an increased value of the variance of the
random field has the effect of an enhanced system damping when
plotting the mean value of the frequency response.

The probability density function of the deflection of the tip of
the cantilever beam for different degrees of variability of the
random field is shown in Fig. 8. The probability density functions
ctral functions are obtained for frequency up to 600 Hz with 10,000 sample MCS and
ns for 0.2aσ = .



Fig. 6. The standard deviation of the deflection amplitude of the tip of the Euler–Bernoulli beam under unit harmonic point load at the free end. The response is obtained
with 10,000 random samples and for {0.05, 0.20}aσ = . (a) Standard deviation of the response for 0.05aσ = . (b) Standard deviation of the response for 0.2aσ = .
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have been calculated at the frequency of 418 Hz, which is a re-
sonance frequency of the beam.

A close match between the direct MCS and the reduced basis
spectral solution is obtained. However, the density functions ob-
tained with 4th order PC show inconsistencies, and the disparity
increases with higher values of sa. These results establish the ap-
plicability of this spectral reduced basis method with Galerkin
error minimization technique as a satisfactory working model for
providing solution of the stochastic dynamical systems. The
method is found to be consistent with the direct MCS approach,
while being computationally efficient than either the direct MCS
or PC approach. For a given order of expansion, the proposed
method approximates the stochastic system response better than
the classical Neumann expansion.

Here we highlight the behavior of an error norm of the system
response obtained with this spectral function approach for dif-
ferent orders of the spectral functions, the application of the Ga-
lerkin technique and for different degrees of variability of the
parametric uncertainty. Hence we consider a L2 relative error for
the mean response of the cantilever beam. The L2 relative error

( )m( ) ωϵμ is defined at each frequency step ω for mth order spectral
functions as

( )
( ) ( )

( ) (45)
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Fig. 7. Standard deviation of the deflection amplitude of the tip of the Euler–B
{0.05, 0.10, 0.15, 0.20}aσ = at 4 different frequencies and under unit harmonic point loa

168 and 418 Hz correspond to the resonance frequencies of the beam. (a) Standard dev
(c) Standard deviation of the response at 246 Hz. (d) Standard deviation of the respons
where ( )SF
m( )μ ω denotes the mean of the response vector obtained

with the stochastic spectral functions of orderm and ( )MCSμ ω is the
mean response vector calculated with the direct MCS simulation.
Here we have studied the cases for which m 1, , 4= … and present
the convergence of the L2 relative error with increasing order of
the spectral functions. Now, errors induced in the system due to
the reduced number of basis functions and finite order of the
spectral functions induces error in the computational scheme
which has been minimized with the Galerkin-type error ortho-
gonalization technique as presented in Section 4.2. Hence we
present here the mean response calculated before and after the
application of the Galerkin technique in order to demonstrate the
effectiveness of the latter in approximating the solution for lower
orders of the spectral functions and fewer modal basis vectors.

Fig. 9(a) shows the behavior of the L2 relative error as a func-
tion of frequency for the 2nd order spectral functions with and
without the application of the Galerkin type orthogonalization of
the residual vector to the modal basis.

It can be seen that for the Galerkin method consistently re-
duces the L2 error at almost all frequencies, but performs better in
the low frequency range. Also, the overall error tends to increase
with frequency which is expected since the contribution of the
higher order modes becomes significant at these frequencies and
the truncation error grows. The standard deviation value has been
chosen as 0.20aσ = which represents quite a high variability of the
random field. Fig. 9(b) shows a comparison of the L2 error obtained
with the 1st and 4th order spectral functions for 0.20aσ = and
proves that increasing the spectral function order improves the
ernoulli beam for different degrees of parametric uncertainty represented by
d at the free end. The response is obtained with 10,000 random samples. Note that
iation of the response at 50 Hz. (b) Standard deviation of the response at 168 Hz.
e at 418 Hz.



Fig. 8. The probability density function of the deflection amplitude of the tip of the cantilever beam under a unit harmonic point load at the free end at 418 Hz. The pdfs are
obtained with 10,000 random samples and for two values of {0.05, 0.20}aσ = . (a) Probability density function for 0.05aσ = . (b) Probability density function for 0.2aσ = .
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results quite well at low frequencies. However, beyond 400 Hz, it is
less effective, which can be explained as follows: at high fre-
quencies, the overall error level increases (as is indicated by the
increasing trend of the curve) which implies that the modal
truncation, performed in obtaining the solution in the reduced
space, results in the elimination of the contribution of some higher
order modes which may be significant at these frequencies.

To study the convergence behavior of the response approxi-
mated with different orders of the spectral functions, we look at
the mean squared error of the response at particular frequencies
as a function of the spectral function order in Fig. 10 for different
values of standard deviation of the underlying random parameter.

It is found that the Galerkin error reduction is quite effective for
lower (1st and 2nd) order of spectral functions, however, for so-
lutions approximated with higher order spectral functions, the
application of the Galerkin scheme has no appreciable effect on
the response.

Fig. 11 shows the comparison of the results obtained with the
spectral function approach with that of the classical Neumann
expansion technique. It can be seen from Fig. 11(a) that near the
resonance frequencies the Neumann expansion solution does not
converge. Fig. 11(b) and (c) shows a comparison between the re-
lative L2 error of the system response obtained with the 4th order
spectral functions and different orders of expansion of the Neu-
mann method for two different values of standard deviation of the
parametric uncertainty, 0.05, 0.20aσ = . It shows that while at non-
resonant frequencies, the error values are identical to those pre-
dicted by the spectral function approach, they deteriorate sig-
nificantly in the neighborhood of the resonance frequencies. The
Fig. 9. (a) The L2 relative error of the response obtained with the 2nd order spectral fu
standard deviation of 0.20aσ = (b) Comparison of the L2 error of the response obtained u
minimization for the parametric standard deviation of 0.20aσ = . (a) L2 error for 2nd o
functions.
effect is more significant for high values of standard deviation,
(like 0.20aσ = ), where the solution has been rendered meaningless
over the entire frequency spectrum. It must be mentioned that the
damping values chosen for the simulation has a significant effect
on the Neumann expansion technique, and the radius of con-
vergence increases for high damping.

Thus, the spectral function approach proposed here is found to
provide accurate values of the system response at low computa-
tional cost (verified against the direct MCS results) over a wide
range of frequencies, and quite high values of standard deviation
of the random parameter of the stochastic structural system. Even
a comparison with the polynomial chaos method shows that the
latter requires the use of higher order stochastic basis functions for
providing a good approximation of the solution near the re-
sonance frequencies and especially for high values of standard
deviation of the random field sa. However, the added computa-
tional cost associated with this p-refinement is substantial. The
spectral function approach proposed here uses a rational form of
the polynomials of the random variables to approximate the so-
lution in the stochastic space. This provides a better approxima-
tion of the system response even with lower order functions.

6.2. Case II: Kirchhoff–Love plate

In this section we apply the proposed spectral method to a
Kirchhoff–Love plate clamped at one edge (where the displace-
ment and the rotational degrees of freedom are set to zero). For
the present case we have assumed the bending stiffness to be the
stochastic parameter of the plate. The damping model chosen for
nctions with and without the Galerkin type error minimization for the parametric
sing 1st and 4th order spectral functions in conjunction with the Galerkin type error
rder spectral functions. (b) Comparison ofL2 error with 1st and 4th order spectral



Fig. 10. Convergence of the L2 error of the response vector at 276 Hz (resonance frequency) and 400 Hz with increasing order of spectral functions for the random parameter
for two different values of standard deviation {0.15, 0.20}aσ = . (a) L2 error at 276 Hz. (b) L2 error at 400 Hz.
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this case is that of constant modal damping, with 1% damping
factor for all the modes. Fig. 12(a) shows the configuration of the
rectangular plate in a deformed configuration with a harmonic
point load on one of its free corners. The origin of the global co-
ordinate system is assumed to be at the centre of the rectangular
plate. We assume that the bending modulus is a stationary
Gaussian random field of the form:

D x y D x y( , , ) (1 ( , , )) (46)0θ θ= + ϵ

where x and y are the coordinate direction along the length and
width of the plate respectively, D0 is the baseline modulus of
elasticity, x y( , , )θϵ is a zero mean stationary Gaussian random
field. The autocorrelation function of this random field is assumed
to be of the form:

C x x y y e e( , ; , ) (47)a a
x x y y

1 2 1 2
2 ( )/ ( )/x y1 2 1 2σ= μ μ− | − | − | − |

where μx and μy are the correlation lengths along the x and y
coordinate axes respectively, and sa is the standard deviation of
the elastic modulus. We use the base-line parameters as the length
Lx¼1 m, width Ly¼0.6 m, thickness t¼3 mm, mass density

7860 kg/m3ρ = , Poisson ratio 0.3μ = and mean elastic modulus
D 2 10 Pa0

11= × . For the finite element discretization, the beam is
divided into 32 elements along its length (x direction) and 18
elements along its width (y direction). Standard 12 degree of
freedom Kirchhoff plate elements are used for the finite element
modeling. The total number of degrees of freedom of the plate
system after the application of the boundary conditions come to
1881. The correlation length is taken as 1/5th of the plate di-
mension along both the x and y directions, thus L /5x xμ = and

L /5y yμ = . The KL series expansion presented in Eq. (8) is truncated
at 4 terms along the orthogonal coordinate axes and using the
Fig. 11. (a) Stochastic system response calculated using different orders of Neumann expa
relative error of the response vector obtained with the Neumann expansion and the sp
relative error of the response vector obtained with the Neumann expansion and the sp

0.10aσ = . (b) L2 error for 0.05aσ = . (c) L2 error for 0.20aσ = .
tensor product of these eigen functions we have a total of 16
random variables to represent the discretized the random elastic
modulus in the spatial domain. Therefore, for this problem we
have n¼1881 and M¼16. The vibration response have been
obtained for two different values of the standard deviation of
the random field, {0.05, 0.15}aσ = . The external forcing vector is
taken to be deterministic and having a unit norm. The dynamic
vibration response of the plate under the action of a point load
acting at one of its free corners is now presented. The response is
measured at the node under loading for different values of the
random field variability, sa. The frequency range of interest is 0–
500 Hz at an interval of 5 Hz. The reduced spectral method
simulation and the reduced basis direct MCS simulation have been
performed with 10,000 random samples.

Fig. 12(a) shows the mean deformation shape of the plate un-
der the prescribed loading condition at 300 Hz. Fig. 12(b) shows
the distribution of the natural frequencies of the plate calculated
with the deterministic system matrices. The chosen reduced
number of eigenvectors (150) for the problem is marked in the
figure, which approximately covers up to 2000 Hz, which is about
4 times the maximum frequency of the problem (500 Hz). Thus
the Galerkin method requires the solution of a 150�150 system of
linear equations in order to evaluate the constants associated with
the stochastic basis. In contrast, for the PC solution technique
using 4th order polynomial functions, calculations reveal that it is
necessary to solve a 9,113,445�9,113,445 dimensional linear sys-
tem of equations in order to obtain the undetermined coefficients
for every frequency point, which incurs a substantial computa-
tional cost. It must be noted though, that the linear system ob-
tained after orthogonalizing the residual to the stochastic solution
subspace is a large block sparse system and the solution can po-
tentially be speeded up with iterative Krylov-based linear solvers
nsion and compared to the direct MCS results for 0.10aσ = . (b) Comparison of the L2

ectral function approach for standard deviation 0.05aσ = (c) Comparison of the L2

ectral function approach for standard deviation 0.20aσ = . (a) Beam deflection for



a b

Fig. 12. (a) Dynamic plate vibration shape at 300 Hz with a harmonic point force at one of the free corners. The plate is clamped at one of its edges (x 0.5= − ). The plate is
loaded at one of the free corners (x¼0.5, y¼0.3). (b) Natural frequency distribution of the vibrating plate highlighting the first 150 natural frequencies. (a) Plate vibration
shape at 300 Hz. (b) Natural frequency distribution.
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and appropriate preconditioners [22]. If the PC expansion is ap-
plied to the dynamic system in its modal coordinates with the
solution being projected on the first 150 eigenmodes, then it
would be necessary to solve a block sparse linear system of di-
mension 726,750�726,750. However, now each 150�150 block
of the 726,750-dimensional sparse coefficient matrix would be a
dense matrix.

Fig. 13 shows the frequency domain response of the mean de-
flection of the Kirchhoff–Love plate obtained with different orders
of spectral functions (1st, 2nd, 3rd and 4th) and has been com-
pared with the direct MCS results and the deterministic system
response. It is observed that the response obtained with the
spectral method matches the direct MCS results quite closely. For
higher values of sa we find the mean response to attenuate with
frequency, which is similar to the case of beam bending problem in
the previous section.

The plots in Fig. 14 show the standard deviation of the sto-
chastic system response over the frequency range. Once again, the
spectral function approach produces agreeable results with the
direct MCS simulation. The approximation of the different mo-
ments of the response with varying orders of the spectral func-
tions is of particular interest to this study. The L2 relative error
norm described in Eq. (45) would be of particular interest in this
context, which is presented later in the section

Now we look into the relative L2 error characteristics defined in
Eq. (45). Fig. 15 shows effectiveness of using the Galerkin
Fig. 13. The mean of the deflection amplitude of a free corner of a Kirchhoff–Love thin pl
samples and for {0.05, 0.10}aσ = . The response for different order of spectral functions
random variables M¼16. The proposed Galerkin approach needs solution of a 150�150

0.1aσ = .
technique in terms of improving the relative L2 error of the mean
deflection calculated with the 1st and 5th order spectral functions.
It is seen that the Galerkin type error minimization has a sig-
nificant effect on the solution approximated with the 1st order
spectral functions at almost all frequencies (Fig. 15(a)). Thus, the
Galerkin technique takes care of the modal contributions by ad-
justing the values of the undetermined coefficients
c k n( ), 1, 2, ,k rω = … where nr is the dimension of the reduced
system. However, the solution obtained with the 5th order spectral
functions, given in Fig. 15(b), shows little effect of the application
of the Galerkin method. This indicates that the solutions have al-
ready been approximated to a sufficient degree of accuracy using
the higher order terms in the spectral functions and the modal
coupling of the vibrating system in approximating the response is
already quite high. Also, it can be seen that the overall relative
error levels are reduced when we use the 5th order spectral
functions to approximate the solution, especially beyond the low
frequency region (say 100 Hz).

The improvement in the overall relative L2 error at all frequencies
is demonstrated in Fig. 16, which shows that the error calculated
with the mean deflection values obtained with 2nd and 5th order
spectral functions in conjunction with the Galerkin method for dif-
ferent values of variability of the parametric randomness (indicated
by sa). There is a good improvement in the results with the 5th order
functions, except for the low frequency region (below 100 Hz) and
for low value of sa. For a higher value of standard deviation of the
ate under a unit harmonic point load. The response is obtained with 10,000 random
are shown. For this problem the degrees of freedom n¼1881 and the number of
linear system of equations. (a) Plate deflection for 0.05aσ = . (b) Plate deflection for



Fig. 14. The standard deviation of the deflection amplitude of a free corner of a Kirchhoff–Love thin plate under a unit harmonic point load. The response is obtained with
10,000 random samples and for {0.05, 0.10}aσ = . (a) Standard deviation of the response for 0.05aσ = . (b) Standard deviation of the response for 0.1aσ = .

Fig. 15. The relative L2 error of the mean deflection of the Kirchhoff–Love thin plate under a unit harmonic point load. The response has been approximated with 1st and 5th
order spectral functions and the error is studied before and after the application of the Galerkin scheme. Simulations have been performed with 10,000 random samples and
for standard deviation of 0.10aσ = of the random parameter. (a) L2 error with 1st order spectral functions. (b) L2 error with 5th order spectral functions.

Fig. 16. The relative L2 error of the mean deflection of the Kirchhoff–Love thin plate under a unit harmonic point load obtained with 2nd and 5th order spectral functions.
Simulations have been performed with 5000 random samples and for standard deviation of 0.05aσ = and 0.10aσ = of the random parameter. (a) L2 error for 0.05aσ = . (b) L2

error for 0.10aσ = .
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random field ( 0.10aσ = ), the improvement in results with the higher
order spectral functions is more than that for 0.05aσ = . Thus, implies
that the higher order spectral functions are more useful for high
values of standard deviation of the random field.

Finally, Fig. 17 demonstrates the effect of increasing the order
spectral functions on the L2 relative error of the solution. The be-
havior is shown at particular values of frequencies, to clearly
identify the solution traits. The frequencies are chosen such that
the use of higher order functions improve the results significantly
at those points. The curves show that the Galerkin method has a
significant role in reducing the error of the solution obtained with
1st and 2nd order spectral functions, and little effect on those with
higher orders. It is observed at all the frequencies that a significant
improvement in the results is obtained as we move from the 2nd



Fig. 17. The relative L2 error of the mean deflection of the Kirchhoff–Love thin plate under a unit harmonic point load with increasing order of spectral functions at 110, 315
and 480 Hz. Simulations have been performed with 10,000 random samples and for standard deviation of {0.05, 0.10}aσ = of the random parameter. (a) L2 error at 115 Hz. (b)
L2 error at 310 Hz. (c) L2 error at 480 Hz.
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to the 3rd order values when the Galerkin technique is not being
used. The application of the Galerkin error minimization technique
brings down the error values close to those obtained normally
(without the Galerkin) with the higher order (4 and 5) spectral
functions. It can also be seen, especially in Fig. 17(c), that the Ga-
lerkin technique reduces the 1st order error to a lower value than
that with the second order spectral function. Also, while the
higher order functions almost always provides a better solution
accuracy yet, the higher order functions must be used prudently.
An identifiable trend of the L2 error with increasing spectral
function order has not been observed in the results presented
here, and hence the extent of this kind of ‘p-refinement’ (by in-
creasing the order of spectral functions) may not be obvious. In-
vestigation into some optimality criterion which can provide some
adaptivity in terms of the optimum order of the spectral functions
and the dimension of the reduced modal basis of the problem
would be quite helpful to minimize the computational cost in
these kind of problems.
7. Conclusions

We have considered the stochastic partial differential equation
for structural dynamic systems with generally non-Gaussian ran-
dom fields. The stochastic system response is resolved using a set
of complex, frequency-adaptive, rational stochastic weighting
functions, called the spectral functions. A Galerkin-type error
minimization approach has been proposed which uses a set of
frequency dependent undetermined coefficients to orthogonalize
the residual to the reduced modal subspace. The proposed solution
technique has been used to solve two stochastic dynamic pro-
blems – an Euler–Bernoulli cantilever beam and another Kirchh-
off–Love thin plate subjected to harmonic forcing over a frequency
range. The results obtained with the spectral function approach is
in good agreement with the direct MCS simulation at all fre-
quencies and different degrees of input variability. The proposed
methodology shows good solution accuracy compared to what is
obtained with polynomial basis functions or the Neumann ex-
pansion technique. This is attributed to the rational functional
form of the spectral functions which improves their convergence
radius even near the resonance frequencies even when for low
order expansions. The results demonstrate the applicability and
computational efficacy of the stochastic spectral function approach
proposed in this work.

Future work along this direction may be aimed at reducing the
computational burden of integration over the probability space
using the efficient variance reduction and/or sampling techniques.
The choice of the optimum order of spectral functions and the
dimension of the reduced modal subspace can be made adaptive
which requires further investigation. Further research on a-priori
error analysis can also give important intuitive guidance in moving
towards a choice of a more efficient set of basis functions suitable
for this class of stochastic structural dynamic problems.
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