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a  b  s  t  r  a  c  t

As  a first  endeavor,  we  propose  nonlocal  elasticity  theory  for carbon  nanotube  based  cantilever  biosen-
sors. By  using  the  frequency-shift  of  the  fundamental  vibration  mode,  we  develop  new  nonlocal  frequency
sensor  equations  utilizing  energy  principles.  Two  physically  realistic  configurations  of the  added  mass,
namely,  point  mass  and  distributed  mass  are  considered.  Exact  closed-form  expressions  relating  the
frequency-shift  and  the  added  mass  have  been  derived  for both  the  cases.  The  proposed  nonlocal  sensor-
equations  are  general  in nature  and  depend  on three  non-dimensional  calibration  constants  namely,
the  stiffness  calibration  constant,  the  mass  calibration  constant  and  the  nonlocal  calibration  constant.
Explicit  analytical  expressions  of  these  calibration  constants  are  derived.  An  example  of  a  single  wall
ensor relations
olecular mechanics

carbon  nanotube  with  attached  multiple  strands  of  deoxythimidine  is considered  to  illustrate  the  ana-
lytical  results.  Molecular  mechanics  simulation  is used  to  validate  the new  nonlocal  sensor  equations.
The  optimal  values  of nonlocal  parameter  are  obtained  from  the  molecular  mechanics  simulation  results.
The nonlocal  approach  generally  predicts  the  frequency  shift  accurately  compared  to  the  local  approach.
Numerical  results  show  the  importance  of  considering  the  distributed  nature  of the  added  mass  while
using  the nonlocal  theory.
. Introduction

From nanoscale experiments [1–3], it has been observed that
he mechanical properties of nano dimensional materials are much
nfluenced by the ‘size-effects’. The influence of size-effects on the

agnitudes of resonance frequency and buckling load of nanoscale
bjects (viz. nanotubes and graphene) by atomistic simulations
as also been reported [4].  Size-effects are related to atoms and
olecules that constitute the materials. Though molecular dynamic

MD) simulation is justified for the analysis of nanostructures [4],
he approach is computationally exorbitant for nanostructures with
arge numbers of atoms. This calls for the use of conventional
ontinuum mechanics [5] in analysis of nanostructures. However
lassical continuum models are considered scale-free and it lacks
he accountability of the effects arising from the small-scale where
size-effects’ are prominent. The application of classical continuum

odels may  be questionable in the analysis of nanostructures such
s carbon nanotubes and graphene sheets. One widely promising
ize-dependant continuum theory is the nonlocal elasticity the-
ry pioneered by Eringen [6] which bring in the scale-effects and

nderlying physics within the formulation. In the nonlocal elastic-

ty theory, the small-scale effects are captured by assuming that
he stress at a point is a function of the strains at all points in the

∗ Corresponding author. Tel.: +44 07742214778; fax: +44 1792 295676.
E-mail address: murmutony@gmail.com (T. Murmu).

924-4247/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.sna.2011.10.012
© 2011 Elsevier B.V. All rights reserved.

domain. Nonlocal theory considers long-range inter-atomic inter-
action and yields results dependent on the size of a body [6].  Some
drawbacks of the classical continuum theory could be efficiently
avoided and the size-dependent phenomena can be reasonably
explained by nonlocal elasticity. From the literature it has been
found that nonlocal elasticity has been used in various mechanical
studies of nanostructures viz. nanobeams [7,8], nanoplates [9,10],
carbon nanotubes [11,12],  graphenes [13,14], microtubules [15,16]
and nanorings [17].

Nanoscale sensors are a significant application area of nanotech-
nology. Significant growth is expected in this section over the next
decade. Nanosensors are simple engineered device used to detect
and convey information about nanoparticles and biomolecules to
the macroscopic world. Nanoscale sensors are crucial for future
biomedical technologies [18–21]. Nanosensors are broadly clas-
sified as chemical nanosensors [22] and biosensors [23–25].  The
general role of chemical nanosensors is to detect the properties of
gaseous molecules such as its speed and wavelength. One example
of synthetic biosensors is by attaching particular nanoparticle or
biomolecule to the end of carbon nanotubes (CNT) and calculating
the vibration frequency of CNT with or without the particle periodi-
cally. Recently CNTs are delivering promises as functional materials
for the development of advanced biosensors with such novel fea-

tures. The concept of developing nano biosensors by utilizing CNTs
[26–29] are thus becoming increasingly popular. The application of
CNTs in ultrasensitive nanobiosensors [20,21] is the main theme of
this paper.

dx.doi.org/10.1016/j.sna.2011.10.012
http://www.sciencedirect.com/science/journal/09244247
http://www.elsevier.com/locate/sna
mailto:murmutony@gmail.com
dx.doi.org/10.1016/j.sna.2011.10.012
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From the experimental evidence the biological entities such
s DNA, proteins, enzymes, bacteria can be immobilized either in
he hollow cavity through supramolecular inclusion or on the sur-
ace of carbon nanotubes and at the end-caps [30–34].  Biological
ntities such as carbohydrates [35,36], nucleic acids [37,38],  pep-
ides [39,40], and proteins [41,42], are non-covalently adsorbed on
he carbon nanotube surfaces through hydrophobic, �–� stacking,
nd electrostatic interactions. This has motivated the development
f nano biosensors [43] and nanoscale bioreactor systems based
n CNTs. Further randomly entangled CNTs are physically coated
nto conventional electrodes for many electrochemical biosensing
pplications [31].

Resonance based sensors offer the deeper potential of achieving
he high-fidelity requirement of many sensing applications [44].
he principle of mass detection using resonators is based on the
act that the resonant frequency is sensitive to the resonator mass,
hich includes the self-mass of the resonator and the attached
ass. The change of the attached mass on the resonator causes

 shift to the resonant frequency. The key issue of mass detection
s in quantifying the change in the resonant frequency due to the
dded mass.

Recognising the fact that the frequency shift based approach
s a promising way forward for the nano-scale bio sensors and
he nonlocal theory is a valid efficient theory for a wide range of
ano-scale objects, in this paper we aim to put these together. In
articular, we develop a new analytical approach for nano biosen-
ors using nonlocal elasticity theory [6]. Recently Lee et al. [45]
alculated the frequency shift of carbon-nanotube based mass sen-
or using nonlocal elasticity theory. This aim of this paper is to take
he next step, which is to develop sensor equations based on the fre-
uency shift. We  consider the interaction of a biomolecule resting
n the single-walled carbon nanotube. Employing Euler–Bernoulli
eam theory [8] and molecular mechanics simulation we  report a
imple approach for modeling and calibrating nanoscale biosen-
ors. The nanoscale-effects in the biosensor engineering model are
andled by the nonlocal elastic approach which is in accordance
ith lattice dynamics. Closed-form nonlocal frequency expression

s derived to detect the mass of biomolecule from the nonlocal
requency-shift. Both point mass and distributed mass attached to
ingle-walled carbon nanotube is considered. The nonlocal effects
n the frequency shift are analysed and discussed. Comparing with
he molecular mechanics results, optimised values of the nonlocal
arameters are found for the biosensor models. A numerical exam-
le of a single walled CNT based biosensor to detect the mass of
everal strands of deoxythimidine is considered. It is shown that
he new sensor equations obtained using the proposed nonlocal
heory can provide more accurate prediction of the attached mass
ompared to the same using the classical theory.

. Review of nonlocal elasticity theory

For sake of completeness we provide a brief review of non-
ocal elasticity theory. According to nonlocal elasticity, the basic
quations for an isotropic linear homogenous nonlocal elastic body
eglecting the body force are given as [6,12–14].

�ij,j = 0,

�ij(x) =
∫

V

�(|x − x′|, ˛)tijdV (x′), ∀x ∈ V

tij = Hijklεkl,
(1)
εij = 1
2

(ui,j + uj.i)

he terms �ij, εkl, Hijkl are the stress, strain and fourth-order elas-
icity tensors respectively. The above equation (Eq. (1))  couples the
Fig. 1. Idealisation of a single-walled carbon nanotube (CNT)-deoxythymidine
molecule as nonlocal elastic continuum beam with a point mass.

stress due to nonlocal elasticity and the stress due to classical elas-
ticity. The kernel function �(|x − x′|, ˛) is the nonlocal modulus.
The nonlocal modulus acts as an attenuation function incorporat-
ing into constitutive equations the nonlocal effects at the reference
point x produced by local strain at the source x′ |x − x′| represents
the distance in the Euclidean form and  ̨ is a material constant that
depends on the internal (e.g. lattice parameter, granular size, dis-
tance between the C–C bonds) and external characteristics lengths
(e.g. crack length, wave length). Material constant  ̨ is defined

 ̨ = e0a/�. Here e0 is a constant for calibrating the model with exper-
imental results and other validated models [6]. The parameter e0 is
estimated such that the relations of the nonlocal elasticity model
could provide satisfactory approximation to the atomic dispersion
curves of the plane waves with those obtained from the atomistic
lattice dynamics. a and � are the internal (e.g. lattice parameter,
granular size, distance between C–C bonds) and external character-
istic lengths (e.g. crack length, wave length) of the nanostructure.

3. Nonlocal resonance frequency of CNT with attached
biomolecule

We consider the frequency of single-walled carbon nanotubes
(SWCNT) with an attached bio-mass, for example, a deoxythymi-
dine molecule (Fig. 1). The continuum models based on nonlocal
beam as well as shell have been used extensively for single- and
multi-walled carbon nanotubes [11,12]. In order to obtain simple
analytical expressions for sensor design, we model a SWCNT using
a rod based on the nonlocal Euler–Bernoulli beam theory [12]. The
equation of motion of free vibration is given as

EI
∂4w

∂x4
+

[
1 − (e0a)2 ∂2

∂x2

]
�A

∂2w

∂t2
= 0 (2)

where E is Young’s modulus, I the second moment of the cross
sectional area A, and � the density of the material. Suppose the
length of the SWCNT is L. Depending on the boundary condition
of the SWCNT and the location of the attached mass, the resonant
frequency of the combined system can be derived.

We consider only the fundamental frequency fn of the vibrating
systems as:
fn = 1
2�

√
keq

meq
(3)
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here keq and meq are the equivalent stiffness and mass of the
ibrating system. In the fundamental mode of vibration, the vibra-
ion mode shape is similar to that of the bending deformation of a
onlocal cantilever beam under a point load at the free edge.

Considering the deformation of the free edge, the stiffness of the
WCNT is assumed as [44]

eq = 3EI

L3
(4)

t is known that the static bending solutions of integral-based non-
ocal elastic beams are identical to the classical (local) solution, i.e.
he small scale effect is not explicitly present [7].  However, it should
e noted that Challamel and Wang [46] has proposed a gradient
lastic model as well as an integral non-local elastic model com-
ining the local and the non-local curvatures in the constitutive
lastic relation; and consequently small-scale effects are reflected
n the analysis. In the present analysis we assume general bending
olutions of integral-based non-local elastic beams identical to the
lassical (local) solution.

The deflection shape of the SWCNT with a point load is given in
45] as

(x) = x2(3L  − x)
2L3

(5)

he kinetic energy T considering nonlocal effects [6] with added
iomolecule mass is expressed as [47]:

 = 1
2

∫ L

0

�A

(
∂w(x, t)

∂t

)2

dx + 1
2

M

(
∂w(L)

∂t

)2

+ 1
2

∫ L

0

(e0a)2�A

(
∂2w(x, t)

∂x∂t

)2

dx (6)

hen the nonlocal effects are ignored (e0a = 0) we obtain the clas-
ical expression of kinetic energy.

Assuming harmonic motion, we have

(x, t) = W(x)eiωt (7)

here ω is the circular frequency and i is the conventional imagi-
ary number i = √−1. Substituting this into the expression of the
inetic energy one obtains

T = ω2

2

∫ L

0

�AW(x)2dx + 1
2

MW(L)2

+ ω2

2

∫ L

0

(e0a)2�A
(

dW(x)
dx

)2

dx

= �A
ω2

2

∫ L

0

W(x)2dx + ω2

2
MW(L)2

+�A(e0a)2 ω2

2

∫ L

0

(
dW(x)

dx

)2

dx

(8)

sing the displacement function in Eq. (5) and carrying out the
ntegrals we have

 = ω2

2

(
33

140
�AL + M +

(
e0a

L

)2 6
5

�AL

)
(9)
herefore the equivalent mass of the combined system is given as

eq = 33
140

�AL + M +
(

e0a

L

)2 6
5

�AL (10)
Fig. 2. Idealisation of a single-walled carbon nanotube (CNT) and several strands of
deoxythymidine molecules as s nonlocal elastic continuum beam with distributed
mass.

Using Eqs. (4) and (9) the approximate resonance frequency can be
obtained as

fn= 1
2�

√
keq

meq
= 1

2�

√
(3EI/L3)

(33/140)�AL+M+(e0a/L)2(6/5)�AL
(11)

Since we derive the frequency equations base on the energy meth-
ods [47], the nonlocal effect is introduced in the equivalent mass.
The frequency expression can be represented in terms of three
calibration constants, Ck, Cnl and Cm such that

fn = 1
2�

Ckˇ√
1 + Cnl
2 + Cm�M

(12)

where

ˇ =
√

EI

�AL4
(13)

�M = M

�AL
(14)


 = e0a

L
(15)

The stiffness calibration constant, mass calibration constant and
the nonlocal calibration constant are respectively given by

Ck =
√

140
11

, Cm
140
33

, and Cnl = 56
11

(16)

These calibration constants will be used to derive the sensor equa-
tions.

4. Nonlocal resonance frequency with attached distributed
biomolecules

Here we  consider biosensors with CNT when the attached mass
(biomolecules) is distributed in nature (Fig. 2). This is the more
general case compared to what considered in the previous section
(Section 3). A nano biosensor with distributed mass is shown in
the Fig. 2, where a CNT is loaded with distributed deoxythymi-

dine molecules. The biosensor is modelled as a nonlocal beam with
attached distributed mass. Suppose the added mass occupies a
length �Land its mass per unit length is M. Therefore we  have the
total mass m = M × �L.
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Fig. 3. Normalized mass vs. relative frequency shift for the SWCNT with point mass.
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The kinetic energy of the SWCNT with the added distributed
ass can be written as

 = ω2

2

∫ L

0

�AW(x)2dx + ω2M

2�L

∫ L

=L−�L

W()2d

+ ω2

2

∫ L

0

(e0a)2�A
(

dW(x)
dx

)2

dx (17)

sing Eq. (17) and a similar procedure as the case of point mass, the
hree calibration constants, namely the stiffness calibration con-
tant, the mass calibration constant and the nonlocal calibration
onstant, can be evaluated.

The fundamental frequency for attached distributed mass can
e expressed as

n = 1
2�

Ckˇ√
1 + Cnl
2 + Cm(�)�M

(18)

here Ck and Cnl are same as Eq. (16), that is Ck = 3.5675 and
nl = 5.0909. The mass calibration constant Cm(�) for distributed
ase is calculated as

m(�) = 140 − 210� + 105�2 + 35�3 − 42�4 + 5�6

33
(19)

he mass calibration constant is a function of the length of the
ttached mass as expected. In the special case the length of the mass
�) approaches to 0, the calibration constant in Eq. (19) reduces to
he point mass cases derived before.

The values of the mass calibration constants Cm(�)for different
elected values of � are shown in Table 1. It can be seen that with
he increase in the value of � , the value of the mass calibration
onstant decreases. Therefore, according to Eq. (19), this in turn
ill make the sensor less sensitive even when the amount of total

dded mass is the same. Practically Eq. (19) suggests that, in order
o design a sensitive CNT based biosensor, one need to maximise
he length of the CNT relative to the length of the biomolecule. The
ffective length of the biomolecule would also refer to number of
olecules consecutively attached to the nanotube with respect to

ength of the CNT.

. Nonlocal sensor equations

In this section we present the sensor equations based on non-
ocal elasticity. We  will derive the general expression of the added

ass of biomolecule based on the frequency-shift of the CNT.Using
q. (12), the resonance frequency without the added mass and non-
ocal effects is given by

0n = 1
2�

Ck  ̌ (20)

ombining Eqs. (18) and (20) we obtain

n = f0n√
1 + Cnl
2 + Cm�M

(21)

he frequency shift of the biosensor can be written as

f  = f0n − fn = f0n − f0n√
1 + Cnl
2 + Cm�M

(22)

rom this we deduce

�f

f0n
= 1 − 1√

1 + Cnl
2 + Cm�M
(23)

earranging the equations gives the expression of the relative

dded mass as

M = 1

Cm(1 − (�f/f0n))2
− Cnl

Cm

2 − 1

Cm
(24)
The band covers the complete range of nonlocal the parameter 0 nm ≤ e0a ≤ 2.0 nm.
It  can be seen that the molecular mechanics simulation results reasonably fall within
this  band (except at (�f/fn0 = 0.35)).

This equation (Eq. (24)) completely relates the change in mass with
the frequency shift using the mass calibration constant and the non-
local calibration constant. The actual value of the added mass can
be obtained from (24) as

M = �AL

Cm

C2
k

ˇ2

(Ck  ̌ − 2��f  )2
− Cnl

Cm

2�AL − �AL

Cm
(25)

This is the general equation which completely relates the added
mass and the frequency shift using the calibration constants. These
calibration constants change depending on the boundary condi-
tions and geometry of the added mass.

6. Results and discussions

6.1. SWCNT with deoxythymidine as a point biomolecule

We use a zigzag (5, 0) single-walled carbon nanotube (SWCNT)
as a biosensor. The length of SWCNT is considered as 8.52 nm.
The added mass is considered to be deoxythymidine, a nucleotide
that is found in DNA. The added mass and the corresponding
frequency shift are determined from the molecular mechanics sim-
ulation results carried out in Ref. [48]. For the details of molecular
mechanics simulation one may  refer to Ref. [48]. The added mass is
considered in normalized form. The frequency shifts are considered
in dimensionless form and is defined as the ratio of the difference
between the fundamental frequency of a nanotube with and with-
out attached mass to that without the attached mass (Eq. (21)). The
values of frequencies shift are used in Eq. (24). These frequency
shifts due to the added biomolecules can be considered as ‘exper-
imental results’. The value of the mass predicted by this equation
is then compared with the known values used in the molecular
mechanics simulations. The identified mass determined from the
frequency shift in a cantilevered SWCNT is shown in Fig. 3. It is
observed that with the increase in the added mass, the frequency
shifts also increase.

We have used the nonlocal elastic approach to derive the sen-
sor equations. The applicability of nonlocal elasticity theory in the

analysis of single nanostructures (e.g., nanotubes and graphene
sheet) has been established in various previous works [7–17]. While
applying the classical elasticity, the small scale effects are ignored
and thus may  be inadequate for the present analysis. It can be seen
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Table  1
Mass calibration constants Cm for CNT based biosensor.

Pictorial representation Mass size Cm

� = 0.1 3.6388

� = 0.2 3.1034

� = 0.3 2.6381

� = 0.4 2.2420

� = 0.5 1.9114

� = 0.6 1.6409

� = 0.7 1.4230

� = 0.8 1.2493

t
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t
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t
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hat the frequency shift of the sensor increases (Fig. 3) with the
ncreasing attached mass when the nonlocal effects are considered.

The exact value of the nonlocal parameter for hybrid struc-
ures such as the SWCNT-deoxythymidine based nano biosensor
s still unknown. Generally for carbon nanotubes it is observed
hat nonlocal parameter (e0a) is considered within the range

 nm ≤ e0a ≤ 2.0 nm [8,49].  The band of added mass with frequency
hift for nonlocal parameters within the range 0 nm ≤ e0a ≤ 2.0 nm
s illustrated in the Fig. 3.
It is seen that this ‘band’ of nonlocal analysis reasonably covers
he frequency shifts obtained via the molecular mechanics sim-
lation. In other words, nonlocal elasticity considers size-effects
t the nanoscale and imparts results that are size dependent. We
have developed the nonlocal sensor equations based on energy
principles. Consequently we see that the absolute frequencies of
a cantilever SWCNT decreases with increasing nonlocal parameter
(Eq. (12)). For the same relative frequency shift, it is observed that
the predictions of mass of the added deoxythymidine with non-
local sensor equations are smaller compared to that with ‘local or
classical’ sensor equations. Next we  have carried out analysis to
predict the best value of nonlocal parameter (e0a) based on the
results of molecular mechanics simulations. We  have found that

e0a = 0.65 nm yields the best value for nonlocal sensor equations.
The plot of the curve with nonlocal elasticity theory is shown in
Fig. 4. From Fig. 4 it can be observed that the nonlocal sensor
equations with (e0a = 0.65 nm)  predicts better resemblance with
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Fig. 5. Normalized mass vs. relative frequency shift for the SWCNT with dis-
tributed biomolecule. The band covers the complete range of nonlocal parameter, i.e.
0  nm ≤ e0a ≤ 2.0 nm.  It can be seen that the molecular mechanics simulation results
fall  within this band.
ig. 4. Normalized mass vs. relative frequency-shift for the point mass sys-
em.  Results from nonlocal and local theory are compared. Nonlocal parameter
0a = 0.65 nm fits the molecular mechanics results very well.

olecular mechanics results; and is better than the classical sensor
quations (e0a = 0).

The goodness of fit value corresponding to local and nonlocal
heory has been calculated as R2 = 0.9990 and R2 = 0.9995 respec-
ively. This demonstrates that overall the nonlocal theory is more
ccurate with respect to molecular mechanics simulation. The per-
entage error in the mass detection using cantilevered SWCNT
ased nano biosensor for single biomolecule is listed in Table 2. The
rror is calculated with respect to the molecular mechanics simula-
ion results. The percentage errors are shown for both local sensor
quations (e0a = 0) and nonlocal sensor equations (e0a = 0.65 nm).
rom the Table it can be observed that the percentage errors for dif-
erent frequency shifts are smaller with nonlocal sensor equations
0a = 0.65 nm.  The average errors for local elastic and nonlocal elas-
ic sensor equations are, respectively, 16.1520% and 7.8185%. No
articular pattern with respect to the frequency shift is observed.

.2. SWCNT with strands of deoxythymidine as distributed
iomolecules

The case of distributed mass is considered here (Fig. 2). The
evelopment of nonlocal sensor equations is extended to that of
WCNT with attached distributed deoxythymidine biomolecules. A
ano biosensor with distributed added mass is shown in the Fig. 2.

he sensor equations are developed based on Eq. (17). Fig. 5 shows
he variation of frequency shift and added mass for distributed
iomolecules in SWCNT. For the results plotted here, the value of �

able 2
ercentage error in the mass detection using cantilevered CNT based biosensors for
ingle biomolecule. The errors are shown for both local and nonlocal elastic theories
with optimised nonlocal parameter e0a = 0.65 nm).

Relative frequency shift Percentage error

Local elasticity Nonlocal elasticity

0.0929 13.9879 7.3226
0.179 28.1027 13.3841
0.2165 11.1765 0.1131
0.2956 34.2823 22.9147
0.3016 10.9296 1.6392
0.3367 12.4422 3.5486
0.3477 2.1427 5.807
varies between 0 and 0.8. Here it is observed that the frequency shift
is very sensitive to added mass in comparison to point biomolecule
mass sensors.

Similar to previous study, we have considered nonlocal param-
eter (e0a) within the range 0 nm ≤ e0a ≤ 2.0 nm for nonlocal sensor
equations. The band of added distributed mass with frequency
shift for nonlocal parameters within the range 0 nm ≤ e0a ≤ 2.0 nm
is illustrated in the Fig. 5. It is seen that this ‘band’ of nonlo-
cal analysis reasonably covers the frequency shifts via molecular
mechanics simulation for lower values of nonlocal parameter
(e0a). As the values of nonlocal parameter increases within the
band 0 nm ≤ e0a ≤ 2.0 nm the prediction shifts from the molecular
mechanics simulations.

For distributed mass, we have carried out analysis to pre-
dict the best value of nonlocal parameter (e0a) based on the
results of molecular mechanics simulations. We  have found that
e0a = 0.50 nm yields the best value for nonlocal sensor equations.
The plot of the curve with nonlocal elasticity theory is shown in
Fig. 6. From Fig. 6 it can be observed that the nonlocal sensor
equations with (e0a = 0.50 nm)  predicts better resemblance with
molecular mechanics results; and is better than the classical sen-
sor equations (e0a = 0). However the sensitivity of nonlocal effects
is much more than point mass system.

The percentage error using the proposed local and nonlocal elas-
tic method in the mass detection using cantilevered CNT based
biosensor for distributed biomolecules is listed in Table 3. The per-
centage errors are shown for both local sensor equations (e0a = 0)
and nonlocal sensor equations (e0a = 0.50 nm). Different normal-
ized length of the added distributed bio mass is also taken into
consideration. From the table it can be observed that the percent-
age errors for different frequency shifts are smaller with nonlocal
sensor equations (e0a = 0.50 nm). One can observe that average
maximum errors considering local elastic and nonlocal elastic sen-
sor equations are, respectively, 5.3581% and 2.7566%. Similar to
previous study [48] no particular pattern with respect to the fre-

quency shift is observed.
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ts  the molecular mechanics results very well.

.3. Nonlocal sensors: point mass vs. distributed mass

The frequency shift curves using the point mass assump-
ion in comparison with the distributed mass assumption are
hown in Fig. 7. Nonlocal sensor equations are considered using
0a = 0.50 nm.  The importance of using the calibration constant
arying with the length of the mass is clear from this comparative
tudy.

The proposed nonlocal calibration constant based approach is
alidated using data from the molecular mechanics simulations.
he importance of using the calibration constant varying with the
ength of the mass can be seen. The point mass assumption [50,51]
ften used in cantilevered sensors or resonators can result in sig-
ificant error when the mass is distributed in nature.

In summary in this paper an analytical method for calculating

he frequency shift in a CNT based resonator is shown using non-
ocal elasticity. The trend in resonating biosensors is to increase
he sensitivity by making the resonators smaller. But there are

able 3
ercentage errors in the mass detection using cantilevered CNT based biosensor for
istributed added biomolecules. The errors are shown for both local and nonlocal
lastic theories (with optimised nonlocal parameter e0a = 0.5 nm).

Relative
frequency shift

Normalized
length

Percentage error

Local elasticity Nonlocal elasticity

0.0929 0 13.9879 1.2813
0.153 0.05 11.8626 1.4132
0.1991 0.1 13.7038 5.171
0.2148 0.15 1.7865 4.9412
0.2462 0.2 7.0172 1.0914
0.2542 0.25 1.3278 3.6149
0.2687 0.3 1.9943 2.2774
0.2773 0.35 1.2631 2.4081
0.2821 0.4 0.1653 3.0046
0.2948 0.45 4.515 1.7056
0.2929 0.5 1.3776 1.0761
0.2983 0.55 3.2275 1.0155
0.2989 0.6167 5.524 3.4922
0.2981 0.6667 4.6735 2.7585
0.3039 0.7167 7.9455 6.0986
Fig. 7. Identified attached masses of biomolecules from the frequency shift in a
cantilevered CNT biosensors. The point mass assumption often used in cantilevered
sensors can result in significant error when the mass is distributed in nature.

many technological problems still, such as manufacturability, read-
out and functionalization. The work presented here could act as
an input to understand such small biosensors once they become
realizable. This is a case where the theory might be ahead of the
fabrication capabilities, but it will be a valuable model to have for
evaluating future cantilever nanosensors.

7. Conclusion

The possibility of using CNT as a nanoscale biosensor is explored
using the shift in the nonlocal resonance frequencies. Nonlocal elas-
ticity is utilized for the development of the sensor equations. CNTs
are modelled by continuum based nonlocal approach. Nonlocal
effects are introduced using the energy based methods. The single-
walled CNT resonators are assumed in cantilevered configuration.
Two types of physically realistic mass loadings, namely, point mass
and distributed mass, have been considered. A general closed-form
nonlocal sensor-equation has been derived for the detection of the
mass of biological objects attached to the CNT. It is shown that the
sensor-equation can be calibrated by three non-dimensional cal-
ibration constants, namely the stiffness calibration constant, the
mass calibration constant and the nonlocal calibration constant.
Numerical values and analytical expressions of these calibration
constants are derived in closed-form using energy principles.

A molecular mechanics based approach is proposed to val-
idate the nonlocal calibration constant based sensor equations.
UFF model have been used, wherein, the force field parameters
are estimated using the general rules based on the element, its
hybridization and its connectivity. Acceptable agreements between
the proposed nonlocal approach and the molecular mechanics sim-
ulations have been observed. However the sensor equations are
dependent on nonlocal parameters. It is found that the nonlocal
parameter values of 0.65 nm and 0.50 nm are the best values for
point mass and distributed mass assumption, respectively. Our

results indicate that the distributed nature of the mass has con-
siderable influence on the performance of the sensor. Using the
nonlocal sensor equations, the point mass assumption may  lead
to significant error when the true mass is distributed in nature.
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