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Mechanisms of nonlocal effect on the vibration of nanoplates
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This letter presents a study of the mechanisms of nonlocal effect on the transverse vibration of
two-dimensional (2D) nanoplates, e.g., monolayer layer graphene and boron-nitride sheets. It is
found that such a nonlocal effect stems from a distributed transverse force due to (1) the curvature
change in the nanoplates and (2) the surface stress due to the nonlocal atom-atom interaction.
A single equivalent vibration wavelength is defined to measure the nonlocal effect on the vibration
of 2D nanoplates. The critical equivalent wavelength of order 0.55 to 2.23 nm is obtained for
significant nonlocal effect on monolayer graphene. © 2011 American Institute of Physics.

[doi:10.1063/1.3579249]

Continuum mechanics theories play an indispensible role
in characterizing mechanical responses of nanomaterials that
are building blocks in nanotechnology. In extending the con-
tinuum theories into a nanoscale world one has to consider
the distinct features that distinguish nanomaterials from their
macroscopic counterparts. These include the interface van
der Waals interaction'” and the surface effect™* on nanoma-
terials. In 1970s, nonlocal elasticity was proposed by
Eringens’6 for small scale problems like dislocations and
cracks in materials, where stresses at a reference point are
functions of the strains at all points of the body. The theory is
found to be in good agreement with lattice dynamics model
in studying plane waves and the experiment on phonon
dispersion.6 In 2003, Sudak’ applied the nonlocal theory to
carbon nanotubes (CNTSs) and identified its important role in
nanomechanics. Subsequently, nonlocal effect has been stud-
ied extensively for the bucking, vibration and wave propaga-
tion of CNTs, monolayer graphene and microtubules in
cells. ¥

In spite of its widespread use in nanomechanics, little
has been discussed about its physical mechanisms and some
fundamental issues in the nonlocal theory have not been
clarified. For example, Eringens’6 suggested that the nonlocal
effect should be determined by the quantity 7=ega/l, where
ep 1s a constant appropriate to a material, a is the internal
characteristic length (e.g., lattice parameter, granular dis-
tance) and [ is an external characteristic length (e.g., crack
length, wavelength). Recently this has been confirmed in nu-
merical studies® '* but the physical implication of 7 has not
yet been explained. In addition, while deformation wave-
length [ can be easily found for one-dimensional nanobeams
it is not clear how to define a single wavelength / for two-
dimensional (2D) nanoplates, where deformation occurs
along, e.g., the two sides of rectangular plates. Moreover
nonlocal effect is due to the reduction in geometric size. It is
thus of interest to find out the critical size for significant
nonlocal effect on nanomaterials. In this letter, the aforemen-
tioned issues will be examined for the transverse vibration of
rectangular nanoplates as shown in Fig. 1, where monolayer
graphene is used as an example.
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Recently elastic Plate theory has been used to study
monolayer graphene. 35718 Ap agreement with molecular
dynamics simulations has been achieved in predicting their
responses under a central point load. 1518 1 particular, in Ref.
15, the linear plate model is found to be adequate for char-
acterizing the small deflection vibrations'® of these nano-
plates. Thus, in this study, we incorporate the nonlocal theory
into the linear plate model for the transverse vibration of 2D
rectangular nanoplates. The obtained equation reads"?
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where x and y are Cartesian coordinates, w is the transverse
displacement, ¢ is time, m and m, are mass density per unit
area and inertia mass, and D is the bending rigidity of the
nanoplates. Consider simply supported boundaries the solu-
tion of Eq. (1) reads w=W sin[ (mar/L,)x]sin[(n7/L,)yle™"",
where W is the vibration amplitude, L, and L, are the lengths
of the nanoplate (Fig. 1), and m and n are half wave numbers
of the vibration in x and y directions. In addition, w is angu-
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FIG. 1. (Color online) Molecular representation of a graphene sheet and its
equivalent nonlocal nanoplate.
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FIG. 2. (Color online) (a) The relative
change in frequency « as a function of
the equivalent wavelength \. Here, the
unit used for \ is (eya), and (b) the
dependence of the equivalent wave-
length N\ on ratio 7.

lar frequency and i=\-1. Putting the solution into Eq. (1)
leads to an equation f(w?) X W=0. The condition for nonzero
W is f(w?)=0 which gives
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where w, is the angular frequency given by classical plate
theory, \,=2L,/m and N\, =2L,/n are the wavelength in x and
y directions, and n=N\,/\,= 1. It is easy to see in Eq. (2) that
(egal/N)*=(eqal )\x)2+(eoa/)\y)2 which naturally defines a
single equivalent wavelength N\ for 2D nanoplates, and shows
that the nonlocal effect on the vibration of 2D nanoplates is
indeed controlled by the single parameter 7 (=ega/l where
I=\) defined by Eringen.>®

Here, the nonlocal effect can also be measured by
the relative change in frequency a=(wy—w)/wy=1
—1/\1+472(ega/\)?. As shown in Fig. 2(a), @ declines with
increasing N and becomes less than 5% at A\>19.12 (eqa).
Thus, assume that at «a<<5% the nonlocal effect is small
enough to be neglected, 19.12 (epa) nm can be considered
as the critical equivalent wavelength for significant nonlocal
effect on the nanoplate vibration.

For monolayer graphene the length of C—C bond (0.142
nm) can be used as internal characteristic length a (Ref. 7)
and e is of the order 0.2 to 0.82.10-12 Thus, the critical
wavelength A\ for the transverse vibration of monolayer
graphene is of order of magnitude 0.55 to 2.23 nm, which is
in accordance with 0.9 to 2.35 nm obtained for the wave
propagation in CNTs."

As shown above, the equivalent wavelength A is essen-
tial for the nonlocal effect on the vibration of nanoplates.
Based on Eq. (2) Fig. 2(b) shows that X grows with rising 7
(=\y/N\,=1) and approaches an asymptotic value \,, when 7
is sufficiently large. To evaluate the influence of A, and A\, on
A\, we consider following two cases.

Case (1) 1=7<4: in this case, \, rises from X, to 4\,
and A increases from 0.707\, to 0.970A,. Here, both A\, and
A, affect \ significantly and lead to N <\,=\,. Accordingly
e,alN>ey,a/N=e,a/\, indicating that the nonlocal effect
of 2D nanoplates is generally stronger than that obtained in x
or y direction. The minimum A is achieved when A, =N\,.

Case (2) #=4: in this case, A,=4\, and \ falls in the
range of (0.97\, and \,). Thus, N\ or the overall nonlocal

effect characterized by e,a/\ is predominantly determined
by the shorter wavelength A, whereas the influence of longer
one \, is negligible.

It is well known that, at small displacement w,
(Pw/x?)+(Pwldy*) represents the curvature change in
nanoplates. For simply supported nanoplates they can be ex-
pressed as 4772[(1/)\x)2+(1/)\y)2]W=4772(1/)\)ZW. Thus Egq.
(2) suggests that smaller A results in stronger nonlocal effect
as it corresponds to a larger curvature change on nanoplates.
Further, Eringen6 pointed out that “nonlocal theory accounts
for surface physics, an important asset not included in clas-
sical theories” as the effect of surface tension or compression
is included in the nonlocal theory. For 2D plates, only the
stresses in the surface are considered in continuum mechan-
ics whereas those normal to the surface are assumed to be
zero.'® This assumption reflects the unique features of single-
atom layer nanoplates, e.g., graphene and boron-nitride
sheets. It follows that the nonlocal effect of 2D nanoplates
originates from the surface stresses due to the nonlocal inter-
action between the atom at reference point and all other at-
oms in the single-atom thick surface. This provides an in-
sight to the present understanding, i.e., different from 3D
nanowires where the surface effects and nonlocal interac-
tions are considered as independent mechanisms,” for 2D
nanoplates surface effect is a result of nonlocal atom-atom
interactions.

Similar to the effect of surface stress on 1D nanowires,
the curvature change in nanoplates results in a normal com-
ponent of the surface stress o, which leads to a distributed
transverse force g=o(Pw/dx*+dw/dy)=4m*a(1/\)*W on
the nanoplates [Fig. 3(a)]. This force ¢ alters the equivalent
bending rigidity and finally changes the vibration frequency
of nanoplates. Based on this theory, the indicator (eya/\)?
measures the transverse force q=47720'(1 /N)*W, where
(1/X\)? reflects the curvature change and (eya) is related to
the surface stresses.

Moreover, the frequency of nonlocal nanoplates is lower
than that of classical plates [Eq. (2)], which implies that the
surface stress should be compression. Such a compressive
surface stress has been observed for monolayer graphene in a
recent experiment.21 To show the significance of the mecha-
nisms behind the nonlocal effect, we plotted in Fig. 3(b) the
normalized frequency w/w, against (eqa/\)* which reflects
the effect of the transverse force g.

In conclusion, we show that the nonlocal effect on one-
atom layer nanoplates originates from the surface compres-
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sion due to the nonlocal atom-atom interaction on the 2D
surfaces. Such surface compression and curvature change re-
sults in a distributed transverse load on the nanoplates, which
reduces their equivalent structural rigidity and downshifts
their vibration frequency. The nonlocal effect can thus be
quantified by the dimensionless parameter (eqa/N) where
(ega) is related to the surface stress and the equivalent wave-
length N reflects the curvature change. \ for the 2D nano-
plates is defined in Eq. (2) and 19.12(eqa) is identified as the
critical value of N for significant nonlocal effect on the trans-
verse vibration of nanoplates.
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