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Abstract
This article investigates the possibility of piezoelectric energy harvesters as energy scavenging devices in highway bridges.
The structural vibration due to the motion of a load (vehicle) on the bridge is considered as the source of energy
generation for the harvester. The energy generated in this way can be useful for wireless sensor networks for structural
health monitoring of bridges by reducing or even eliminating the need for battery replacement/recharging. A highway
bridge model with a moving point load is investigated and a linear single-degree-of-freedom model is used for the
piezoelectric energy harvester. Two types of harvesters, namely, the harvesting circuit with and without an inductor,
have been considered and the energy generated for a single vehicle has been estimated. These results may be used,
together with traffic statistics, to obtain the variation of average power and thus, for a given application, help to design
the energy management system.
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Introduction

In order to keep structures safe and more durable, novel
sensing and control technologies and analytical methods
are pursued by the engineering community. This helps to
rapidly identify the onset of structural damage in an
instrumented structural system or to control a structure
(Ali and Ramaswamy, 2009). Structural health monitor-
ing (SHM) systems can be found in a number of struc-
tures including aircraft, ships, and civil structures. To
address the limitations of the current wired sensing tech-
nologies, the engineering and research communities are
exploring new technologies such as wireless sensors and
networks that can be placed at remote locations, provid-
ing a global view of the structural performance (Lynch
and Loh, 2006; En et al., 2010; Park et al., 2010).

Wireless structural monitoring systems are inexpen-
sive to install because wiring is no longer required
between the sensors and the data acquisition system.
These low costs promise the use of more sensors and
more densely located sensors as compared to tradi-
tional monitoring systems. Hundreds of wireless sen-
sors can be installed in a single structure (Park et al.,
2010), providing better insight to structural damage by
monitoring the behavior of critical structural compo-
nents, thereby implementing local damage detection.
The structural vibration signature can be used to iden-
tify the location and extent of damage.

Practical examples of civil infrastructure that include
wireless sensing systems are few but the number is

increasing rapidly. Rice et al. (2010) reported health
monitoring using the ‘Imote2’ smart sensor platform
on the Stawamus Chief Pedestrian Bridge (located in
Vancouver in British Columbia, Canada). Practical
aspects of SHM of a building with acoustic and vibra-
tion wireless sensors are detailed by En et al. (2010).
Park et al. (2010) reported SHM systems using wireless
smart sensor networks for a cable-stayed bridge (484 m
long 2nd Jindo Bridge in Korea). Park et al. (2010)
highlighted the need for energy harvesting devices to
power the wireless sensor nodes or to switch to com-
pletely self-powered sensor nodes. Out of a total of 70
sensor nodes installed to assess the integrity of a bridge,
five sensor nodes on the cables are powered by solar
energy harvesting, whereas wind-based energy har-
vesters are used for some of the sensors on the under-
side of the bridge.

Providing power to the wireless sensors or sensor
networks is an engineering challenge. Wired power is
either prohibitively expensive (e.g. for civil structure) or
too risky (e.g. for implanted medical sensors), while
batteries require recharging/replacement and might be
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impractical in many scenarios. For practical infrastruc-
ture monitoring, it is desirable that the sensors last the
service lifetime of the structure; typically, a structure’s
life span is several decades, but it can be as long as 100
years. In the cases of remote structures and embedded
sensors, it is impractical and costly to change batteries
periodically through the lifetime of the structure.

Therefore, engineers have sought methods to
generate power from ambient sources, such as solar
energy, temperature variation, or structural vibration,
to recharge the batteries or to design self-powered
sensors (energy harvesters) that scavenge energy avail-
able in the environment. Reviews on energy harvest-
ing from mechanical and biological systems are
given by Anton and Sodano (2007), Priya (2007), and
Sodano et al. (2004). Applications include wireless
sensor systems that are desirable in biological implants,
robotic devices, and SHM, where remote operations are
required.

Most energy harvesting techniques investigated and
implemented for SHM are based on solar energy, ther-
mal gradients, and/or vibration energy. The most suc-
cessful energy harvesters to date are solar powered.
However, SHM sensors could be embedded within con-
crete structures and therefore, it is not always feasible
to use solar power. Heat or thermal gradients produce
energy at very low levels and are unlikely to power
sensors for infrastructure monitoring (Roundy, 2003).
Currently, several research groups are developing
energy harvesters based on ambient vibration energy
(Roundy, 2003; Elvin et al., 2006; Sazonov et al.,
2009). However, vibration energy harvesting from
bridge vehicle interaction is still in its infancy and is
the main theme of this article.

Various concepts to harvest energy from ambient
vibration of the host system have been proposed
(Sodano et al., 2004; Lefeuvre et al., 2005, 2006;
Beeby et al., 2006; Anton and Sodano, 2007; Priya
2007; Ali et al., 2011). The two main vibration-based
energy harvesting technologies are electromagnetic and
piezoelectric. The electromagnetic harvester generates
power from the relative motion of a coil due to host
vibration in a magnetic field (Williams and Yates 1996;
Amirtharajah and Chandrakasan 1998; Kulkarni et al.,
2008). Piezoelectric energy harvesters generate power
from the strain in piezoelectric materials in response
to external mechanical vibrations (Tanner and Inman,

2002; Sodano et al., 2005; Adhikari et al., 2009; Ali
et al., 2010). The advantages of piezoelectric devices
include small size, fewer moving parts, and simpler
design. The power generated by these harvesters are
such that it can power a magneto-rheological damper
(Tanner and Inman, 2002).

The aim of this article is to investigate energy
harvesting technology for bridges with moving loads,
which are able to provide a continuous source of energy
scavenging. A single degree of freedom (SDOF) piezo-
electric energy harvester is considered for the analysis.
Although the parameters for the harvester considered
represent a piezoelectric harvester, the same system
equations and analysis may be used for electromagnetic
harvesters (Halvorsen, 2008). The article is organized as
follows: Section 2 details the analytical derivation for a
beam with a moving point load. Fourier transforms are
used to obtain an explicit expression of the response of
the beam at any location. Section 3 outlines the details
of piezoelectric energy harvesters with and without an
inductor. Explicit expressions for the voltage and
power obtained for the harvesters with and without
an inductor are given. Section 4 discusses the optimal
harvester location and parameters. Finally, the numer-
ical results and conclusions are drawn in Sections 5 and
6, respectively.

The moving load problem

To model the dynamics of a bridge with a moving vehi-
cle, we consider a beam with a moving point load
(Fryba, 1999), as shown in Figure 1. This model has
been validated by Stancioiu et al. (2011) and is the sim-
plest model that includes the bridge dynamics. Other
factors may be included, but that would complicate
the system dynamics. For example, the vehicle suspen-
sion dynamics could be included, which would lead to a
larger range of excitation frequencies at the harvester
location (Li et al., 2008). However, the dynamics would
vary considerably between vehicles, which means that
the harvester could not be tuned to a single resonance
frequency. In contrast, the bridge resonance frequencies
will be relatively constant, apart from relatively small
changes due to temperature, humidity, and other envi-
ronmental factors. Furthermore, for long-span bridges,
the vehicle natural frequencies are likely to be much
higher than the lower bridge natural frequencies. Other
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Figure 1. Schematic diagram of a beam with a moving point load.
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phenomena that produce vibration could also be used to
harvest energy, such as the roughness of the road surface
or wind excitation; such excitation typically has a rela-
tively high frequency and a relatively low amplitude, and
is not considered further in this article.

The dynamics of a beam with a point load, P,
moving at a velocity, u, is given by:

m
@2

@t2
yðx,tÞ þ c

@

@t
yðx,tÞ þ EI

@4

@x4
yðx,tÞ ¼ !ðx% utÞP

ð1Þ
where y(x, t) is the displacement of the beam at position
x and at time t, m the mass per unit length, and L the
length of the beam. The damping and the flexural rigid-
ity of the beam are given by c and EI, respectively. Note
that x is only defined for positions on the bridge, and
hence 0& x&L. Thus, the Dirac delta function on the
right-hand side of Equation (1) ensures that the force P
is only applied to the bridge when the moving load is on
the bridge. Equation (1) has to be supplemented with
appropriate initial and boundary conditions and these
will be considered later.

Since Equation (1) is a linear partial differential
equation (PDE), a solution is assumed of the form:

yðx,tÞ ¼
XN

j¼1

"j ðxÞqj ðtÞ, ð2Þ

where "j(x) is the jth mode shape function of the beam
and qj(t) the jth modal displacement. Note that the
exact solution for the beam has an infinite number of
modes, which would require an infinite series for the
general solution; Equation (2) represents this series
truncated to N terms. The mode shapes, "j(x), are inde-
pendent of time, t, and satisfy the boundary conditions,
whereas the modal displacements qj(t) are independent
of the spatial variable x and satisfy the initial condi-
tions of the PDE. The mode shapes are assumed to be
mass normalized so that:

Z L

0
m"2

j ðxÞdx ¼ 1: ð3Þ

Substituting Equation (2) into Equation (1), pre-
multiplying by each mode shape in turn, integrating
along the spatial domain from 0 to L, and imposing
the orthogonal property of the mode shapes gives a
set of N independent ordinary differential equations
(ODEs). The jth ODE, corresponding to the jth
modal displacement qj(t), is:

€qj þ 2#j!j _qj þ !2
j qj ¼ P"j ðutÞ ð4Þ

where !j is the jth natural frequency of the system given
by !2

j ¼
R L
0 EIð"00

j ðxÞÞ
2dx, and the prime denotes differ-

entiation with respect to x. The analytical expressions
for !j depend on the boundary conditions of the beam.
The damping of the j th mode is given by zj (assuming
classical damping) and from Equation (1) is given by

2zj!j¼ c/m; this approach also allows for a variety of
damping models to be approximated using the equiva-
lent modal damping ratios. In Equation (4), the mode
shape "j(x) is defined to be zero for x>L so that the
force is only applied while the vehicle is on the bridge.

Note that Equation (4) is valid for any beam (uniform
or non-uniform) and with any boundary condition,
provided the "j(x) satisfies these boundary conditions.
An equivalent set of ODEs may be obtained for any gen-
eral finite element model of the bridge, provided "j(ut) is
interpreted as the vertical displacement for the j th mode
at the location of the application of the point load.

Transformation to the frequency domain

Domain transformations are widely used to analyze
moving load problems on an elastic beam; for example,
Fryba (1999) and Lv et al. (2010) used the Laplace
transform, whereas Sun (2001) used the Fourier trans-
formation. Taking the Fourier transform of Equation
(4), we obtain:

%!2 þ 2#j!ji!þ !2
j

! "
Qj ð!Þ ¼ P

Z L=u

0
e%i!t"j utð Þdt ð5Þ

where Qj(!) is the Fourier transform of qj(t) and
i ¼

ffiffiffiffiffiffiffi
%1

p
. Note that the upper limit of the integral

defining the modal force on the right-hand side of
Equation (5) is not infinity but the time when the vehi-
cle leaves the bridge. An expression for this modal force
may be obtained explicitly in many cases or alterna-
tively for a given mode shape may be obtained by
numerical integration.

The displacement of the beam in the frequency
domain at location x is then given by:

Yðx,!Þ ¼
XN

j¼1

"j ðxÞQj ð!Þ: ð6Þ

Solution for a simply supported beam

For simply supported uniform beams, the mass normal-
ized mode shapes are given by sine functions
(Meirovitch, 1986; Chopra, 2001); therefore, "j ðxÞ ¼ffiffiffiffiffi

2
mL

q
sin j$x=Lð Þ. Thus, we have !j ¼ j2$2

L2

ffiffiffiffi
EI
m

q
and

#j ¼ c
2m!j

. For a simply supported beam, the critical

velocity of the vehicle at which beam resonance is

expected is uc ¼ $
L

ffiffiffiffi
EI
m

q
¼ L!1

$ .

The Fourier transform of the j th modal response,
Qj(!), is given by Equation (5) as:

Qj ð!Þ ¼ P

ffiffiffiffiffiffiffi
2

mL

r
j$u=Lð Þ 1% ð%1Þje%i!L=u

$ %

ð%!2 þ ð j$u=LÞ2Þð%!2 þ 2i!#j!j þ !2
j Þ
ð7Þ

The %!2 þ 2i!#j!j þ !2
j ¼ 0 term in the denominator

ensures that the modal response will usually have
peaks at the bridge’s natural frequencies. Although
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the denominator is zero at frequencies that depend on
the vehicle speed given by !¼'jpu/L¼'u!j/uc, the
numerator is also zero at these frequencies and the
modal response will be finite. Bridge responses for a
typical bridge will be demonstrated in the example.

Energy harvesting

For a vibrating bridge, electromagnetic or piezoelec-
tric energy harvesters can be used. In the following
description, a cantilever piezoelectric harvester is
assumed, although the mathematical expressions are
valid for stack-type harvesters also. The derivations
are easily extended to electromagnetic harvesters
using the parameter maps given by Halvorsen (2008).
The key issue for energy harvesters for highway bridges
is the low frequency of the significant ambient vibra-
tion, particularly due to moving vehicles traversing the
bridge. In these circumstances, electromagnetic har-
vesters are easier to design as coil springs may be
used with magnets with a large mass to obtain low res-
onance frequencies. Cantilever beam harvesters, parti-
cularly where the excitation is vertical, may have
problems with large static deformations due to self-
weight. However, such problems may be overcome
using non-linear springs and the concept of high-
static–low-dynamic stiffness used for vibration absor-
bers and vibration isolation (Carrella et al., 2007, 2009).

Energy is harvested through base excitations and
here we use a simple SDOF model for the mechanical
motion of the harvester. Erturk and Inman (2008a,b,
2009) gave a more detailed model, along with correc-
tion factors for an SDOF model that accounts for
distributed mass effects. This enables the analysis
described here to be used in a wide range of practical
applications. The SDOF model could be extended to
multi-degree-of-freedom mechanical systems using a
modal decomposition of the response. However, if the
tip mass is large relative to the mass of the beam, then
the second natural frequency will be significantly higher
than the first natural frequency and the SDOF model is
sufficient. This article only considers a linear model of
the piezoelectric material, which allows the application
of linear vibration theory.

The harvester is attached to the beam at position x,
and thus, the base excitation on the harvester is the
corresponding acceleration given by ÿ(x, t). Note that
the harvester mass is assumed to be negligible com-
pared to the mass of the bridge, and hence, the har-
vester mass will not affect the bridge response.

For a piezoelectric harvester, two types of simple
electric circuits can be considered, namely, with and
without an inductor (Adhikari et al., 2009; Erturk
and Inman, 2009). Since the base excitation frequencies
are likely to be very low in civil engineering applica-
tions, this will lead to a high optimum value for the

inductance. Generally, such an inductance would be
implemented synthetically and hence would consume
power. Unless the energy harvested was significantly
increased using the inductor, this circuit is unlikely to
be practical.

Energy harvester without an inductor

duToit and Wardle (2007) expressed the coupled elec-
tromechanical behavior of a piezoelectric energy har-
vester without an inductor by the coupled linear ODEs:

mh €zþ ch _zþ khz% %V ¼ %mh €yðx,tÞ ð8Þ

% _zþ Cp
_Vþ 1

Rl
V ¼ 0 ð9Þ

Equation (8) is simply Newton’s equation of motion for
an SDOF system, where z(t) is the relative displacement
of the mass, mh. The subscript ‘h’ stands for the har-
vester; ch and kh are, respectively, the damping and the
stiffness of the harvester. y(x, t) is the base excitation
for the harvester and the response of the beam at the
location of the harvester is obtained from Equation (2)
in the time domain or Equation (6) in the frequency
domain. % is the electromechanical coupling and the
mechanical force is modeled as proportional to the
voltage across the piezoceramic, V(t). Equation (9) is
obtained from the electrical circuit, where the voltage
across the load resistance arises from the mechanical
strain through the electromechanical coupling, %, and
the capacitance of the piezoceramic, Cp.

Transforming Equations (8) and (9) into the fre-
quency domain and dividing the first equation by mh

and the second equation by Cp, we obtain:

%!2 þ 2#h!hi!þ !2
h

$ %
Zð!Þ % %

mh
Vð!Þ ¼ !2Yðx,!Þ

ð10Þ

%

Cp
i!Zð!Þ þ i!þ 1

CpRl

& '
Vð!Þ ¼ 0 ð11Þ

where Z(!), V(!), and Y(x, !) are the Fourier trans-
forms of z(t), V(t), and y(x, t), respectively. The
mechanical natural frequency of the harvester, !h,
and the damping factor, zh, are defined as:

!h ¼

ffiffiffiffiffiffi
kh
mh

s

and #h ¼
ch

2mh!h
: ð12Þ

The solution to Equations (10) and (11) is (Adhikari
et al., 2009):

Z
V

( )
¼ !2Yðx,!Þ

"1ð!Þ
i!&þ !hð Þ
%i!&%=Cp

( )
ð13Þ

where the determinant of the coefficient matrix is:
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"1ð!Þ ¼ %&i!3 % 2#h&þ 1ð Þ!h!
2

þ &þ '2&þ 2#h
$ %

i!2
h!þ !3

h: ð14Þ

The non-dimensional electromechanical coupling coef-
ficient is:

'2 ¼ %2

khCp
: ð15Þ

and the time constant of the first-order electrical
system, non-dimensionalized using the natural fre-
quency of the mechanical system, is:

& ¼ !hCpRl: ð16Þ

Hence, the voltage in the frequency domain is given
by:

Vð!Þ ¼ Th1ð!ÞYðx,!Þ ð17Þ

where

Th1ð!Þ ¼ % i

"1

!3&%

Cp
ð18Þ

represents the transfer function of the energy harvester.
This simple representation will facilitate the discussion
on the optimal location of the harvester in Section 4.

Energy harvester with an inductor

For this case, following Renno et al. (2009), the electri-
cal equation becomes:

% €zþ Cp
€Vþ 1

Rl

_Vþ 1

L
V ¼ 0 ð19Þ

where L is the inductance of the circuit. Proceeding as
in Section 3.1 (Adhikari et al., 2009), the expression for
voltage in case of a harvester with an inductor is:

Vð!Þ ¼ Th2ð!ÞYðx,!Þ ð20Þ

where

Th2ð!Þ ¼
1

"2

!4&(%

Cp
ð21Þ

and

"2ð!Þ ¼ &(!4 % 2#h&þ 1ð Þ(!hi!
3

% &þ &(þ 2#h(þ '2&(
$ %

!2
h!

2

þ (þ 2#h&ð Þ!3
hi!þ &!4

h: ð22Þ

A second non-dimensional constant has been defined as
the ratio of the mechanical to electrical natural frequen-
cies, given by:

( ¼ !2
hLCp: ð23Þ

Note that the base excitation (the beam response) is
same in both Equations (17) and (20).

Estimating the total energy

The total energy from the harvester due to the vehicle
passing over the bridge is obtained by integrating the
instantaneous power as:

Eh ¼
Z 1

0

VðtÞ2

Rl
dt ð24Þ

where V(t) is the voltage across the load resistor, Rl.
Although the force applied to the bridge is non-zero
only while the vehicle is traversing the bridge, the
bridge continues to vibrate and thus, the voltage from
the energy harvester continues indefinitely; hence, the
upper limit on the integral in Equation (24) is infinity.
Alternatively, using Parseval’s theorem and noting that
V(t)¼ 0 for t& 0, the energy is:

Eh ¼
Z 1

%1

jVð!Þj2

Rl
d! ð25Þ

where V(!) is the Fourier transform of V(t).

Optimum harvester location
and parameters

Determining the optimal locations for the harvester
along the length of the bridge requires that the energy
scavenged is maximized. However, this requires a
formal optimization of Equation (25) and the location
will depend on the vehicle, bridge, and harvester prop-
erties. In general, this is a very difficult task but some
general comments may be made.

For a given bridge, the natural frequencies and mode
shapes are fixed. It is very unlikely that any require-
ments for energy harvesting will affect the design of
any future bridge. The velocity of the vehicle will vary
over a large range, and for many bridges and road sys-
tems, data are available to estimate the probability
density function of the vehicle velocities and also the
arrival time at the bridge. The bridge design will usually
try to ensure that the vehicle excitation does not corre-
spond to a resonance frequency of the bridge. Note that
we model the system as linear and so the response of the
bridge and harvester (and therefore the energy and
average power produced) due to multiple vehicles is
easily obtained by summing the individual responses.

Most vibration energy harvesters, whether piezoelec-
tric cantilever beams or electromagnetic systems, have
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one predominant resonance frequency. The passing of
the vehicle over the bridge is likely to excite transients
in the bridge and the predominant response is likely to
correspond to the bridge modes. Thus, the harvester
resonance frequency is likely to be tuned to one of
the natural frequencies of the bridge. Given that the
vehicle speeds are such that the lower frequencies will
be excited the most, this is likely to be the fundamental
bridge natural frequency.

Suppose the harvester is tuned to the j th bridge
natural frequency. This means that only the bridge
response corresponding to the j th mode will lead to a
significant response of the harvester, assuming the
bridge natural frequencies are well separated. Hence,
we may approximate the voltage output from the har-
vester, from Equations (6), (17), and (20), as:

Vð!Þ ¼ Thð!ÞQj ð!Þ"j ðxÞ ð26Þ

where Th is used to denote either Th1 and Th2, depend-
ing on the electrical circuit employed. Thus, the total
energy from the vehicle given in Equation (25) may be
written as:

Eh ¼
Z 1

%1

jThð!ÞQj ð!Þ"j ðxÞj2

Rl
d!

¼ j"j ðxÞj2
Z 1

%1

jThð!ÞQj ð!Þj2

Rl
d!: ð27Þ

From this it is clear that the optimum location for the
harvester will be at the maximum of W"j(x)W or the anti-
nodes for the mode shape to which the harvester is
tuned. Of course, in practice, the locations of the har-
vesters may be specified, in which case the harvester
should be tuned to a mode with a significant response
at the specified location.

Numerical example

Simulation studies are performed based on the param-
eters specified by Elvin et al. (2006) and Yang et al.
(2004) and are given in Table 1. The parameters of

the bridge are taken directly from Yang et al. (2004)
and the critical vehicle speed is 104.2 m/s (equivalent to
233 km/h). A typical vehicle speed of 25 m/s (90 km/h)
corresponds to a fundamental excitation frequency of
0.5 Hz. The length of the beam in the harvester
described by Elvin et al. (2006) has been increased so
that the first natural frequency of the harvester matches
the first natural frequency of the bridge (Renno et al.,
2009; Ali et al., 2010). This is required to scavenge the
maximum energy from the bridge vibration. To obtain
the SDOF harvester model, the mass, the coupling coef-
ficient, and the capacitance are all assumed to vary lin-
early with beam length. The harvester beam stiffness is
assumed to be proportional to the reciprocal of length
cubed. Elvin et al. (2006) selected the thickness of pie-
zoelectric layer and the backing layer such that the
maximum tip deflection was restricted to 2 mm and
the strain in PVDF material was low. The value of k
may be calculated from the harvester design and this is
given in Table 1; the values of a and b depend on the
design of the electrical circuit and will be optimized to
maximize the power available.

The harvested power depends on the base excitation
at the harvester location and therefore, increased bridge
excitation provides increased harvested power. The
highest excitation occurs when the excitation frequency
matches a bridge’s natural frequency. Physically this is
unlikely, because the resonance may damage the bridge
and also the corresponding critical velocity is high.
Here, we consider a range of vehicle speeds within the
range given by Yang et al. (2004), namely, 10–25 m/s.

Figure 2 shows the response in the frequency domain
for the displacement of the bridge at different harvester
locations for a vehicle velocity of u¼ 25 m/s, from
Equations (6) and (7). The responses are obtained
using 20 modes of the bridge. Three separate locations
are considered for the harvester at one quarter (L/4), one
third (L/3), and at half (L/2) the length of the bridge.
Note that the magnitude and the frequency content of
the curves change as the harvester position is changed.
Since the vehicle speed is relatively low, the peak dis-
placement responses for all these three locations are
seen to be at the first natural frequency of the bridge.
Note that the third mode at !3/!1¼ 9 does not appear in
the response at L/3 because this location is a node of the
mode shape. Similarly, the second mode at !2/!1¼ 4
does not appear in the response at L/2. The remaining
results are for a harvester located at L/3. Figure 3 shows
the time response of the bridge for u¼ 25 m/s calculated
by the inverse FFT from the frequency domain result in
Figure 2. The response may also be calculated by direct
numerical integration of the equations of motion in the
time domain, and the result is exactly the same. The
response shows a relatively complex motion while the
vehicle is on the bridge. However, once the vehicle has
left the bridge, the response is essentially the damped
first modal response.

Table 1. Parameter values used in the simulation

Bridge Energy harvester

m 4800 kg/m mh 2.500 g

z 0.02 z 0.038

E 27.5 GN/m2 kh 0.4286 N/m

I 0.12 m4 !h 2.084 Hz

L 25 m % 7.501 mC/m
P 12 kN Cp 2.866 nF

!1 2.084 Hz k 0.2140

uc 104.2 m/s
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Figure 4 shows the low frequency response for dif-
ferent vehicle speeds. Except for u¼ 15 m/s, there is a
distinct peak in the excitation spectrum at the first nat-
ural frequency of the bridge. There are also distinct
zero responses at frequencies given, from Equation

(7), by !¼ [1 3 5 7 9. . .] pu/L. For u¼ 15 m/s, one of
these frequencies is close to the first natural frequency
of the bridge, and hence there is no resonance.

The energy generated by the harvester for different
vehicle speeds may be calculated by numerical integra-
tion of Equation (25). The non-dimensional frequency
increment is chosen as 7.63( 10%5 and is sufficiently
small to capture the peaks in the frequency response
data. For the electrical circuit without an inductor,
the load resistance must be chosen, which is equivalent
to choosing a value for a (since the harvester’s natural
frequency is designed to be equal to the first natural
frequency of the bridge and the capacitance is fixed
by the choice of piezoelectric sensor). Figure 5 shows
the energy generated for four vehicle speeds and a range
of values of a. The energy generated is small, but it
should be remembered that the harvester mass is only
2.5 g; increasing the harvester size, and therefore mass,
will increase the energy produced. Clearly, there is an
optimum choice of a that generates the maximum
energy; this value of a is less than 1 and varies slightly
with vehicle speed between 0.85 and 0.9 approximately.
Suppose a is now fixed at 0.9 and the vehicle speed
speed, u, varied between 10 and 25 m/s. The energy
generated is shown in Figure 6; the effect is clearly
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Figure 2. Frequency response of the base excitation of the harvester for different harvester locations (L/4(a), L/3(b), and L/2(c)) and
a vehicle speed u¼ 25 m/s.
Note: The frequency, !, is normalized by the first natural frequency of the bridge, !1.
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Figure 3. Time response of the bridge at location L/3 and vehi-
cle speed u ¼ 25 m/s.
Note: The vertical dashed line indicates the time when the vehi-
cle leaves the bridge.
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seen of the interaction of the zeros in the bridge’s
response (that depend on the vehicle speed) and the
first natural frequency of the bridge, as highlighted in
Figure 4.

Figure 7 shows the effect of varying b on the energy
generated from a harvester incorporating an inductor.
For this case, the load resistance has been fixed so that
a¼ 0.9 and a single vehicle speed of u¼ 25 m/s has been
considered. The maximum energy generated occurs for
a value of b just below 1; note that b¼ 1 means that the
mechanical and electrical natural frequencies of the
harvester are equal. The maximum energy generated
has been increased over the electrical circuit without
an inductor by approximately 40%. If the inductor
were implemented synthetically (and hence would con-
sume power), then the small increase in energy gener-
ated would probably be insufficient to make the
inductor circuit practical.

Conclusion

The increasing need for wireless SHM increases the
requirements to power these devices. An environmental
friendly possibility is to harvest energy from the host
structure to generate power for the wireless devices.
This article assumes a single piezoelectric energy
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Figure 4. Frequency response of the base excitation of the harvester located at L/3 for different vehicle speeds, u.
Note: The frequency, !, is normalized by the first natural frequency of the bridge, !1.
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a¼ 0.9 and u¼ 25 m/s.
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harvester embedded inside the bridge deck and con-
siders two types of electrical circuits. An analytical for-
mulation is given for the energy generated by the
harvester for a single vehicle of a given mass crossing
at a known speed, and this is easily extended for a gen-
eral finite element model of the bridge. The harvester is
tuned to the first resonance frequency of the bridge, as
this produces the highest energy. The generated energy
varies significantly with vehicle speed and mass. This
article provides a preliminary parametric study of an
energy harvester on a highway bridge excited by a
simple vehicle model, but provides valuable insights.
For example, it is unlikely that the resonant electrical
circuit including an inductor will be viable for the low
excitation frequencies encountered in this application.
More advanced vehicle models may be incorporated
into the formulation described and may provide a
wider range of response frequencies to harvest energy.

The extension of the analysis described to multiple
vehicles is very straight-forward since the equations of
motion are linear. If vehicles of equal mass arrived at
the bridge at regularly spaced intervals with identical
speeds, then the energy results in this article are easily
converted into average power. More realistically, traffic
statistics will determine probability density functions
for the time of arrival of vehicles at the bridge, and
also their mass and speed. Using the analysis described
in this article, these statistics are easily combined using
a Monte Carlo analysis into a probability density func-
tion for the average power generated. Clearly, this aver-
age power will be a function of the traffic flow and
hence indirectly, the day of the week and the time.
However, such information would allow an energy
management system to be designed, which would
include energy storage in some form and would account
for the requirements of the health monitoring or other
system to be powered.
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