
A

S
C

a

A
R
A

K
D
I
D
E

1

c
e

M

H
v
a
s
m
(
(

K

s

x

a

x

w
m

X

v

0
d

Mechanics Research Communications 38 (2011) 226–230

Contents lists available at ScienceDirect

Mechanics Research Communications

journa l homepage: www.e lsev ier .com/ locate /mechrescom

n iterative approach for nonproportionally damped systems

. Adhikari ∗

ollege of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK

r t i c l e i n f o

rticle history:

a b s t r a c t

Modal analysis of nonproportionally damped linear dynamic systems is considered. Dynamic response of

eceived 21 July 2010
vailable online 25 February 2011

eywords:
ynamic systems

terative approach

such systems can be expressed by a modal series in terms of complex modes. Normally state-space based
methods or approximate perturbation methods are necessary for the computation of complex modes. In
this paper, an iterative method to calculate complex modes from classical normal modes for general linear
systems is proposed. A simple numerical algorithm is developed to implement the iterative method. The
new method is illustrated using a numerical example.
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amping
igenvalue problem

. Introduction

The equation of motion of an n-degree-of-freedom linear vis-
ously damped system can be expressed by coupled differential
quations as

ü(t) + Cu̇(t) + Ku(t) = f(t). (1)

ere u(t) ∈Rn is the displacement vector, f(t) ∈Rn is the forcing
ector, M, K, C ∈Rn×n are respectively the mass matrix, stiffness
nd the viscous damping matrix. In general M is a positive definite
ymmetric matrix, C and K are non-negative definite symmetric
atrices. The natural frequencies (ωj ∈R) and the mode shapes

xj ∈Rn) of the corresponding undamped system can be obtained
Meirovitch, 1997) by solving the matrix eigenvalue problem

xj = ω2
j Mxj, ∀j = 1, 2, . . . , n. (2)

The undamped eigenvectors satisfy an orthogonality relation-
hip over the mass and stiffness matrices, that is

T
k Mxj = ıkj (3)

nd

T
k Kxj = ω2

j ıkj, ∀k, j = 1, 2, . . . , n (4)

here ıkj is the Kroneker delta function. We construct the modal
atrix
= [x1, x2, . . . , xn] ∈Rn. (5)

The modal matrix can be used to diagonalize system (1) pro-
ided the damping matrix C is simultaneously diagonalizable

∗ Tel.: +44 01792 602088; fax: +44 01792 295676.
E-mail address: S.Adhikari@swansea.ac.uk

093-6413/$ – see front matter © 2011 Elsevier Ltd. All rights reserved.
oi:10.1016/j.mechrescom.2011.02.009
with M and K. This condition, known as the proportional damp-
ing, originally introduced by Lord Rayleigh (Rayleigh, 1877) in
1877, is still in wide use today. The mathematical condition
for proportional damping can be obtained from the commuti-
tative behaviour of the system matrices (Caughey and O’Kelly,
1965). This can be expressed as CM−1K = KM−1C or equivalently
C = Mf(M−1K) as shown by Adhikari (2006). The concern of this
paper is when this condition is not met, the most likely case for
many practical applications. In particular, due to the recent devel-
opments in actively controlled structures and the increasing use of
composite and smart materials, the need to consider general non-
proportionally damped linear dynamic systems is more than ever
before.

For nonproportionally damped systems, the modal damping
matrix

C′ = XT CX (6)

is not a diagonal matrix. Such problems can be solved using a spec-
tral approach similar to the undamped or proportionally damped
system by transforming Eq. (1) into a state-space form (Meirovitch,
1997). The state-space approach is not only computationally more
expensive, it also lacks the physical insight provided by the classical
normal mode based approach. Therefore, many authors have devel-
oped approximate methods in the original space. Rayleigh (1877)
proposed a perturbation method which form the basis of many con-
temporary approximation methods (Adhikari, 1999a; ElBeheiry,
2009; Adhikari, 1999b). It is now known that either the frequency
separation between the normal modes (Hasselsman, 1976), often

known as ‘Hasselsman’s criteria’, or some form of diagonal domi-
nance (Shahruz and Ma, 1988; Morzfeld et al., 2009; Adhikari, 2004;
Morzfeld et al., 2008) in the modal damping matrix C′ is sufficient
for neglecting modal coupling. In a recent work, Udwadia (2009)
proved that for systems with non-repeated eigenvalues, the best

dx.doi.org/10.1016/j.mechrescom.2011.02.009
http://www.sciencedirect.com/science/journal/00936413
http://www.elsevier.com/locate/mechrescom
mailto:S.Adhikari@swansea.ac.uk
dx.doi.org/10.1016/j.mechrescom.2011.02.009
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pproximation of a diagonal modal damping matrix is simply to
onsider the diagonal of the C′ matrix.

The eigenvalue problem corresponding to system (1) can be
xpressed as

s2
j M + sjC + K]uj = 0, ∀j = 1, 2, . . . , 2n (7)

here sj∈C are the eigenvalues and uj∈Cn are the eigenvectors.
omprehensive details on this type of quadratic eigenvalue prob-

em can be found in Tisseur and Meerbergen (2001). Since M, K and
are all real matrices, the eigensolutions are either real or they

ppear in the complex conjugate pairs. In this paper we consider
omplex conjugate eigensolutions only as for stable systems such
igenvalues are of great practical importance. Using the eigensolu-
ions, the frequency response function (FRF) can be obtained (see
or example (Adhikari, 1999a; Tisseur and Meerbergen, 2001)) as

(iω) =
n∑

j=1

[
�jujuT

j

iω − sj
+

�∗
j
u∗

j
u∗T

j

iω − s∗
j

]
where

�j = 1
uT

j
[2sjM + C]uj

. (8)

Here (•)* denotes complex conjugation and (•)T denotes matrix
ransposition. This equation shows that if the complex eigensolu-
ions sj and uj can be obtained efficiently, the dynamic response can
e obtained exactly using Eq. (8). In this paper an iterative approach

s developed to obtain the complex eigensolutions of nonpropor-
ionally damped systems from the undamped eigensolutions.

. Iterative approach for the eigensolutions

Ibrahimbegovic and Wilson (1989) have developed a procedure
or analyzing non-proportionally damped systems using a subspace
ith a vector basis generated from the mass and stiffness matrices.

heir approach avoids the use of complex eigensolutions. In the
ime domain, an iterative approach for solving the coupled equa-
ions was developed by Udwadia and Esfandiari (1990) based on
pdating the forcing term appropriately. In the method proposed
ere, we obtain the complex modes and complex frequencies in an

terative manner.
For distinct undamped eigenvalues (ω2

l
), xl, ∀l = 1, . . . ,n, form a

omplete set of vectors. For this reason, uj can be expanded as a
omplex linear combination of xl. Thus, an expansion of the form

j =
n∑

l=1

˛(j)
l

xl (9)

ay be considered. Without any loss of generality, we can
ssume that ˛(j)

j
= 1 (normalization) which leaves us to determine

(j)
l

, ∀l /= j. Substituting the expansion of uj into the eigenvalue
quation (7), one obtains the approximation error for the j-th mode
s

j =
n∑

l=1

s2
j ˛(j)

l
Mxl + sj˛

(j)
l

Cxl + ˛(j)
l

Kxl. (10)

We use a Galerkin approach to minimize this error by view-

ng the expansion (9) as a projection in the basis functions
l ∈Rn, ∀l = 1, 2, . . . , n. Therefore, we make the error orthogonal
o the basis functions, that is

j ⊥ xl or xT
k εj = 0, ∀k = 1, 2, . . . , n. (11)
unications 38 (2011) 226–230 227

Using the orthogonality property of the undamped eigenvectors
described by (3) and (4) one obtains

s2
j ˛(j)

k
+ sj

n∑
l=1

˛(j)
l

C ′
kl + ω2

k ˛(j)
k

= 0, ∀k = 1, . . . , n (12)

where C ′
kl

= xT
k
Cxl are the elements of the modal damping matrix C′

defined in Eq. (6). The j-th equation of this set obtained by setting
k = j can be written as

(s2
j + sjC

′
jj + ω2

j )˛(j)
j

+ sj

n∑
l /= j

˛(j)
l

C ′
jl = 0. (13)

Recalling that ˛(j)
j

= 1 and C′ is a symmetric matrix, this equation
can be rewritten as

s2
j + sj

⎛
⎝C ′

jj +
n∑

l /= j

˛(j)
l

C ′
lj

⎞
⎠

︸ ︷︷ ︸
�j

+ ω2
j = 0 (14)

where

�j = C ′
jj + bT

j aj (15)

bj = {C ′
1j, C ′

2j, . . . , {j-th term deleted}, . . . , C ′
nj}

T ∈R(n−1) (16)

and

aj = {˛(j)
1 , ˛(j)

2 , . . . , {j-th term deleted}, . . . , ˛(j)
n }T ∈C(n−1) (17)

The vector aj is unknown and can be obtained by excluding the
j = k case in Eq. (12). Excluding this case one has

s2
j ˛(j)

k
+ sj

⎛
⎝C ′

kj + ˛(j)
k

C ′
kk +

n∑
l /= k /= j

˛(j)
l

C ′
kl

⎞
⎠ + ω2

k ˛(j)
k

= 0, or

(s2
j + ω2

k+C ′
kk)˛(j)

k
+sj

n∑
l /= k /= j

C ′
kl˛

(j)
l

= − sjC
′
kj, ∀k = 1, . . . , n; /= j.

(18)

These equations can be combined into a matrix form as

[Pj − Qj]aj = bj. (19)

In the above equation, the vectors aj and bj have been defined
before. The matrices Pj and Qj are defined as

Pj = diag

[
s2

j
+ sjC

′
11 + ω2

1

−sj
, . . . , {j-th term deleted}, . . . ,

×
s2

j
+ sjC

′
NN + ω2

n

−sj

]
∈C(n−1)×(n−1), (20)

and

Qj =

⎡
⎢⎢⎢⎢⎢

0 C ′
12 . . . {j-th term deleted} . . . C ′

1n

C ′
21 0

.

.

.
.
.
.

.

.

. C ′
2n

.

.

.
.
.
.

.

.

. {j-th term deleted}
.
.
.

.

.

.

⎤
⎥⎥⎥⎥⎥ ∈R(n−1)×(n−1). (21)
⎣ .

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

C ′
n1 C ′

n2 . . . {j-th term deleted} . . . 0

⎦
From Eq. (19), aj should be obtained by solving the set of linear

equations. Because Pj is a diagonal matrix, one way to do this is
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y using the Neumann expansion method (Adhikari, 1999a). Using
he Neumann expansion we have

j = [In−1 − P−1
j Qj]

−1{P−1
j bj} = [In−1 + Rj + R2

j + R3
j + . . .]aj0 (22)

here In−1 is a (n − 1) × (n − 1) identity matrix,

j = P−1
j Qj ∈C(n−1)×(n−1) and aj0 = P−1

j bj ∈C(n−1). (23)

Because Pj is a diagonal matrix, its inversion can be carried out
nalytically and subsequently the closed-form expressions of of the
lements of aj can be obtained. Keeping one term in the series (22),
he first-order expression of the elements of aj can be obtained as

j ≡ {˛(j)
k

}∀k /= j
=

sjC
′
kj

ω2
k

+ s2
j

+ sjC
′
kk

. (24)

Similarly, the second-order expression of the elements of aj can
e obtained as

j ≡ {˛(j)
k

}∀k /= j
=

sjC
′
kj

ω2
k

+ s2
j

+ sjC
′
kk

+
n∑

l = 1
l /= j /= k

s2
j
C ′

kl
C ′

lj

(ω2
k

+ s2
j

+ sjC
′
kk

) (ω2
l

+ s2
j

+ sjC
′
ll
)
. (25)

The vector aj obtained using this way can be substituted back
n the expression of the eigenvalues in (14), which in turn can be
olved for sj as

j =
−(�j ± i

√
4ω2

j
− �2

j
)

2
. (26)

However, the vector aj is also a function of sj. As a result � j
ecomes a function of sj. This forms the basics of the iterative
pproach as from Eq. (26) one can write

(r+1)
j

=
−�j(s

(r)
j

)

2
± i

√
ω2

j
− �2

j
(s(r)

j
)

4
; r = 0, 1, 2, . . . (27)

For every iteration step, the vector aj gets updated based on
ew values of sj using Eq. (24) or (25) depending on the order of
erms retained in the series (22). The iteration can be started with
he equivalent proportional damping assumption (Udwadia, 2009),
amely

(0)
j

=
−C ′

jj

2
± i

√
ω2

j
− C ′2

jj

4
(28)

The iteration can be stopped when the successive values of sj or

j do not change significantly. Once the final values of ˛(j)
k

, ∀k are
btained, the j-th complex mode uj can be obtained from the series
9).

The necessary and sufficient conditions for the convergence of
he proposed method are difficult to obtain. Below we give a suffi-
ient condition.

roposition 1. A sufficient condition for the convergence of the pro-
osed iterative method is that C′ is a diagonally dominant matrix.

roof. During the iteration process, the value of sj changes for

ifferent iteration steps. We aim to derive the condition for the
onvergence of series (22) for an arbitrary value of sj. This will guar-
ntee the convergence of the iterative method, no matter what the
alue of sj. The complex matrix power series (22) converges if, and

nly if, for all the eigenvalues �(j)
l

of the matrix Rj, the inequality
unications 38 (2011) 226–230

|�(j)
l

| < 1 holds. Although this condition is both necessary and suf-
ficient, checking convergence for all j = 1, . . . ,n is not feasible for
every iteration step. So we look for a sufficient condition which
is relatively easy to check and which ensures convergence for all
j = 1, . . . ,n.

For an arbitrary r-th iteration, let us denote the matrix Rj defined

in Eq. (23) as R(r)
j

. Suppose the value of sj for the rth iteration step

is s(r)
j

. The kl-th element of the matrix R(r)
j

can be obtained as

R(r) =
−s(r)

j
C ′

kl
(1 − ıkl)

ω2
k

+ s(r)2

j
+ s(r)

j
C ′

kk

, ∀k, l /= j (29)

Since a matrix norm is always greater than or equal to its max-
imum eigenvalue, it follows from the inequality |�(j)

l
| < 1 that the

convergence of the series is guaranteed if ||R(r)
j

|| < 1. Writing the

sum of absolute values of entries of R(r)
j

results in the following
inequality as the required sufficient condition for the convergence

n∑
k = 1
k /= j

n∑
l = 1
l /= j

∣∣∣∣∣∣
s(r)

j
C ′

kl

ω2
k

+ s(r)2

j
+ s(r)

j
C ′

kk

∣∣∣∣∣∣ (1 − ılk) < 1 (30)

Dividing both the numerator and denominator by s(r)
j

, the above
inequality can be written as

n∑
k = 1
k /= j

n∑
l = 1

l /= i /= k

|C ′
kl

|
|1/s(r)

j
(ω2

k
+ s(r)2

j
) + C ′

kk
|

< 1 (31)

Taking the maximum for all k /= j, this condition can further be
represented as

max
k /= j

∑n

l = 1
l /= j, k

|C ′
kl

|

|1/s(r)
j

(ω2
k

+ s(r)2

j
) + C ′

kk
|

< 1 (32)

It is clear that (32) always holds if

n∑
l = 1

l /= j /= k

|C ′
kl| < |C ′

kk|, ∀k /= j (33)

which in turn implies that, for all j = 1, . . . ,n, the inequality ||R(r)
j

|| <

1 holds if C′ is a diagonally dominant matrix. It is important to
note that the diagonal dominance of C′ is only a sufficient condition
and the lack of it does not necessarily prevent convergence of the
proposed iterative method. �

3. Summary of the algorithm

In this section we propose a simple iterative algorithm to imple-
ment the idea developed in the previous section. We select a
tolerance between the difference of the successive values of sj,

denoted by εm. A small value, say εm = 0.001 can be selected for
numerical calculations. Considering that the undamped eigenso-
lutions (ωj and xj) and the modal damping matrix C′ is known,
the complex eigensolutions (sj and uj) can be obtained using the
following iterative algorithm:
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Table 1
The complex eigenvalues of the system obtained using the proposed method is compared with the exact state-space method and the first-order perturbation method. The
numbers in the parenthesis represent the percentage error.

Eigenvalue number State-space (exact) First-order perturbation Proposed iterative method

0.0125
0.1458
0.4250

f

e

g
o
t
a
t
f
t

p
T
t
i
n
s
b
t
o

F
m

1 −0.0103 + 0.6298i −
2 −0.0478 + 1.2407i −
3 −0.5252 + 1.2890i −

or j = 1,2, . . . ,n do
Initialize ε = 100, r = 0

s(r)
j

=
−C′

jj
2 ± i

√
ω2

j
−C′2

4

bj = {C ′
1j

, C ′
2j

, . . . , {j-th term deleted}, . . . , C ′
nj

}T

while ε > εm do

aj(s
(r)
j

) ≡ {˛(j)
k

}∀k /= j
=

s(r)
j

C′
kj

ω2
k
+s(r)2

j
+s(r)

j
C′

kk

�j = C ′
jj

+ bT
j aj(s

(r)
j

)

s(r+1)
j

=
−�j (s

(r)
j

)

2 ± i

√
ω2

j
−�2

j
(s(r)

j
)

4

ε =
|s(r+1)

j
−s(r)

j
|

|s(r)
j

|

r = r + 1
end while
uj =

∑n

k=1
˛(j)

k
xk

nd for

The algorithm is outlined for the first-order expression of ˛(j)
k

iven by Eq. (24). However, the extension to the second or higher
rder expressions is straightforward. One simply needs to change
he expression of aj(s

(r)
j

) in this algorithm. If the higher-order terms
re used, then less number of steps in the iteration are needed. Once
he complex eigensolutions sj and uj are obtained using this method
or all j, the dynamic response such as the frequency response func-
ion can be obtained exactly using Eq. (8).

The computational complexity to solve algebraic eigenvalue
roblems scale cubically with the dimension (Wilkinson, 1988).
herefore, an estimation of the order of calculations needed to solve
he eigenvalue problem of a matrix of size n is O(n3) for large n. This
s the computational time for an undamped system of dimension

. Suppose the computational cost for the iteration of each eigen-
olution pair (sj and uj) is proportional to cI. The value of cI will
e higher if more number of iterations are used. The total cost of
he iteration would be in order ncI. Adding these two, the order
f calculations needed to approximate the eigensolutions with the
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(a)

ig. 1. A cross-FRF and a driving-point FRF of the system calculated using the exact sta
ethod.
+ 0.6249i (0.8552) −0.0114 + 0.6306i, (0.2018), 2 iterations
+ 1.1547i (10.5023) −0.0468 + 1.2379i, (0.2428), 6 iterations
+ 1.5087i (17.3472) −0.4314 + 1.3687i, (8.8436), 8 iterations

proposed method is O(n3 + CIn). For a general nonproportionally
damped system, the size of the state-space matrix is 2n. There-
fore, the computational time is in the order O((2n)3) = O(8n3). It
is important to note that the order of computation related to the
iteration scale linearly with n as opposed to cubically in the case
of direct state-space method. Therefore when n becomes large as
expected for practical problems, the proposed method has a clear
advantage as O(8n3) > O(n3 + CIn). The idealized computational
efficiency can be obtained as

8n3

n3 + CIn
→ 8(when n → ∞) (34)

Next we illustrate this new method using a numerical example.

4. Numerical illustration

We consider a three-degree-of-freedom system with the mass,
stiffness and damping matrices given by

M =
[

3 0 0
0 3 0
0 0 3

]
, K =

[
4 −2 0
−2 4 −2
0 −2 4

]
and

C =
[

0 0 0
0 1.75 −1.75
0 −1.75 1.75

]
. (35)

The undamped eigenvalues and eigenvectors are obtained as

{ω1, ω2, ω3} = {0.6249, 1.1547, 1.5087} and
[x1, x2, x3] = 1

2
√

3

[
1 −

√
2 −1√

2 0
√

2
1

√
2 −1

]
. (36)
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te-space method, the first-order perturbation method and the proposed iterative
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Note that the last two undamped eigenvalues are very close and
herefore one would expect significant modal coupling. The eigen-
alues obtained using the proposed iterative method is compared
ith the exact state-space method and the first-order perturba-

ion method in Table 1. We have used the first-order expression
f ˛(j)

k
given by Eq. (24) and considered the error tolerance to be

m = 0.001. For the three eigenvalues, respectively 2, 6 and 8 iter-
tions are used. The first-order perturbation results are obtained
rom Eq. (28). The percentage errors are calculated with respect
o the exact state-space results. Due to the high modal coupling,
he first-order perturbation results corresponding to modes 2 and
have considerable errors (10.5023% and 17.3472%, respectively).
sing the proposed iterative method, errors corresponding to these

wo modes reduce to 0.2428% and 8.8436% using 6 and 8 iterations,
espectively. The computational time (obtained using Matlab’s tic
nd toc command) for the state-space method is 0.8912 × 10−2 s.
he computational times for the first-order perturbation and the
roposed iterative method are respectively 0.2367 × 10−2 s and
.2774 × 10−2 s. This implies that for this problem, the proposed
pproach is about 3.2 times more faster compared to the state-
pace method. As discussed before, theoretically the maximum
omputational efficiency can be upto 8 times. However, this can
nly be realized for very large systems. In Fig. 1 results two typical
requency response functions of the system calculated from Eq. (8)
sing the three methods are shown. The modal damping factors for
he three modes are respectively 0.0164, 0.0386 and 0.4074. Due
o the high damping in the third mode, the resonance peak is not
isible. As expected, the first-order perturbation perform poorly
round the second and third mode due to the significant modal
oupling. From these results the relative accuracy of the proposed
terative method can be observed.

. Conclusions

Due to the recent developments in actively controlled struc-
ures and the increasing use of composite and smart materials,
here is a renewed interest to consider general nonproportionally
amped linear dynamic systems. State-space based methods are
ormally used to address such problems. Such methods are com-
utationally more expensive and often do not give the physical

nsight compared to the classical normal mode based method. In
his paper a new iterative method has been proposed to obtain
he complex eigensolutions of a general nonproportionally damped
ystem from the undamped eigensolutions. It is assumed that
ll the eigenvalues are distinct and appear in complex conjugate
airs. The proposed method exploits a mathematical construction

here complex eigenvalues and eigenvectors can be updated from

heir previous values in an iterative manner. A sufficient condition
or the convergence of the proposed iterative method is derived.

simple algorithm is proposed to implement this method. The
omputational complexity of the proposed method is discussed
unications 38 (2011) 226–230

and compared with the state-space method. The applicability of
the proposed method is investigated using an example with a
high degree of modal coupling. Acceptable accuracy has been
observed. Using the iterative method developed here, it is possi-
ble to obtain the eigenvalues, eigenvectors and consequently the
dynamic response of nonproportionally damped systems by post-
processing of the undamped eigenvalues and eigenvectors, which
in turn can be obtained using a general purpose finite element soft-
ware. Future work is necessary to extend this method to systems
with repeated eigenvalues.
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