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a b s t r a c t

The stochastic finite element analysis of elliptic type partial differential equations with non-Gaussian
random fields are considered. A novel approach by projecting the solution of the discretized equation
into a reduced finite dimensional orthonormal vector basis is investigated. It is shown that the solu-
tion can be obtained using a finite series comprising functions of random variables and orthonormal
vectors. These functions, called as the spectral functions, can be expressed in terms of the spectral
properties of the deterministic coefficient matrices arising due to the discretization of the governing
partial differential equation. Based on the projection in a reduced orthonormal vector basis, a Galerkin
error minimization approach is proposed. The constants appearing in the Galerkin method are solved
from a system of linear equations which has much smaller dimension compared to the original
discretized equation. A hybrid analytical and simulation based computational approach is proposed
to obtain the moments and probability density function of the solution. The method is illustrated
using the stochastic nanomechanics of a zinc oxide (ZnO) nanowire deflected under the atomic force
microscope (AFM) tip. The results are compared with the results obtained using direct Monte Carlo
simulation, classical Neumann expansion and polynomial chaos approach for different correlation
lengths and strengths of randomness.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Due to the significant development in computational hardware
it is now possible to solve very high resolution models in various
computational physics problems, ranging from fluid mechanics to
nano-bio mechanics. However, the spatial resolution is not enough
to determine the credibility of a numerical model. The physical
model as well its parameters are also crucial. Since neither of these
may not be exactly known, over the past three decades there has
been increasing research activities to model the governing partial
differential equations within the framework of stochastic equa-
tions. We refer to few recent review papers [1–3]. Consider a
bounded domain D 2 Rd with piecewise Lipschitz boundary @D,
where d 6 3 is the spatial dimension. Further, consider that
ðX;F ; PÞ is a probability space where x 2X is a sample point from
the sampling space X, F is the complete r-algebra over the subsets
of X and P is the probability measure. We consider the stochastic
elliptic partial differential equation (PDE)

�r aðr;xÞruðr;xÞ½ � ¼ pðrÞ; r in D ð1Þ
with the associated Dirichlet condition

uðr;xÞ ¼ 0; r on @D: ð2Þ

Here a : Rd �X! R is a random field [4], which can be viewed as
a set of random variables indexed by r 2 Rd. We assume the ran-
dom field a(r,x) to be stationary and square integrable. Depend-
ing on the physical problem the random field a(r,x) can be used
to model different physical quantities. As an example, for a slow
flow of an incompressible, viscous fluid through a porus media,
a(r,x) would be the random field describing the permeability
of the medium. The purpose of this paper is to investigate a
new solution approach for Eq. (1) after the discretization using
the stochastic finite element method. The stochastic finite ele-
ment method (SFEM) is now a well established technique and
the readers are refereed to earlier works which cover the basics
[5–7].

In Section 2 a brief overview of spectral stochastic finite ele-
ment method is presented. The projection theory in the vector
space is developed in Section 3. In Section 4 an error minimization
approach in the Hilbert space is proposed. The idea of the reduced
orthonormal vector basis is introduced in Section 5. The post pro-
cessing of the results to obtain the response moments are dis-
cussed in Section 6. Based on the theocratical results, a simple
computational approach is proposed in sub Section 6.2. The
numerical approach is applied to the stochastic mechanics of zinc
oxide (ZnO) nanowires in Section 7. From the theoretical develop-
ments and numerical results, some conclusions are drawn in
Section 8.
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2. Overview of the spectral stochastic finite element method

2.1. Discretization of the stochastic PDE

First consider a(r,x) is a Gaussian random field with a covari-
ance function Ca : Rd � Rd ! R defined in the domain D. Since
the covariance function is square bounded, symmetric and positive
definite, it can be represented by a spectral decomposition in an
infinite dimensional Hilbert space. Using this spectral decomposi-
tion, the random process a(r,x) can be expressed [5,8, see for
example] in a generalized Fourier type of series known as the
Karhunen–Loève (KL) expansion

aðr;xÞ ¼ a0ðrÞ þ
X1
i¼1

ffiffiffiffi
mi
p eniðxÞuiðrÞ: ð3Þ

Here a0(r) is the mean function, eniðxÞ are uncorrelated standard
Gaussian random variables, mi and ui(r) are eigenvalues and eigen-
functions satisfying the integral equationZ
D

Caðr1; r2Þujðr1Þdr1 ¼ mjujðr2Þ 8 j ¼ 1;2; . . . ð4Þ

The Gaussian random field model is not applicable for strictly posi-
tive quantities arising in many practical problems. Eq. (3) could also
represent the Karhunen–Loève expansion of a non-Gaussian ran-
dom field, which is also well defined. Alternatively, when a(r,x)
is a general non-Gaussian random field, it can be expressed in a
mean-square convergent series in random variables and spatial
functions using the polynomial chaos expansion. For example
Ghanem [9] expanded log-normal random fields in a polynomial
chaos expansion. In general, non Gaussian random fields can be
expressed in a series like

aðr;xÞ ¼ a0ðrÞ þ
X1
i¼1

niðxÞaiðrÞ; ð5Þ

using Wiener–Askey chaos expansion [10–12]. Here ni(x) are in
general non-Gaussian and correlated random variables and ai(r)
are deterministic functions. In this paper we use this general form
of the decomposition of the random field.

Truncating the series (5) up to the Mth term, substituting a(r,x)
in the governing PDE (1) and applying the boundary conditions, the
discretized equation can be written as

A0 þ
XM

i¼1

niðxÞAi

" #
uðxÞ ¼ f: ð6Þ

Here the global matrices can be expressed as

Ai ¼
X

e

AðeÞi ; i ¼ 0;1;2; . . . ;M: ð7Þ

The element matrices AðeÞi are defined over an element domain
De 2 D such that De

T
De0 ¼ ; for e – e0 and

S
8eDe ¼ D and can

be given by

AðeÞ0 ¼
Z
De

dra0ðrÞBðeÞ
T

ðrÞBðeÞðrÞ ð8Þ

and AðeÞi ¼
ffiffiffiffi
mi
p Z

De

dr aiðrÞBðeÞ
T

ðrÞBðeÞðrÞ; i ¼ 1;2; . . . ;M ð9Þ

In the above equations the B(e)(r) is a deterministic matrix related to
the shape function used to interpolate the solution within the
element e. For the elliptic problem it can be shown [13] that
B(e)(r) =rN(e)(r). The necessary technical details to obtain the
discrete stochastic algebraic equations from the stochastic partial
differential Eq. (1) have become standard in the literature. Excellent
references, for example [5,14–16] are available on this topic. In
Eq. (6), A0 is a symmetric positive definite matrix, Ai 2 Rn�n;

i ¼ 1;2; . . . ;M are symmetric matrices, uðxÞ 2 Rn is the solution
vector and f 2 Rn in the input vector. We assume that the eigen-
values of A0 are distinct. For most practical application uncertain-
ties are small compared to the deterministic values. Therefore, we
normally have

kA0kP k
XM

i¼1

niðxÞAik; 8 x 2 X: ð10Þ

Here by k�k we imply the Frobenius matrix norm [17], defined as
kAk = Trace (AAT) for any A 2 Rn�n. The number of terms M in
Eq. (6) can be selected based on the accuracy desired for the repre-
sentation of the underlying random field. One of the main aim of a
stochastic finite element analysis is to obtain u(x) for x 2X from
Eq. (6) in an efficient manner and is the main topic of this paper.
We propose a solution technique for Eq. (6) when ni(x) are in
general non-Gaussian and correlated random variables.

2.2. Brief review of the solution techniques

The solution of the set of stochastic linear algebraic equations
(6) is a key step in the stochastic finite element analysis. As a re-
sult, several methods have been proposed. These methods include,
first- and second-order perturbation methods [6,18], Neumann
expansion method [19,20], Galerkin approach [21], linear algebra
based methods [22–24] and simulation methods [25]. More re-
cently efficient collocation methods have been proposed [26,27].
Another class of methods which have been used widely in the
literature is known as the spectral methods (see [1] for a recent re-
view). These methods include the polynomial chaos (PC) expansion
[5], stochastic reduced basis method [28–30] and Wiener–Askey
chaos expansion [10–12]. According to the polynomial chaos
expansion, second-order random variables uj(h) can be represented
by the mean-square convergent expansion

ujðxÞ ¼ ui0 h0 þ
X1
i1¼1

ui1 h1ðni1 ðxÞÞ þ
X1
i1¼1

Xi1

i2¼1

ui1 ;i2 h2ðni1 ðxÞ; ni2 ðxÞÞ

þ
X1
i1¼1

Xi1

i2¼1

Xi2

i3¼1

ui1 i2 i3 h3ðni1 ðxÞ; ni2 ðxÞ; ni3 ðxÞÞ

þ
X1
i1¼1

Xi1

i2¼1

Xi2

i3¼1

Xi3

i4¼1

ui1 i2 i3 i4 h4ðni1 ðxÞ; ni2 ðxÞ; ni3 ðxÞ; ni4 ðxÞÞ þ � � � ;

ð11Þ
where ui1 ;...;ir are deterministic constants to be determined and
hrni1 ðxÞ; . . . ; nir ðxÞ is the rth order homogeneous Chaos. When
ni(x) are Gaussian random variables, the functions hrðni1 ðxÞ; . . . ;

nir ðxÞÞ are the rth order Hermite polynomial so that it becomes
orthonormal with respect to the Gaussian probability density func-
tion. The same idea can be extended to non-Gaussian random vari-
ables, provided more generalized functional basis are used [10–12]
so that the orthonormality with respect to the probability density
functions can be retained. When we have a random vector, as in
the case of the solution of Eq. (6), then it is natural to replace the
constants ui1 ;...;ir by vectors ui1 ;...;ir 2 Rn. Suppose the series is trun-
cated after P number of terms. The value of P depends on the
number of basic random variables M and the order of the PC expan-
sion r as

P ¼
Xr

j¼0

ðM þ j� 1Þ!
j!ðM � 1Þ! ¼

M þ r

r

� �
: ð12Þ

After the truncation, there are P number of unknown vectors of
dimension n. Then a mean-square error minimization approach
can be applied and the unknown vectors can be solved using the
Galerkin approach [5]. Since P increases very rapidly with the order
of the chaos r and the number of random variables M, the final
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number of unknown constants Pn becomes very large. As a result
several methods have been developed (see for example [28–32])
to reduce the computational cost. In the polynomial chaos based
solution approach, the only information used to construct the basis
is the probability density function of the random variables. In the
context of the discretized Eq. (6), more information such as the
matrices Ai, i = 0,1,2, . . . ,M are available. It may be possible to con-
struct alternative basis using these matrices. Here we investigate
such an approach, where instead of projecting the solution in the
space of orthonormal polynomials, the solution is projected in an
orthonormal vector basis generated from the coefficient matrices.

3. Spectral decomposition in the vector space

3.1. Derivation of the spectral functions

Following the spectral stochastic finite element method, or
otherwise, an approximation to the solution of Eq. (6) can be
expressed as a linear combination of functions of random variables
and deterministic vectors. Recently Nouy [33,34] discussed the
possibility of an optimal spectral decomposition. The aim is to
use small number of terms to reduce the computation without
loosing the accuracy. Here an orthonormal vector basis is consid-
ered. Fixing a value of x, say x = x1, the solution of Eq. (6)

u(x1) can be expanded in a complete basis as uðx1Þ ¼ að1Þ1 /1þ
að1Þ2 /2 þ � � �a

ð1Þ
n /n. Repeating this for x1, x2, . . . eventually the

whole sample-space can be covered and it would be possible to
expand u(x), " x 2X as a linear combination of /1, /2, . . . ,/n.

We use the eigenvectors /k 2 Rn of the matrix A0 such that

A0/k ¼ k0k
/k; k ¼ 1;2; . . . n ð13Þ

Since the matrix A0 is symmetric and generally positive definite, the
eigenvectors /k for k = 1, 2, . . . ,n forms an orthonormal basis. Note
that in principle any orthonormal basis can be used. This choice is
selected due to the analytical simplicity as will be seen later. For
notational convenience, define the matrix of eigenvalues and
eigenvectors

K0 ¼ diag½k01 ; k02 ; . . . ; k0n � 2 Rn�n and U ¼ /1;/2; . . . ;/n½ � 2 Rn�n:

ð14Þ

Eigenvalues are ordered in the ascending order so that
k01 < k02 < � � � < k0n . Since U is an orthonormal matrix we have
U�1 = UT so that the following identities can be easily established:

UT A0U ¼ K0; A0 ¼ U�TK0U
�1 and A�1

0 ¼ UK�1
0 UT : ð15Þ

We also introduce the transformationseAi ¼ UT AiU 2 Rn�n; i ¼ 0;1;2; . . . ;M: ð16Þ

Note that eA0 ¼ K0, a diagonal matrix and

Ai ¼ U�T eAiU
�1 2 Rn�n; i ¼ 1;2; . . . ;M: ð17Þ

Suppose the solution of Eq. (6) is given by

ûðxÞ ¼ A0 þ
XM

i¼1

niðxÞAi

" #�1

f: ð18Þ

Using Eqs. (14)–(17) and the orthonormality of U one has

ûðxÞ ¼ U�TK0U
�1 þ

XM

i¼1

niðxÞU�T eAiU
�1

" #�1

f ¼ UWðnðxÞÞUT f;

ð19Þ

where

WðnðxÞÞ ¼ K0 þ
XM

i¼1

niðxÞeAi

" #�1

ð20Þ

and the M-dimensional random vector

nðxÞ ¼ n1ðxÞ; n2ðxÞ; . . . ; nMðxÞf gT
: ð21Þ

Now we separate the diagonal and off-diagonal terms of the eAi

matrices aseAi ¼ Ki þ Di; i ¼ 1;2; . . . ;M: ð22Þ

Here the diagonal matrix

Ki ¼ diag½eA� ¼ diag½ki1 ; ki2 ; . . . ; kin � 2 Rn�n ð23Þ

and the matrix containing only the off-diagonal elements
Di ¼ eAi � Ki is such that Trace (Di) = 0. Using these, from Eq. (20)
one has

WðnðxÞÞ ¼ K0 þ
XM

i¼1
niðxÞKi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

KðnðxÞÞ

þ
XM

i¼1
niðxÞDi|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

DðnðxÞÞ

2664
3775
�1

; ð24Þ

where KðnðxÞÞ 2 Rn�n is a diagonal matrix and D(n(x)) is an off-
diagonal only matrix. We rewrite Eq. (24) as

WðnðxÞÞ ¼ KðnðxÞÞ In þ K�1ðnðxÞÞDðnðxÞÞ
� �� ��1

: ð25Þ

The above expression can be represented using a Neumann type of
matrix series [19] as

WðnðxÞÞ ¼
X1
s¼0

ð�1Þs K�1ðnðxÞÞDðnðxÞÞ
� �s

K�1ðnðxÞÞ: ð26Þ

Taking an arbitrary rth element of ûðxÞ, Eq. (19) can be rear-
ranged to have

ûrðxÞ ¼
Xn

k¼1

Urk

Xn

j¼1

WkjðnðxÞÞ /T
j f

� 	 !
: ð27Þ

Defining

CkðnðxÞÞ ¼
Xn

j¼1

WkjðnðxÞÞð/T
j fÞ ð28Þ

and collecting all the elements in Eq. (27) for r = 1, 2, . . . , n one has

ûðxÞ ¼
Xn

k¼1

CkðnðxÞÞ/k: ð29Þ

This shows that the solution vector ûðxÞ can be projected in the
space spanned by /k.

Now assume the series in Eq. (26) is truncated after mth term.
We define the truncated function

WðmÞðnðxÞÞ ¼
Xm

s¼0

ð�1Þs K�1ðnðxÞÞDðnðxÞÞ
� �s

K�1 nðxÞð Þ: ð30Þ

From this one can obtain a sequence for different m

ûðmÞðxÞ ¼
Xn

k¼1

CðmÞk nðxÞð Þ/k; m ¼ 1;2;3; . . . ð31Þ

Since x 2X is arbitrary, comparing (6) and (18) we observe that
ûðmÞðxÞ is the solution of Eq. (6) for every x when m ?1. This im-
plies that

Prob x 2 X : lim
m!1

ûðmÞðxÞ ¼ ûðxÞ
n o

¼ 1: ð32Þ
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Therefore, ûðxÞ is the solution of Eq. (6) in probability. In this der-
ivation, the probability density function of the random variables has
not been used. Therefore, the random variables can be general as
long as the solution exists.

Remark 1. The matrix power series in (26) is different from the
classical Neumann series [19]. The classical Neumann series is a
power series in A�1

0 ½DAðnðxÞÞ�, where the first term is deterministic
and the second term is random. The elements of this matrix series
are polynomials in ni(x). In contrast, the series in (26) is in terms of
[K�1 (n(x))][D(n(x))], where both terms are random. The ele-
ments of this matrix series are not simple polynomials in ni(x), but
are in terms of a ratio of polynomials as seen in Eq. (34). The
convergence of this series depends of the spectral radius of

R ¼ K�1ðnðxÞÞDðnðxÞÞ: ð33Þ

A generic term of this matrix can be obtained as

Rrs ¼
Drs

Krr
¼

PM
i¼1niðxÞDirs

k0r þ
PM

i¼1niðxÞkir

¼
PM

i¼1niðxÞeAirs

k0r þ
PM

i¼1niðxÞeAirr

; r – s: ð34Þ

Since A0 is positive definite, k0r > 0 for all r. It can be seen from Eq.
(34) that the spectral radius of R is also controlled by the diagonal
dominance of the eAi matrices. If the diagonal terms are relatively
larger than the off-diagonal terms, the series will converge faster
even if the relative magnitude of k0r is not large.

The series in (31) approaches to the exact solution of the gov-
erning Eq. (6) for every x 2X for m ?1. For this reason it con-
verges in probability 1. The convergence in probability 1 is a
stronger convergence than, for example, the mean-square conver-
gence often used in the stochastic finite element analysis. Since the
convergence in probability 1 automatically implies the mean-
square convergence, the series in Eq. (29) is also a mean-square
convergent series.

Definition 1. The functions Ck(n(x)), k = 1, 2, . . . ,n are called the
spectral functions as they are expressed in terms of the spectral
properties of the coefficient matrix A0 arising in the discretized
equation.

For certain class of problems the series in Eq. (29) can give use-
ful physical insights into the uncertainty propagation. For struc-
tural mechanics problems, the matrix A0 is the stiffness matrix
and its eigenvectors /k are proportional to vibrational modes with
a lumped mass assumption [35]. Eq. (29) says that the response of
a stochastic system is a linear combination of the fundamental
deformation modes weighted by the random variables Ck.

3.2. Properties of the spectral functions

In this section we discuss some important properties of these
functions. From the series expansion in Eq. (26) we have

WðnðxÞÞ ¼ K�1ðnðxÞÞ � K�1ðnðxÞÞDðnðxÞÞK�1ðnðxÞÞ
þ K�1ðnðxÞÞDðnðxÞÞK�1ðnðxÞÞDðnðxÞÞK�1ðnðxÞÞ þ � � �

ð35Þ

Since K(n(x)) is a diagonal matrix, its inverse is simply a diagonal
matrix containing the inverse of each of the diagonal elements. Also
recall that the diagonal of D(n(x)) contains only zeros. Different
terms of the series in (35) can be obtained using a simple recursive
relationship [19]. The numerical computation of the series is there-
fore computationally very efficient. For further analytical results,
the spectral functions of the different orders are defined by truncat-
ing the series up to different terms.

Definition 2. The first-order spectral functions Cð1Þk ðnðxÞÞ; k ¼
1;2; . . . ;n are obtained by retaining only one term in the series (35).

Retaining one term in (35) we have

Wð1ÞðnðxÞÞ ¼ K�1ðnðxÞÞ or Wð1Þkj ðnðxÞÞ ¼
dkj

k0k
þ
PM

i¼1niðxÞkik

:

ð36Þ

Using the definition of the spectral function in Eq. (28), the first-or-
der spectral functions can be explicitly obtained as

Cð1Þk ðnðxÞÞ ¼
Xn

j¼1

Wð1Þkj ðnðxÞÞð/
T
j fÞ ¼ /T

k f

k0k
þ
PM

i¼1niðxÞkik

: ð37Þ

From this expression it is clear that Cð1Þk ðnðxÞÞ are correlated non-
Gaussian random variables. Since we assumed that all eigenvalues
k0k

are distinct, every Cð1Þk ðnðxÞÞ in Eq. (37) are different for different
values of k.

Definition 3. The second-order spectral functions Cð2Þk ðnðxÞÞ;
k ¼ 1;2; . . . ; n are obtained by retaining two terms in the series
(35).

Retaining two terms in (35) we have

Wð2ÞðnðxÞÞ ¼ K�1ðnðxÞÞ � K�1ðnðxÞÞDðnðxÞÞK�1ðnðxÞÞ; ð38Þ

or Wð2Þkj ðnðxÞÞ ¼
dkj

k0k
þ
PM

i¼1niðxÞkik

�
PM

i¼1niðxÞDikj

k0k
þ
PM

i¼1niðxÞkik

� 	
k0j
þ
PM

i¼1niðxÞkij

� 	 : ð39Þ

Using the definition of the spectral function in Eq. (28), the second-
order spectral functions can be obtained in closed-form as

Cð2Þk ðnðxÞÞ ¼
/T

k f

k0k
þ
PM

i¼1niðxÞkik

�
Xn

j–k
j¼1

/T
j f

� 	PM
i¼1niðxÞDikj

ðk0k
þ
PM

i¼1niðxÞkik Þðk0j
þ
PM

i¼1niðxÞkij Þ
: ð40Þ

The second-order function can be viewed as adding corrections to
the first-order expression derived in Eq. (37).

Definition 4. The vector of spectral functions of order s can be
obtained by retaining s terms in the series (35) and can be
expressed as

CðsÞðnðxÞÞ ¼ In � RðnðxÞÞ þ RðnðxÞÞ2 � RðnðxÞÞ3 . . . sthterm
h i

Cð1ÞðnðxÞÞ;

ð41Þ

where In is the n-dimensional identity matrix and R is defined in Eq.
(33) as R(n(x)) = [K�1 (n(x))] [D(n(x))]. Different terms of this ser-
ies can be obtained recursively from the previous term [19].

In order to obtain further insight into these functions, we look
into the functional nature of the solution u(x) in terms of the ran-
dom variables ni(x). Suppose we denote

AðxÞ ¼ A0 þ
XM

i¼1

niðxÞAi

" #
2 Rn�n; ð42Þ

so that

uðxÞ ¼ A�1ðxÞf: ð43Þ

From the definition of the matrix inverse (omitting x for notational
convenience) we have

A�1 ¼ AdjðAÞ
detðAÞ ¼

CT
a

detðAÞ ; ð44Þ
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where Ca is the matrix of cofactors. The determinant of A contains a
maximum of n number of products of Akj and their linear combina-
tions. Note from Eq. (42) that

AkjðxÞ ¼ A0kj
þ
XM

i¼1

niðxÞAikj
: ð45Þ

Since all the matrices are of full rank, the determinant contains a
maximum of n number of products of linear combination of random
variables in Eq. (45). On the other hand, each entries of the matrix of
cofactors, contains a maximum of (n � 1) number of products of lin-
ear combination of random variables in Eq. (45). From Eqs. (43) and
(44) it follows that:

uðxÞ ¼ CT
a f

detðAÞ : ð46Þ

Therefore, the numerator of each element of the solution vector
contains linear combinations of the elements of the cofactor matrix,
which are complete polynomials of order (n � 1). This implies that
the elements of u(x) are the ratio of polynomials of the form

pðn�1Þ n1ðxÞ; n2ðxÞ; . . . ; nMðxÞð Þ
pðnÞðn1ðxÞ; n2ðxÞ; . . . ; nMðxÞÞ

; ð47Þ

where p(n)(n1(x),n2(x), . . . ,nM(x)) is an nth order complete multi-
variate polynomial of variables n1(x), n2(x), . . . ,nM(x).

This result is important because different solution methods
essentially aim to approximate the ratio of the polynomials given
in Eq. (47). It is clear that the functional form of the elements of
the solution vector is not a polynomial in the random variables.
Aiming to express the ratio of two polynomials, where the denom-
inator has higher degree compared to the numerator, by a series of
polynomials (e.g., in polynomial chaos, Neumann expansion or
perturbation methods) may require many terms. It can be shown
that the linear combination of the spectral functions has the same
functional form in (n1(x),n2(x), . . . ,nM(x)) as the elements of the
solution vector given in Eq. (47).

When first-order spectral functions (37) are considered, we
have

ûð1Þr ðxÞ ¼
Xn

k¼1

Cð1Þk ðnðxÞÞ/rk ¼
Xn

k¼1

/T
k f

k0k
þ
PM

i¼1niðxÞkik

/rk: ð48Þ

All k0k
þ
PM

i¼1niðxÞkik

� 	
are different for different k because it is as-

sumed that all eigenvalues k0k
are distinct. Carrying out the above

summation one has n number of products of k0k
þ
PM

i¼1niðxÞkik

� 	
in the denominator and n sums of (n � 1) number of products of

k0k
þ
PM

i¼1niðxÞkik

� 	
in the numerator, that is,

ûð1Þr ðxÞ ¼

Pn
k¼1ð/

T
k fÞ/rk

Qn�1

j¼1
j–k

k0j
þ
PM

i¼1niðxÞkij

� 	
Qn�1

k¼1
k0j
þ
PM

i¼1niðxÞkij

� 	 : ð49Þ

This has the same form as Eq. (47). For the second-order spectral
functions (40)

ûð2Þr ðxÞ ¼
Xn

k¼1

Cð2Þk ðnðxÞÞ/rk

¼
Xn

k¼1

/T
k f

k0k
þ
PM

i¼1niðxÞkik

"

�
Xn

j–k
j¼1

/T
j f

� 	PM
i¼1niðxÞDikj

k0k
þ
PM

i¼1niðxÞkik

� 	
k0j
þ
PM

i¼1niðxÞkij

� 	
375/rk

¼ ûð1Þr ðxÞ �
Xn

k¼1

Xn

j¼1
j–k

/T
j f

� 	PM
i¼1niðxÞDikj

k0k
þ
PM

i¼1niðxÞkik

� 	
k0j
þ
PM

i¼1niðxÞkij

� 	/rk:

ð50Þ

Carrying out the above summation we again see that this has the
same form as Eq. (47).

This proves that the nature of the solution has the same math-
ematical form of the exact solution, that is, the ratio of two polyno-
mials in (n1(x),n2(x), . . . ,nM(x)) where the numerator has a lower
order compared to the denominator. This is in contrast with other
methods such as the perturbation methods, classical Neumann ser-
ies or polynomial chaos expansions, which are in effect simple
polynomials in (n1(x),n2(x), . . . ,nM(x)) (i.e., no polynomials in
the denominator). Next we propose a Galerkin approach to mini-
mize the error arising due to the truncation of the spectral
functions.

4. Error minimization using the Galerkin approach

In Section 3.1 we derived the spectral functions such that a pro-
jection in an orthonormal basis converges to the exact solution in
probability 1. The spectral functions are expressed in terms of a
convergent infinite series. First, second and higher order spectral
functions obtained by truncating the infinite series have been de-
rived. We have also showed that they have the same functional
form as the exact solution of Eq. (6). This motivates us to use these
functions as ‘trial functions’ to construct the solution. The idea is to
minimize the error arising due to the truncation. A Galerkin ap-
proach is proposed where the error is made orthogonal to the spec-
tral functions.

We express the solution vector by the series representation

ûðxÞ ¼
Xn

k¼1

ck
bCkðnðxÞÞ/k: ð51Þ

Here the functions bCk : RM ! R are the spectral functions and the
constants ck 2 R need to be obtained using the Galerkin approach.
The functions bCkðnðxÞÞ can be the first-order (37), second-order
(40) or any higher-order spectral functions (41) and /k are the
eigenvectors introduced earlier in Eq. (13). Substituting the expan-
sion of ûðxÞ in the governing Eq. (6), the error vector can be ob-
tained as

eðxÞ ¼
XM

i¼0

AiniðxÞ
 ! Xn

k¼1

ck
bCkðnðxÞÞ/k

 !
� f 2 Rn ð52Þ

where n0 = 1 is used to simplify the first summation expression. The
expression (51) is viewed as a projection where fbCkðnðxÞÞ/kg 2 Rn

are the basis functions and ck are the unknown constants to be
determined. We wish to obtain the coefficients ck using the Galerkin
approach so that the error is made orthogonal to the basis functions,
that is, mathematically

eðxÞ ? bCjðnðxÞÞ/j

� 	
or < bCjðnðxÞÞ/j; eðxÞ >¼ 0

8 j ¼ 1;2; . . . ;n: ð53Þ
Here < uðxÞ;vðxÞ >¼

R
X PðdxÞuTðxÞvðxÞ is the inner product

norm. Imposing this condition and using the expression of e(x)
from Eq. (52) one has

E bCjðnðxÞÞ/T
j

XM

i¼0

AiniðxÞ
 ! Xn

k¼1

ck
bCkðnðxÞÞ/k

 !
� bCjðnðxÞÞ/T

j f

" #
¼ 0 8 j:

ð54Þ
Interchanging the E[�] and summation operations, this can be sim-
plified toXn

k¼1

XM

i¼0

ð/T
j Ai/kÞE niðxÞbCjðnðxÞÞbCkðnðxÞÞ

h i !
ck ¼ E½bCjðnðxÞÞ� /T

j f
� 	
ð55Þ

or
Xn

k¼1

XM

i¼0

eAijk Dijk

 !
ck ¼ bj: ð56Þ
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Defining the vector c = {c1,c2, . . . ,cn}T, these equations can be ex-
pressed in a matrix form as

Sc ¼ b ð57Þ

with

Sjk ¼
XM

i¼0

eAijk Dijk; 8 j; k ¼ 1;2; . . . ;n; ð58Þ

whereeAijk ¼ /T
j Ai/k; ð59Þ

Dijk ¼ E niðxÞbCjðnðxÞÞbCkðnðxÞÞ
h i

ð60Þ

and bj ¼ E bCjðnðxÞÞ
h i

/T
j f

� 	
: ð61Þ

Higher order spectral functions can be used to improve the accuracy
and convergence of the series (51). This will be demonstrated in the
numerical examples later in the paper.

Remark 2. Comparison with the classical spectral SFEM: We
compare this Galerkin approach with the classical spectral sto-
chastic finite element approach for further insight. The number of
equations to be solved for the unknown coefficients in Eq. (57) is n,
the same dimension as the original governing Eq. (6). There are
only n unknown constants, as opposed to nP unknown constants
arising in the polynomial chaos expansion. The coefficient matrix S
and the vector b in Eq. (57) should be obtained numerically using
the Monte Carlo simulation or other numerical integration tech-
nique. In the classical PC expansion, however, the coefficient
matrix and the associated vector are obtained exactly in closed-
form. In addition, the coefficient matrix is a sparse matrix whereas
the matrix S in Eq. (57) is in general a fully populated matrix.

The series in Eq. (51) can also be viewed as an enhanced
Neumann expansion method where the approximating functions
have been generated using a Neumann type expansion. This aspect
is numerically investigated later in details in Section 7.2. It can be
observed that the matrix S in Eq. (57) is symmetric. Therefore, one
need to determine n(n + 1)/2 number of coefficients by numerical
methods. Any numerical integration method, such as the Gaussian
quadrature method, can be used to obtain the elements of Dijk and
bj in Eq. (61). In this paper Monte Carlo simulation is used. The
samples of the spectral functions bCkðnðxÞÞ can be simulated from
Eqs. (37) and (40) or (41) depending on the order. These can be
used to compute Dijk and bj from Eq. (61). The simulated spectral
functions can also be ‘recycled’ to obtain the statistics and proba-
bility density function (pdf) of the solution. In summary, compared
to the classical spectral stochastic finite element method, the pro-
posed Galerkin approach results in a smaller size matrix but re-
quires numerical integration techniques to obtain its entries. The
numerical method proposed here therefore can be considered as
a hybrid analytical-simulation approach.

5. Model reduction using a reduced number of basis

The Galerkin approach proposed in the previous section re-
quires the solution of n � n algebraic equations. Although in gen-
eral this is smaller compared to the polynomial chaos approach,
the computational cost can still be high for large n as the coeffi-
cient matrix is in general a dense matrix. The aim of this section
is to reduce it further so that, in addition to large number of ran-
dom variables, problems with large degrees of freedom can also
be solved efficiently.

Suppose the eigenvalues of A0 are arranged in an increasing or-
der such that

k01 < k02 < � � � < k0n : ð62Þ

From the expression of the spectral functions observe that the
eigenvalues appear in the denominator:

Cð1Þk ðnðxÞÞ ¼
/T

k f

k0k
þ
PM

i¼1niðxÞkik

: ð63Þ

The numerator ð/T
k fÞ is the projection of the force on the deforma-

tion mode. Since the eigenvalues are arranged in an ascending
order, the denominator of jCð1ÞkþrðnðxÞÞj is larger than the denomina-
tor of jCð1Þk ðnðxÞÞj according a suitable measure. The numerator
ð/T

k fÞ depends on the nature of forcing and the eigenvectors.
Although this quantity is deterministic, in general an ordering can-
not be easily established for different values of k. Because all the
eigenvectors are normalized to unity, it is reasonable to consider
that ð/T

k fÞ does not vary significantly for different values of k. Using
the ordering of the eigenvalues, one can select a small number �
such that k01=k0p < � for some value of p. Based on this, we can
approximate the solution using a truncated series as

ûðxÞ �
Xp

k¼1

ck
bCkðnðxÞÞ/k; ð64Þ

where ck, bCkðnðxÞÞ and /k are obtained following the procedure de-
scribed in the previous section by letting the indices j, k only up to p
in Eqs. (58) and (61). The accuracy of the series (64) can be im-
proved in two ways, namely, (a) by increasing the number of terms
p, or (b) by increasing the order of the spectral functions bCkðnðxÞÞ.

Model reduction techniques have been widely used within the
scope of proper orthogonal decomposition (POD) method [36–
38]. Here the eigenvalues of a symmetric positive definite matrix
(the covariance matrix of a snapshot the system response) are used
for model reduction. In spite of this similarity, the reduction meth-
od proposed here is different from a POD since it only considers the
operator and not the solution itself. Reduction based on eigensolu-
tion is of classical nature in various areas of applied mathematics,
engineering and physics and extensive studies exist on this topic. It
should be noted that the truncation in series (64) introduces errors.
A rigorous mathematical quantification of error arising due to this
truncation is beyond the scope of this article. The ratio of the
eigenvalues k01=k0p gives a good indication, but the projection of
the force on the eigenvector /T

k f

 �

is also of importance. Since this
quantity is problem dependent, care should be taken while apply-
ing this reduction method.

Remark 3. The reduction of the original problem by a projection
on the set of dominant eigenvectors of a part of the operator is
rather classical in model reduction techniques. It relies on the
strong hypothesis that the solution can be well represented on this
set of vectors. The impact of this truncation on the solution or a
quantity of interest is not estimated in the article. The truncation
criteria is based on the spectral decay of a part of the operator but
not on the solution itself. By introducing this reduction, some
essential features of the solution may not be captured always. The
proposed method will only capture the projection of the solution u
on the reduced basis /k, k = 1,2, . . . ,p, which could be unadapted to
the complete representation of u.

6. Post processing and computational approach

6.1. Moments of the solution

For the practical application of the method developed here, the
efficient computation of the response moments and pdf is of cru-
cial importance. A simulation based algorithm is proposed in this
section. The coefficients ck in Eq. (64) can be calculated from a
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reduced set of equations given by (57). The reduced equations can
be obtained by letting the indices j, k up to p < n in Eqs. (58) and
(61). After obtaining the coefficient vector c 2 Rp, the statistical
moments of the solution can be obtained from Eq. (64) using the
Monte Carlo simulation. The spectral functions used to obtain the
vector c itself, can be reused to obtain the statistics and pdf of
the solution. The mean vector can be obtained as

�u ¼ E½ûðxÞ� ¼
Xp

k¼1

ckE½bCkðnðxÞÞ�/k: ð65Þ

The covariance of the solution vector can be expressed as

Ru ¼ E ûðxÞ � �uð Þ ûðxÞ � �uð ÞT
h i

¼
Xp

k¼1

Xp

j¼1

ckcjRCkj
/k/

T
j ; ð66Þ

where the elements of the covariance matrix of the spectral func-
tions are given by

RCkj
¼ E bCkðnðxÞÞ � E½bCkðnðxÞÞ�

� 	 bCjðnðxÞÞ � E½bCjðnðxÞÞ�
� 	h i

:

ð67Þ

6.2. Summary of the computational approach

Based on the results derived in the paper, a hybrid reduced sim-
ulation-analytical approach is proposed. The method is applicable
to elliptic problems with general non-Gaussian random fields.
The computational procedure for the solution of the stochastic
elliptic PDE (1) can be implemented as follows:

1. Obtain the system matrices Ai, i = 0,1,2, . . . ,M and the forcing
vector f by discretizing the governing stochastic partial dif-
ferential equation using the well established stochastic finite
element methodologies.

2. Solve the eigenvalue problem associated with the mean
matrix A0

A0U ¼ UK0: ð68Þ

3. Select a small value of �, say � = 10�3. Obtain the number of
the reduced orthonormal basis p such that k01=k0p < �.

4. Create the reduced matrix of eigenvalues and eigenvectors

K0p ¼ diag k01 ; k02 ; . . . ; k0p

� �
2 Rp�p and

Up ¼ /1;/2; . . . ;/p

� �
2 Rn�p: ð69Þ

5. Calculate the transformed matrices and vectoreAi ¼ UT
pAiUp 2 Rp�p; i ¼ 1;2; . . . ;M and ef ¼ UT

pf ð70Þ

and separate the diagonal and off diagonal terms aseAi ¼ Ki þ Di.
6. Select a number of samples, say Nsamp. Generate the samples

of (in general non-Gaussian) random variables ni(x), i
= 1,2, . . . ,M.

7. Obtain the inverse of the diagonal matrix K (n(x)) defined in
Eq. (24) as

KIðxÞ ¼ K�1
0 þ

XM

i¼1

niðxÞK�1
i

" #
ð71Þ

and the trace less matrix

DðxÞ ¼
XM

i¼1

niðxÞDi: ð72Þ

8. Calculate the first-order spectral function in a vector form asbCð1ÞðxÞ ¼ KIðnðxÞÞef 2 Rp: ð73Þ

If higher order spectral functions are necessary, then calcu-
late the matrix

RðnðxÞÞ ¼ KIðnðxÞÞDðnðxÞÞ 2 Rp�p: ð74Þ
From this calculate the sth order spectral function as

CðsÞðnðxÞÞ ¼ Ip � RðnðxÞÞ þ RðnðxÞÞ2
h
� RðnðxÞÞ3 þ . . . sth term

i
Cð1ÞðnðxÞÞ 2 Rp: ð75Þ

9. Calculate the mean vector from the generated samples

C ¼ E½CðxÞ� 2 Rp: ð76Þ

10. Calculate the following (1 + M) matrices from the samples of
C(x)

D0 ¼ E½CðxÞCTðxÞ� 2 Rp�p; ð77Þ
and Di ¼ E½CðxÞniðxÞCTðxÞ� 2 Rp�p; 8 i ¼ 1;2; . . . ;M:

ð78Þ

11. Following Eq. (51), form the coefficient matrix S and the vec-
tor b as

S ¼ K0p � D0 þ
XM

i¼1

eAi � Di 2 Rn�n and b ¼ ef � C 2 Rn;

ð79Þ
where � implies element to element multiplication (as in
MATLAB™ dot notation).

12. Obtain the coefficient vector

c ¼ S�1b 2 Rp: ð80Þ

13. Calculate the mean of the solution

�u ¼
Xp

k¼1

ckCk/k: ð81Þ

14. Obtain the covariance matrix of the spectral functions as

RC ¼ D0 � CCT : ð82Þ

From this calculate the covariance of the solution using Eq.
(66).

In Appendix A we give a simple code in MATLAB™ to implement
this computational method.

Remark 4. The computational complexity: The main computa-
tional cost of the proposed method depends on (a) the solution of
the matrix eigenvalue problem (68) with reduced number of
eigenvalues, (b) the generation of the Di matrices in Eqs. (77) and
(78), and (c) the calculation of the coefficient vector in Eq. (80).
Both the matrix inversion and the matrix eigenvalue problem [39]
scales in O(p3) in the worse case. The calculation of the Di matrices
in Eqs. (77) and (78) scales linearly with M and p(p + 1)/2 with p.
Therefore, this cost scales with O((M + 1) p(p + 1)/2). The overall
cost is 2O(p3) + O((M + 1)p(p + 1)/2). For large M and p, asymptot-
ically the computational cost becomes Cs = O(Mp2) + O(p3). The
important point to note here is that the proposed approach scales
linearly with the number of random variables M. For comparison,
in the classical PC expansion one needs to solve a matrix equation
of dimension Pn, which in the worse case scales with (O(Pn)3).
Since P	M and n > p, we have (O(P3n3)	 O(Mp2) + O(p3).

7. Illustrative application: The stochastic mechanics of ZnO
nanowires

In this section we apply the computational method to the
nanomechanics of zinc oxide (ZnO) nanowires (NW). ZnO [40]
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materials have attracted extensive attention due to their excellent
performance in electronic, ferroelectric and piezoelectric applica-
tions [41–44]. Nano-scale ZnO is also an important material
[45,46] for the nanoscale energy harvesting and scavenging [47–
50]. Investigation and understanding of the bending of ZnO nano-
wires are valuable for their potential application. For example, ZnO
nanowires are bend by rubbing against each other for energy scav-
enging [47–50]. These studies show that for the future nano energy
scavenging devices several thousands of ZnO NWs will be used
simultaneously. This gives a natural framework for the application
of stochastic finite element method due to a large ‘sample space’.
ZnO NWs have the nano piezoelastic property so that the electric
charge generated is a function of the deformation [47–51]. It is
therefore vitally important to look into the ensemble behavior of
the deformation of ZnO NW for the reliable estimate of mechanical
deformation and consequently the charge generation. For the
nano-scale application this is especially crucial as the margin of er-
ror is very small. Here we study the deformation of a cantilevered
ZnO NW with stochastic properties under the atomic force micro-
scope (AFM) tip.

SEM images of ZnO NWs grown on Gallium Nitride (GaN) sub-
strate (in Swansea University’s Multidisciplinary Nanotechnology
Centre) is shown in Fig. 1. One can observe significant variability
within ZnO NWs even when they are grown on the same substrate
and under identical conditions. This inevitable variability, the large
sample space and the need for precise predictions are the key
motivations for applying the stochastic finite element to this prob-
lem. We consider large NWs of lengths in excess of hundreds of
nanometers. Molecular dynamic simulations of such large systems
are extremely expensive. We use Euler–Bernoulli beam model val-
idated by Gao and Wang [52]. Nanowires, unlike nanotubes, have
solid cross sections. In Fig. 2, form the SEM image as well as from
the atomistic model one can observe that the ZnO NW has a hex-
agonal cross sectional area. We study the deflection of ZnO NW un-
der the AFM tip considering stochastically varying bending
modulus. The variability of the deflection is particularly important
as the harvested energy from the bending depends on it.

We assume that the bending modulus of the ZnO NW is a ran-
dom field of the form

EIðx;xÞ ¼ EI0ð1þ aðx;xÞÞ; ð83Þ

where x is the coordinate along the length of ZnO NW, EI0 is the esti-
mate of the mean bending modulus, a(x,x) is a zero mean station-
ary random field. Two types or random field models have been
considered, namely Gaussian and uniform. The Gaussian model is
considered only to compare the numerical results with the classical
polynomial chaos results. The autocorrelation function of the ran-
dom field is assumed to be

Caðx1; x2Þ ¼ r2
ae�ðjx1�x2 jÞ=la ; ð84Þ

where la is the correlation length and ra is the standard deviation.
The random field a(x,x) is expressed using the Karhunen–Loève
expansion (3) with the eigenvalues and eigenfunctions given by
Ghanem and Spanos [5]. For the first case the random variables
ni(x) are considered to be independent Gaussian random variables
with zero mean and unit standard deviation. In the second model
the random variables ni(x) are considered to be independent uni-
form random variables with zero mean and unit standard deviation.

We consider a long nanowire where the continuum model has
been validated [52]. We use the baseline parameters for the ZnO
NW from Gao and Wang [52] as the length L = 600 nm, diameter
d = 50 nm and the lateral point force at the tip fT = 80 nN. Using
these data, the baseline deflection can be obtained as
d0 = 145 nm. We normalize our results with this baseline value
for convenience. Two correlation lengths are considered in the
numerical studies, namely la = L/2 and la = L/10. For the finite ele-
ment discretization, the nanowire is divided into a number of
beam elements of equal length. Standard four degrees of freedom
Euler–Bernoulli beam model is used [13]. To investigate the
numerical aspects of the proposed methodology, the following four
cases are considered:

� Case 1: The random field a(x,x) is assumed to be a Gaussian
random field with correlation length la = L/2. Four terms in
the KL expansion are considered and the nanowire is divided
into 300 elements. For this case we have n = 600 and M = 4.
The results are compared with the classical polynomial chaos
expansion.
� Case 2: The random field a(x,x) is assumed to be an Uniform

random field with correlation length la = L/2. The nanowire is
divided into 300 elements and 29 uniform random variables
are considered in the discretization of the random field. The

Fig. 1. Scanning electron microscope (SEM) image of zinc oxide (ZnO) nanowires (NW) grown on gallium nitride (GaN) substrate using the vapour transfer method. The
source materials consist of commercially available ZnO and graphite powders mixed and placed at the centre of the furnace. The furnace is heated to about 975 �C, causing
the ZnO powder to evaporate. The vapour is carried downstream by a flow of Ar mixed with 2% O2 to the growth substrates where the lower temperature (600–650 �C) causes
the vapour to condense into the nanowires. Significant variabilities in the NWs can be clearly observed even when they are grown in identical conditions.
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value of M is selected such that mM/m1 = 0.03. For this case we
have n = 600 and M = 29. The results are compared with the
classical Neumann expansion.
� Case 3: The random field a(x,x) is assumed to be an uniform

random field with correlation length la = L/2. The nanowire is
divided into 1200 elements and 29 uniform random variables
are considered in the discretization of the random field as
above. For this case we have n = 2400 and M = 29.
� Case 4: The random field a(x,x) is assumed to be an uniform

random field with a smaller correlation length la = L/10. The
nanowire is divided into 1200 elements and 111 uniform ran-
dom variables are considered in the discretization of the ran-
dom field. For this case we have n = 2400 and M = 111.

7.1. Case 1: Comparison with classical polynomial chaos results

The quantity E(x,x) in Eq. (83) should be positive for all x and
x 2X. Therefore, the Gaussian random field is not an ideal model
for E(x,x). However, due to the small values of ra (maximum of
ra = 0.2 is considered), the probability that E(x,x) is negative is
small. We have verified that all the realizations of E(x,x) are phys-
ical in nature in our Monte Carlo simulation. This case is consid-

ered only to compare the results with classical polynomial chaos
expansion. The approach proposed in the paper is applicable to
general non-Gaussian random field as considered in the next
subsections.

To apply the proposed method, we need to obtain the reduced
orthonormal basis by solving the eigenvalue problem involving
the stiffness matrix A0. In Fig. 3, the eigenvalues and eigenvectors
of the stiffness matrix A0 are shown. For � = 0.01, the number of re-
duced eigenvectors p is calculated such that k01=k0p < �. For this
problem we obtain p = 6. The first 300 eigenvalues and the selected
six eigenvalues are shown in Fig. 3(a). The ratio of the first eigen-
value to the other eigenvalues, that is, k01=k0j

, for the first 300
eigenvalues are shown in. The eigenvectors corresponding to the
first six eigenvalues are plotted in Fig. 3(b). Only the transverse de-
grees of freedom (DOF) is shown as we are interested in the tip
deflection of the nanowire. For the polynomial chaos (PC) expan-
sion, 4th order PC has been used. For M = 4 and r = 4, from Eq.
(12) we have the number of terms in the PC expansion P = 70. Since
n = 600, the total number of unknowns to be solved for the PC ap-
proach is Pn = 42,000. For the proposed Galerkin method with six
eigenvectors, one only seed to solve only a 6 � 6 Eq. (80) to obtain
the unknown coefficients.

Fig. 2. The atomistic structure and equivalent continuum model of ZnO NWs. From the SEM image in (a) it can be seen that the ZnO NW has a hexagonal cross section. Unlike
nanotubes, nanowires have solid cross sections (see (b) and (c)). Our aim is to study the deflection of ZnO NW under the AFM tip considering stochastically varying bending
modulus. The estimate of the tip deflection is important due to the nano piezoelastic property of ZnO NWs. The electric charge generated is a function of the deformation. The
baseline parameters for the ZnO NW are taken to be [52]: length L = 600 nm, diameter d = 50 nm and the lateral point force at the AFM tip fT = 80 nN. The tip deflection of the
baseline ZnO NW, d0 = 145 nM.
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Fig. 3. The eigenvalues and eigenvectors of the stiffness matrix A0. For � = 0.01, the number of reduced eigenvectors p = 6 such that k01 =k0p < �.

Fig. 4. The probability density function of the normalized deflection d/d0 of the ZnO NW under the AFM tip (d0 = 145 nm). The pdfs are obtained with 10,000 sample MCS and
for ra = {0.05,0.10,0.15,0.20}. For n = 600 and M = 4, the fourth-order PC needs solution of a linear system of equation of size 42,000. In comparison the proposed Galerkin
approach needs solution of a linear system of equation of size six only. The average computational time for the five methods shown are – direct MCS: 43.2131 min; PC:
16.8559 min; first order spectral: 2.8860 s; 2nd order spectral: 3.2448 s; and fourth order spectral: 3.2604 s.
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The method outlined in Section 6.2 is applied with 10,000-
sample Monte Carlo simulation (MCS). The MATLAB

TM function
developed for this purpose is listed in Appendix. The computer
programs were run in a twin Intel Xeon X5355 (2.67 GHz) pro-
cessor machine with 16 GB RAM. The probability density function
of the normalized deflection is shown Fig. 4 for the four values of
ra. We consider ra = {0.05,0.10,0.15,0.20} to simulate increasing
uncertainty. First, second and fourth-order spectral functions
have been used. It can be observed that the results from the pro-
posed reduced orthonormal basis approach match the direct MCS
and PC results very well. The full MCS and PC takes 43.2131 min
and 16.8559 min, respectively, while the first, second and fourth
order spectral methods take only 2.8860, 3.2448 and 3.2604 s,
respectively. This also shows that higher-order spectral functions
can be used with very little additional computational cost. This is
due to the fact that, unlike the PC approach, the number of equa-
tions to be solved in the Galerkin step does not increase with the
increase in the order of the spectral functions. The actual compu-
tational times given here are for illustrative purpose only. These
values will change significantly based on the computing hard-

ware and basic numerical algorithms (e.g., eigenvalue solver,
solution of system of linear equations etc.). Here MATLAB

TM has
been used to perform all calculations. Although the actual com-
putational times will change, the relative timings may not change
significantly provided they are implemented in a consistent man-
ner. Therefore, the computational times reported in this paper
should be viewed as guidelines as opposed to true time one
may need in order to repeat this study elsewhere.

In Table 1 we show percentage errors in the mean and standard
deviation of the tip deflection. The first-order spectral method is
the least accurate and the fourth-order spectral method the most
accurate method. In general the fourth-order spectral method
turns out to be more accurate compared to the fourth-order PC.
The fourth-order spectral method requires 3.2604 seconds while
the fourth-order PC requires 16.8559 min, which implies that the
proposed method is about 310 times faster for this problem. As
mentioned before, the main reason for this significant reduction
in computation time is that only a 6 � 6 linear system is required
to be solved for the proposed approach while a 42,000 � 42,000
system is required to be solved for the PC approach. Although we
are directly comparing the proposed spectral approach with the
classical PC, it should be remembered that very different basis
are used in the two approaches. In addition it should be noted that
the classical PC approach does not use the spectral reduction based
on the p-dimensional dominant eigenspace of the operator A0. The
computational times given here should be viewed in the light of
these points.

For p = 6 the proposed fourth-order spectral approach is already
more accurate than the fourth-order polynomial chaos approach.
Our numerical studies show that the further increase in the value
of p does not change the results significantly. Therefore, we use
p = 6 in the next sections where a non-Gaussian random field mod-
el with more number of random variables are considered.

7.2. Case 2: Comparison with classical Neumann expansion

The hybrid analytical-simulation method proposed here is com-
pared with the classical Neumann expansion. In Fig. 7 the mean
and standard deviation of the normalized deflection d/d0 of the
ZnO NW under the AFM tip are shown. In Fig. 5 the mean and
standard deviation of the normalized deflection d/d0 of the ZnO
NW under the AFM tip are shown. Here 29 uncorrelated uniform

Table 1
Percentage errors in the mean and standard deviation of the tip deflection of the ZnO
NW with Gaussian random field model. The direct MCS results are used as the
reference solution. The fourth-order spectral method turns out to be the most
accurate, followed by the fourth-order PC.

Statistics Methods ra = 0.05 ra = 0.10 ra = 0.15 ra = 0.20

Mean Fourth order
PC

0.0864 0.0267 0.1041 0.1462

First order
spectral

0.0603 0.2289 0.5384 1.0589

Second order
spectral

0.0048 0.0062 0.0140 0.0454

Fourth order
spectral

0.0047 0.0048 0.0053 0.0069

Standard
deviation

Fourth order
PC

0.7143 0.9065 1.4948 0.1800

First order
spectral

1.1871 1.6784 3.0980 5.1614

Second order
spectral

0.1011 0.5166 1.4668 3.2479

Fourth order
spectral

0.0179 0.0153 0.0004 0.0886

Fig. 5. The mean and standard deviation of the normalized deflection d/d0 of the ZnO NW under the AFM tip with uniform random field. The correlation length of the random
field describing the bending rigidity is assumed to be la = L/2. The classical Neumann expansion method is compared with the proposed reduced spectral method with
Galerkin projection.
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Fig. 6. The probability density function of the normalized deflection d/d0 of the ZnO NW under the AFM tip (d0 = 145 nm). The pdfs are obtained with 10,000 sample MCS and
for ra = {0.05,0.10,0.15,0.20}, n = 300 and M = 29. The classical Neumann expansion method is compared with the proposed reduced spectral method with Galerkin
projection.

Fig. 7. The mean and standard deviation of the normalized deflection d/d0 of the ZnO NW under the AFM tip with uniform random field. The correlation length of the random
field describing the bending rigidity is assumed to be la = L/2.
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random variables have been used to generate the bending rigidity
random field. We again consider ra = {0.05,0.10,0.15,0.20} to sim-
ulate increasing uncertainty. This is done to check the accuracy of

the proposed method against the classical Neumann expansion.
The probability density function of the normalized deflection is
shown Fig. 6 for the four values of ra. First and second-order spec-
tral function approaches are compared with the first and second
order Neumann expansion. It can be observed that the results from
the proposed reduced orthonormal basis approach are more accu-
rate compared to the corresponding order Neumann expansion
method. The difference is more prominent when the standard
deviation of the input random field is higher. This is due to the fact
that, unlike the Neumann expansion, the proposed method uses
Galerkin approach for error minimization.

7.3. Case 3: Uniform random field with larger correlation length

The hybrid analytical-simulation method proposed here is com-
pared with the direct MCS obtained by solving Eq. (6) for each sam-
ple. In Fig. 7 the mean and standard deviation of the normalized
deflection d/d0 of the ZnO NW under the AFM tip are shown. Here
29 uncorrelated uniform random variables have been used to gen-
erate the bending rigidity random field. We again consider
ra = {0.05,0.10,0.15,0.20} to simulate increasing uncertainty. This

Table 2
Percentage errors in the mean and standard deviation of the tip deflection of the ZnO
NW with uniform random field and correlation length la = L/2 (n = 2400 and M = 29).
The direct MCS results are used as the reference solution. The first, second and fourth
order spectral function with proposed Galerkin approach are considered and the
direct MCS is used as the reference solution.

Statistics Methods ra = 0.05 ra = 0.10 ra = 0.15 ra = 0.20

Mean First order
spectral

0.1602 0.4415 0.9475 1.7444

Second order
spectral

0.0845 0.1303 0.2211 0.3867

Fourth order
spectral

0.0845 0.1285 0.2105 0.3458

Standard
deviation

First order
spectral

0.0350 0.9037 2.4522 4.9665

Second order
spectral

0.2958 0.8689 1.9842 3.7927

Fourth order
spectral

0.1642 0.3030 0.5618 1.0063

Fig. 8. The probability density function of the normalized tip deflection of the ZnO NW with uniform random field. The pdfs are obtained with 10,000 sample MCS and four
values of ra have been used. For n = 2400 and M = 29 the first, second and fourth-order PC method would need the solution of a linear system of equation of dimension 72,000,
1.116 million and 98.208 million respectively. In comparison the proposed Galerkin approach needs solution of a linear system of equation of dimension six only. The average
computational time for the four methods shown are – direct MCS: 19.2590 h; first order spectral: 109.6687 s; second order spectral: 112.7731 s; and fourth order spectral:
116.6419 s. The fourth-order spectral approach is the closest to the direct MCS results.
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is done to check the accuracy of the proposed method against the
direct MCS results. Like the previous examples, the first six eigen-
values and eigenvectors are used for the proposed reduced spectral
method. It can be seen that the results from the three spectral
functions in conjunction with the Galerkin approach produce accu-
rate results for all the four values of ra. Percentage errors corre-
sponding to this figure are shown in Table 2. The probability
density function of the normalized deflection is shown Fig. 8 for
the four values of ra. As expected, the error corresponding to the
fourth-order spectral function approach is smaller than the other
two approaches. The difference between the computational cost
for the first, second and fourth-order approach is small as in aver-
age they take 109.6687, 112.7731 and 116.6419 s, respectively.
Compared to this, the direct MCS takes 19.2590 h of CPU time.

For the first-order approach, the vector containing the spectral
functions is obtained from Eq. (73). For the second and fourth-or-
der approaches, this vector is obtained from Eq. (75) with two
and four terms, respectively. The rest of the procedure to obtain
the response statistics is identical. Therefore, the only additional
computational expense is matrix vector multiplications of dimen-
sion p = 6 for this case. In this problem the size of the system
n = 2400 and the number of random variables M = 29. If the poly-
nomial chaos method was used, then from Eq. (12) one obtains
the value of P as 30, 465 and 40,920 for the first, second and fourth
order PC. This implies that one would need to solve a linear system
of equation of size 72,000, 1.116 million and 98.208 million,
respectively. For the proposed reduced Galerkin approach only a
set of six equations are solved to obtain the coefficients. This shows
the computational efficiency of this approach without loosing sig-
nificant accuracy.

7.4. Case 4: Uniform random field with smaller correlation length

For correlation length la = L/10, we have used M = 111 number
of uncorrelated uniform random variables to generate the bending
rigidity random field. The method developed in the paper is ap-
plied with 10,000-sample Monte Carlo simulation (MCS). In Fig. 9
the mean and standard deviation of the normalized deflection d/
d0 of the ZnO NW under the AFM tip are shown for four values of
ra. We again use the first six eigenvalues and eigenvectors for
the proposed reduced spectral method. It can be seen that the re-
sults from the fourth-order spectral functions in conjunction with
the Galerkin approach produce accurate results for all the four val-

ues of ra even when the number of random variables are large. The
computation cost for the first, second and fourth-order approach is
small as in average they take 137.6085, 140.9937 and 142.7097 s
respectively. For this problem the direct MCS takes 37.1910 h of
CPU time. Compared to the previous case with 29 random vari-
ables, the computational time for the proposed approach increase
only slightly even when 111 number of random variables are used.
Percentage error corresponding to the moments shown in Fig. 9 are
given in Table 3. The probability density function of the normalized
deflection is shown Fig. 10 for the four values of ra. As expected,
the error corresponding to the fourth-order spectral function ap-
proach is smaller than the other two approaches. For this problem
the size of the system n = 2400 and the number of random vari-
ables M = 111. If the polynomial chaos method was used, then from
Eq. (12) one obtains the value of P as 112, 240, 464 and 6.91334
million for the first, second and fourth order PC. This implies that
one would need to solve a linear system of equation of size
268,800, 577.1136 million and 16.5920 billion respectively. For
the proposed reduced Galerkin approach only a set of six equations
are solved to obtain the coefficients. Overall, when such a large
number of random variables are used, the accuracy is slightly less
compared to the previous case where relatively smaller number of
random variables are used. The computational cost increase only
slightly with the increase in the number of random variables. This
is due to the fact that the increase in the number of random vari-
ables only increases the number of Di matrices in Eq. (78). Unlike

Fig. 9. The mean and standard deviation of the normalized tip deflection of the ZnO NW with uniform random field. The correlation length of the random field describing the
bending rigidity is assumed to be la = L/10.

Table 3
Percentage errors in the mean and standard deviation of the tip deflection of the ZnO
NW with uniform random field and correlation length la = L/10 (n = 2400 and
M = 111). The direct MCS results are used as the reference solution.

Statistics Methods ra = 0.05 ra = 0.10 ra = 0.15 ra = 0.20

Mean First order
spectral

0.2488 0.7974 1.7671 3.2555

Second order
spectral

0.1434 0.3725 0.8007 1.5174

Fourth order
spectral

0.1432 0.3697 0.7854 1.4641

Standard
deviation

First order
spectral

3.7039 5.4718 8.5930 13.3714

Second order
spectral

0.4704 1.8630 4.4737 8.6448

Fourth order
spectral

0.2561 0.9733 2.3849 4.7576
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the polynomial chaos approach, it does not increase the number of
linear equations to be solved in the Galerkin approach. The results
obtained here demonstrate the computational efficiency of the
proposed approach for large number of random variables without
a significant loss of accuracy.

8. Conclusions

We consider discretized stochastic elliptic partial differential
equations with non-Gaussian random fields. In the classical spec-
tral stochastic finite element approach, the solution is projected
into an infinite dimensional orthonormal basis functions and the
associated constant vectors are obtained using the Galerkin type
of error minimization approach. Here an alternative approach is
proposed. The solution is projected into a finite dimensional re-
duced orthonormal vector basis and the associated coefficient
functions are obtained. The coefficient functions, called as the spec-
tral functions, are expressed in terms of the spectral properties of
the matrices appearing in the discretized governing equation. It
is shown that then the resulting series converges to the exact solu-
tion in probability 1. This is a stronger convergence compared to
the classical polynomial chaos which converges in the mean-

square sense in the Hilbert space. Using an analytical approach, it
is shown that the proposed spectral decomposition has the same
functional form as the exact solution, which is not a polynomial,
but a ratio of polynomials where the denominator has a higher de-
gree than the numerator.

Using the spectral functions, a Galerkin error minimization ap-
proach has been developed in a reduced orthonormal vector basis.
It is shown that the number of unknown constants can be obtained
by solving a system of linear equations which has a dimension
much smaller than the dimension of the original discretized equa-
tion. A simple numerical approach to obtain the reduced dimen-
sion has been suggested based on the ratio of the eigenvalues of
the stiffness matrix corresponding to the baseline model. A numer-
ical approach using a general-order spectral function has been
developed. Based on these, a hybrid analytical-simulation ap-
proach is proposed to obtain the statistical properties of the solu-
tion. If p is the size of the reduced system and M is the number
of random variables, then the computational complexity of the
proposed approach grows in O(Mp2) + O(p3) in the worse case.

The method is applied to the stochastic nanomechanics of a ZnO
nanowire under an AFM tip for illustration. First, the statistics of
the tip deflection were obtained with 4 Gaussian random variables

Fig. 10. The probability density function of the normalized tip deflection of the ZnO NW with uniform random field. For n = 2400 and M = 111 the first, second and fourth-
order PC method would need the solution of a linear system of equation of dimension 268,800, 577.1136 million and 16.5920 billion, respectively. In comparison the
proposed Galerkin approach needs solution of a linear system of equation of dimension six only. The average computational time for the four methods shown are – direct
MCS: 37.1910 h; first order spectral: 137.6085 s; second order spectral: 140.9937 s; and fourth order spectral: 142.7097 s.
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and 600 degrees of freedom. A comparison with the classical
fourth-order polynomial chaos approach shows that the proposed
method using the fourth-order spectral function is more accurate
and computationally efficient. A comparison with the classical
Neumann expansion reveals that the proposed method is more
accurate for a given order of approximation. Later the method is

applied to a 2400 degrees of freedom problem with 29 and 111
number of uniform random variables. Promising accuracy com-
pared to the direct Monte Carlo simulation, especially with the
fourth-order spectral function has been observed. A fourth-order
polynomial chaos approach for this problem would require the
solution of linear equations of size 16.5920 billion.

Listing 1. Code for generating samples of the solution vector.
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The computational efficiency of the proposed reduced spectral
approach has been demonstrated for large linear systems with
non-Gaussian random variables. It may be possible to extend the
underlying idea to non-linear and time varying problems. For
example, the proposed spectral approach can be used for every lin-
earisation step or every time step. Further research is necessary in
this direction.

Acknowledgements

Dr. T.G.G. Maffeis from the Multidisciplinary Nanotechnology
Centre in Swansea University is acknowledged for the SEM images
of ZnO. We acknowledge R. Choudhury for the atomistic modeling
of ZnO. The financial support from The Leverhulme Trust through

the award of the Philip Leverhulme Prize and The Royal Society
of London through the Wolfson Research Merit award is greatly
acknowledged.

Appendix A. Matlab code for the implementation of the
proposed numerical method

In this section we give a code in MATLAB™ (see Listing 1) to real-
ize the computational method given in Section 6.2. The method is
implemented via a MATLAB™ function which takes A0 2 Rn�n;Ai 2
Rn�n; i ¼ 1;2; . . . ;M, f 2 Rn and the number of samples as the input
and returns the samples of the solution vector as the output. Only
Gaussian and uniform input random variables are used (line 47–
56). This can be changed to any other random variables. In the

Listing 1 (continued)
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polynomial chaos approach, one has to change the orthogonal
polynomial basis based on the random variables (e.g., Hermite
polynomials for Gaussian random variables, Legendre polynomials
for uniform random variables). This is not necessary here. The pro-
posed reduced spectral method is general from the point of view of
the distribution of the random variables. The code is given only to
demonstrate that the proposed method can be implemented in a
simple manner. Superior numerical methods, such as an efficient
eigen-solver for large sparse matrices, may be used to make the
proposed method more efficient (Listing 1).
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