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The effect of extreme and negative Poisson’s ratio (auxetic) behavior from non-recon-
structed defective (NRD) carbon nanotubes on the mechanical properties of nanocom-
posites is demonstrated. NRD carbon nanotubes (CNTs) produced by electronic or ion
irradiation are metastable structures, which however can exist at low temperatures or
when surrounded by an external medium (e.g. CNT nanoropes of matrix in a composite).
The defective nanotubes were modeled using an equivalent atomistic-continuum formu-
lation for the mechanical properties of the C–C bond that provides both the effective
mechanical properties of the atomic link and the thickness of the bond itself. The
defective CNTs are modeled as truss-type finite elements, with the defective atoms
selected using a random Latin hypercube algorithm. The mechanical properties
(Young’s modulus, shear and bulk modulus, as well as Poisson’s ratios) are obtained
using uniaxial tensile loading simulations. The defective nanotubes not only exhibit
negative Poisson’s ratio (PR), but also extreme positive PR values based on the percen-
tage of defective atoms, radius and aspect ratio of the tubes. Hashin–Shritkman bounds
are used to calculate the effective properties of nanocomposites with different matrix
combinations and CNT inclusions. Based on the properties of the defective CNTs,
extreme values of bulk and shear modulus for the nanocomposites are recorded.
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1. Introduction

The existence of negative Poisson’s ratio (NPR) inclusions has been hailed as a possible way
to increase the fracture resistance and toughness of nanocomposites [1]. In isotropic,
homogeneous and thermodynamically stable materials, the Poisson’s ratio (PR) varies
between –1 and 0.5, where the higher bound corresponds to an incompressible (rubber-
like) solid, while the negative limit is related to a solid with infinite shear. In anisotropic
materials, the Poisson’s ratios can vary beyond the above bounds, the reciprocity relation
between PRs and Young’s moduli being the only thermodynamic constraint for special
orthotropic materials, for example [2]. The negative Poisson’s ratio (NPR), or auxetic
behavior, was observed experimentally in iron pyrite [3] in the first half of the 20th century,
and subsequently confirmed for 69% of the cubic elemental metals and some fcc rare gas
solids, when stretched along the specific [110] off-axis direction [4]. Artificially-made
materials and structures exhibiting NPR behavior have been manufactured as open cell
foams [5], long-fibre composites [6], microporous polymers [7] and honeycomb structures
[8,9]. Current nanomechanical models predict the Poisson’s ratio of single-wall carbon
nanotubes (SWCNTs) varying between 0.29 and 0.16, along with the chirality
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of the nanostructure [10,11]. At the nanoscale level, the possibility of having carbon
nanotube structures with NPR behavior has been reported by Jindal and Jindal [12] and
Tao, Alderson, and Alderson [13], suggesting that weakening of the C–C bond strength and
variation of its length could lead us to obtain this unusual property. Ab initio simulations
from Van Lier, Vam Alsenoy, Van Doren, and Geerlings [14] have shown that marginally
NPR behavior (–0.032) could be achieved in closed short (9,0) SWCNTs. Yakobson and
Couchman [15] have also draw attention to the fact that NPR could be achieved in CNT
bundles when an extension of an entangled mat in one direction releases a relative glide of
the CNTs filaments at their crossing. Evidence of this type of in-plane negative Poisson’s
ratio (PR) behavior has been recently discovered in buckypapers, with mixed MWCNT–
SWCNT arrays, with PR values up to –0.3 for nanotube's average orientations of 50� in
the CNT sheet [16]. In this work, we point out at the extreme and auxetic Poisson’s ratio
behavior in non-reconstructed defective (NRD) single-walled carbon nanotubes (SWCNTs),
and its impact on the overall mechanical properties of nanocomposites made with these
unusual inclusions. NRD nanotubes arise due to the presence of non-reconstructed vacan-
cies (NRV) [17]. In vacancy defects, there are only two axially orientations mutually
distinguishable at 2π/3. Although metastable, the non-reconstructed SWCNTconfigurations
can be present at low temperatures and low dose irradiation [18], as well as in configurations
with dangling bonds surrounded by a polymer matrix or in MWCNTs and bundles of
SWCNTs [19]. A lattice configuration similar to the one of NRVs has been hinted as a
possible deformation mechanism to generate auxetic and extreme Poisson’s ratio in open
cell foams [20] and centrosymmetric honeycombs [21]. We simulate the mechanical beha-
vior of the NRD carbon nanotubes using a specific atomistic-structural mechanics model for
equivalent mechanical properties of the C–C bonds. Lattice finite element models represent-
ing the nanotubes are then developed, with the C–C bonds represented by beams with the
equivalent mechanical properties calculated with the above approach. The impact of the
NRD presence is assessed through Monte Carlo simulations (12,300 hits), providing
information about the sensitivity of the mechanical properties (Young’s modulus,
Poisson’s ratio, shear and flexural moduli) versus the CNT aspect ratio, diameter and
percentage of defects over total number of atoms. The mechanical properties and their
statistical distributions are then used in homogenisation techniques [22,23] to assess the
change of the nanocomposite mechanical properties over the pristine configuration.

2. NRD carbon nanotubes models and results

Structural mechanics approaches have been extensively used to simulate the mechanical
properties of carbon nanotubes and graphene [24,25]. Tserpes and Papanikos [26] have
proposed closed-form solutions to calculate the equivalent mechanical properties for the
C–C bond equating an harmonic potential (AMBER force model) with the mechanical strain
energies associated to hinging, stretching and out-of-plane bending of an equivalent Euler–
Bernoulli beam. The method proposed [26] yields a C–C bond thickness of 0.140 nm, for an
equilibrium length of 0.142 nm, clearly outside the validity of the Euler–Bernoulli beam in
terms of slenderness of the aspect ratio. We have proposed an alternative approach to
calculate the equivalent mechanical properties of the C–C bond, based on a Timoshenko
beam with deep shear deformation [27]. The harmonic potential expressed in terms of
AMBER force field is
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Ur ¼ 1

2
kr Δrð Þ2 Uθ ¼ 1

2
kθ Δθð Þ2 Uτ ¼ 1

2
kτ Δ’ð Þ2 ; (1a; 1b; 1c)

where kr, kθ and kτ are, respectively, the force constants related to bond stretching, bending
and torsional stiffness (kr ¼ 6.52 � 10-7 N nm-1, kθ ¼ 8.76 � 10-10 N nm rad-2, and kτ ¼
2.78 � 10-10 N nm-1 rad-2). The mechanical strain energies associated to the Timoshenko
beam deformation and their equivalence with the chemical potentials are expressed in the
following way:

Ur ¼ 1

2
KrðΔLÞ2 ¼ EA

2L
ðΔLÞ2

Uτ ¼ 1

2
KτðΔβÞ2 ¼ GJ

2L
ðΔβÞ

Uθ ¼ 1

2
Kθð2αÞ2 ¼ EI

2L

4þ Φ
1þ Φ

ð2αÞ2;

(2a; 2b; 2c)

whereΔβ and 2α are, respectively, the end beam rotation and bond angle variation, whereasΔL
is the stretch deformation of the bond. The other parameters are the equivalent isotropic
mechanical properties of the bond (Young’s modulus, E, and shear modulus,G), as well as the
geometry of the bond beam (cross-section, A, inertia moment, I, and polar moment of
inertia, J). The major difference between the previous approach [26] is the formulation of
the bending strain energy (2c) in terms of shear deformation constant Φ[28], which is a
function of the Poisson’s ratio, ν for the equivalent material of the C–C bond. Equating the
energies as per 2a–2c we obtain a nonlinear system of equations with the variables constituted
by the equilibrium length L, the thickness d and the Poisson’s ratio ν. For an equilibrium length
of 0.142 nm and the requirement of isotropic material for the bond [G ¼ E / 2 / (1 + ν)], the
nonlinear system can be solved using a Marquardt algorithm [29]. The identified thickness for
the C–C bond is 0.084 nm, with a Poisson’s ratio ν ¼ 0.0032, similar to the PR of cork [30].
The 0.084 nm value of thickness is well in line with the one provided by different MD
simulations [31,27]. SWCNT models were assembled using finite element 3D structural
beams equivalent to C–C bonds for different armchair configurations with chiral index
n ¼ 6, 13, 20, 27. The lengths of the carbon nanotubes were varying, with aspect ratios
(tube length/diameter) of 5, 10, 15 and 20. The vacancies were simulated selecting atoms using
a random Latin hypercube sampling technique, and deactivating the connected C–C bonds
providing the 120� axial directions for the single defect. The defective CNTs were modeled
using four different percentages of vacancies over the total number of atoms in a single carbon
nanotube – 0.5%, 1.0%, 1.5% and 2.0%, providing a structure with distributed NRDs. For the
uniaxial loading, the nanotubes were clamped at one end, and subjected to a uniaxial strain �"z
of 0.1% under a nonlinear geometric loading condition. The homogenised radial strain for the
carbon nanotube was calculated as �"r ¼

R
"rdS

�
S, where S is the surface of the tube. The

Young’s modulus and Poisson’s ratio νrz were estimated using the definitions for tubular
cellular structures [32]. The shear modulus was derived using the approach illustrated by
Tserpes and Papanikos [26], with an imposed set of rotations and clamed DOFs at the opposite
end of the nanotube. For each nanotube configuration, 200Monte Carlo sampling of vacancies
were performed, providing a total of 12,800 simulations for armchair tubes.

The presence of the non-reconstructed defects provides a general decrease of the
Young’s modulus, depending mildly on the radius and aspect ratio of the nanotubes, but
strongly on the percentage of vacancies (Figure 1a). For example, in armchair tubes with
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aspect ratio 5, for a defects percentage of 0.5%, the mean value of the ratio between defected
and pristine Young’s modulus varies between 0.995 for a radius of 0.41 nm to 0.958 for a
tube diameter of 3.2 nm, to slightly increase to 0.961 for a radius of 2.13 nm. Sammalkorpi
et al. [17] observe a Y/Y0 ratio up to 0.97 in (5,5) nanotubes with triple vacancies. The ratio
between the standard deviation of the Young’s modulus versus Y0 shows dependences versus
the radius R and aspect ratio (AR) of R-1 and AR -1/2, respectively, with values ranging from
0.01% for a vacancy percentage of 0.5, to 0.026% for a NRV percentage of 2. We have

Figure 1. (a) Mean Young’s modulus ratio and (b) standard deviation of Young’s modulus ratio for
armchair (n,n). l ¼ 2% NRV; & ¼ 1.5% NRV;~¼ 1% NRV; � ¼ 0.5% NRV.

86 F. Scarpa et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
B
r
i
s
t
o
l
 
L
i
b
r
a
r
y
]
 
A
t
:
 
1
6
:
1
3
 
1
5
 
M
a
y
 
2
0
1
0



noticed that the mean of the standard deviation versus the mean of the Young’s modulus is
confined between a maximum of 2.7% for a radius of 0.43 nm, aspect ratio of 5 and NRV
percentage of 2, to a minimum of 0.3 % for radiuses of 1.7 nm, maximum aspect ratio of 20
and vacancies percentage of 0.5 (Figure 1b). In contrast, the Poisson’s ratio, νrz, shows large
variations, depending on the tube geometry, the percentage and the location of vacancies.

From our observations, the NPR is normally induced by defects close to the ends of the
tube, and concurrently in the middle of the CNT length, as shown in Figure 2 for a (6,0)
nanotube. The NRVs close to the ends provide an amplification of the Saint–Venant effects
on the loading conditions, causing out-of-plane rotations of the C–C bonds connected to the
vacancies, and local radial expansion of the nanotube under a positive axial strain (Figure 3).
When the NRVswere located on average four to five cells away from the ends, the mechanical
behaviors of the defected nanotubes were the opposite, with local radial contractions under a
global positive axial strain, and therefore a positive Poisson’s ratio effect.

Pristine single-wall nanotubes have Poisson’s ratios (νrz) values varying with their chirality
in ranges between 0.29 to 0.16 [10,11]. The non-reconstructed defective nanotubes showed
significant variations in terms of magnitude and sign, for given chirality, aspect ratio and
percentage of NRVs. The probability density functions associated to the Poisson’s ratio
showed significant levels of skewness and, in general, a non-Gaussian distribution. For
armchair tubes (6,6) and aspect ratio of 5, the mean Poisson’s ratio varies between 0.22 at a
NRV percentage of 0.5, to 0.59 for NRV¼ 2% (Figure 4). The Poisson’s ratio νrz of the pristine
nanotube is 0.29. The standard deviations (Figure 5) are significantly large, ranging from0.66–
2.14 to 3–3.6 times the mean values. With the maximum aspect ratio considered in this study
(20), the probability density distributions for the Poisson’s ratio show even higher average
value and standard deviation discrepancies from the pristine nanotube values. The extreme
Poisson’s ratios recorded in these simulations make the NRD nanotubes anisotropic materials,
like tubular auxetic truss structures studied previously by some of the authors, albeit with larger
νrz values available [32]. The percentage of negative Poisson’s ratios varies according to the
nanotube chirality, aspect ratio and vacancy ratios. Auxetic nanotubes vary between a 12.5%
for an armchair (6,6) at aspect ratio of 5 and NRVof 0.5%, to 28% for (26,26), aspect ratio 20
and NRV of 2%. The percentage of auxetic nanotubes for a given radius appears to be
linearly dependent on the tube aspect ratio, and proportional to NRV ½ for the vacancies. The
mean values for the positive and negative PR values for a given tube aspect ratio appear also
linearly dependent on the percentage of vacancies, as well as proportional to R-1. For the
minimum vacancies ratio considered in this study, the positive mean Poisson’s ratio is
reported to be 1.04 for the same aspect ratio and tube radius (AR ¼ 20 and R ¼ 1.278 nm
respectively).

For the auxetic CNTs, the average Poisson’s ratios range between –9.1 for n ¼ 6 and
NRV ¼ 2.0% to –0.87 for n ¼ 27 and NRV ¼ 0.5%. The distribution of the standard
deviations (Figure 4b) again follows the inverse radius dependence and linear proportion-
ality with the vacancies percentage. The standard deviations for the auxetic nanotubes follow
a similar trend, with a general decrease of 12–15% compared to the positive Poisson’s ratio
nanotubes.

3. Composite with NRD nanoinclusions

The effect of nanoinclusions on the behavior of composites is often evaluated as first
approximation with the calculation of upper and lower Hashin–Shritkman bounds (HSU
and HSL) [22] valid for biphase composites with circular spheres. Let us consider a
nanocomposite made with pristine SWCNTs of Y¼ 1.71 TPa and νrz¼ 0.16 [11] embedded
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in an epoxy matrix (Em ¼ 2.5 GPa, νm ¼ 0.25), with a volume fraction of 7%. As showed in
the previous section, the main characteristic of the NRD nanotubes is the large fluctuation in
terms of Poisson’s ratio, but a fairly stable slight decrease of the axial stiffness, between 85%
and 95% of the pristine nanotube value. Figures 6a and 6b show, respectively, the variation
of the upper and lower bounds for the nanocomposite with different Poisson’s ratios of the
CNTs. The analytical HSU and HSL bounds are calculated considering a stable Young’s
modulus stiffness for the CNT equal to 90% of the one of the pristine tube, but varying the
Poisson’s ratio νrz between –1 and 0.5 (isotropic material interval). The analytical formulae

Figure 2. Zigzag (6,0) nanotube (AR ¼ 10, 2% NRD).

Figure 3. Auxetic (6,0) nanotube (ν ¼ –0.932).
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are compared with the bounds calculated with the effective Young’s modulus and Poisson’s
ratio from the Monte Carlo simulations, and normalised with the bounds corresponding to
the pristine nanocomposite configuration. The normalised upper bound of the bulk modulus
related to the simulated FE CNTs configuration (Figure 6a) follows the analytical

Figure 5. Distribution of the standard deviations for (n,n) configurations (pristine νrz between 0.29
and 0.16).

Figure 4. Probability density functions for νrz in (n,n) tubes (R ¼ 0.426 nm, AR ¼ 5).
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approximation quite closely, although when the Poisson’s ratio is close to the upper bound
(0.5) the MC simulations provide a significant enhancement compared to the theoretical
prediction. For that specific case, the HSU bound is between 2.1 and 2.3 times higher
than the one of the pristine nanotube configuration of reference. The normalised bulk
lower bound is unchanged compared to the base reference, showing that the presence of

Figure 6. HS bounds for the NRD nanocomposite (a) bulk modulus and (b) shear modulus.
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anomalous CNT Poisson’s ratio does not affect that particular mechanical property. Also for
the lower bound of the shear modulus (Figure 6b) there is no change compared to the pristine
configuration, while the upper bound closely follows the analytical approximation, with a
14-fold increase of the HSU bound for a νrz ¼ –0.92 compared to the base reference
nanocomposite. The strong increase in the upper bound is recorded for all the auxetic
(negative Poisson’s ratio) CNT configurations.

The mechanical properties of unidirectional reinforced nanocomposites can be evaluated
using the Hashin–Rosen formulations [23], in particular the in-plane Poisson’s ratio ν12
(Figure 7). The onset of auxeticity for the whole composite starts for NRD CNTs having a
Poisson’s ratio of –0.6 and a volume fraction of 20%. For lower volume fractions the
required negative νrz for the CNTs increase, with a minimum vf ¼ 14% for a nanotube
Poisson’s ratio of –0.99. Although possible from a theoretical point of view, the likelihood
of producing unidirectional auxetic nanocomposites with NRD nanotubes is low. We have
observed that the percentage of auxetic configurations identified during the Monte Carlo
simulations varies between 14% for aspect ratios of 5 and defect percentages of 0.1, to a
maximum of 25% for the highest diameter nanotubes, highest aspect ratio and 2% of
defects. The Hashin–Rosen formulations imply that the 100% of the nanotubes would be
auxetic.

A specific domain where the presence of auxetic fibres in reinforced composites could
provide some benefit is the fibre pullout. Negative Poisson’s ratio fibres show a significant
increase in pullout force, as recorded in polypropylene fibres [33] and auxetic polyethylene
yarns [34]. We use the nanofibre pullout model proposed by Xiao and Liao [35] modified for
SWCNTs to calculate the membrane force and maximum interfacial shear stress between the
surrounding matrix and the nanotube, taking as reference the nanocomposite configuration
used for the HS bounds (Figure 8). For a given traction force (100 N/m) and a friction
coefficient of 0.3 between nanotube and matrix [35], the maximum interfacial shear stress is
increased for the extreme positive Poisson’s ratio configurations (maximum 4% for the
specific nanotube type considered). Alleviation of maximum shear stresses is provided for
the auxetic nanotube configurations, with a theoretical decrease of 15% when considering
NRD CNTs with average 10% of stiffness reduction compared to their pristine configura-
tion. The results from the finite element Monte Carlo simulations fit the theoretical trend line

Figure 7. In-plane Poisson’s ratio, ν12, for unidirectional reinforced nanocomposites versus volume
fraction and CNT Poisson’s ratio.
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well. The maximum interfacial shear stress decrease is also accompanied by the specific
auxetic deformation mechanism, where the fibre tends to oppose the external force pullout
by expanding radially against the matrix [33].

4. Conclusions

In this work, we have shown a deformation mechanism leading to an auxetic (negative
Poisson’s ratio) behavior in single-wall carbon nanotubes. The non-reconstructed defective
(NRD) nanotubes can be created by ion and/or electronic irradiation, although they have to
be stabilised at low temperature and/or in a surrounding matrix. Whereas the axial stiffness is
only slightly decreased and shows a Gaussian-type distribution according to the radius of the
nanotube, its aspect ratio and percentage of defects, the Poisson’s ratio shows large fluctua-
tion, also beyond the internal (–1, 0.5) of the classical elasticity.

Whereas the NRD nanotubes are in general anisotropic, we focus in this study on the
implication on using NRD CNTs with isotropic behavior, to evaluate the impact of this type
of nanoinclusions in composites with isotropic phases. The Hashin–Shritkman bounds of
composites with NRD inclusions are significantly enhanced compared to the values of the
pristine nanotube reference configuration. The maximum interfacial shear stress during fibre
pullout also seems to decrease for the auxetic nanotube configurations. We also show a
theoretical possibility to obtain an auxetic in-plane nanocomposite with unidirectional
reinforcement. Future work will focus on the assessment of the strong anisotropy of the
inclusions, and identify design maps for the possible use of these interesting nanostructures.
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