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Elastic instability of bilayer graphene using atomistic finite element
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In-plane elastic instability of bilayer graphene sheets is investigated using atomistic finite element

approaches. The equivalent homogenised properties of graphene sheet are expressed in terms of the

thickness, equilibrium lengths and force-field models used to represent the C–C bonds of the graphene

lattice. The covalent bonds are represented as structural beams with stretching, bending, torsional and

shear deformation, and the strain energies associated to affine deformation mechanisms. The overall

mechanical properties and geometric configurations of the nano-structures represented as truss

assemblies are then calculated minimising the total potential energy associated to the loading,

thickness and average equilibrium lengths of the bonds. Different boundary conditions and aspect

ratios are considered for both bilayer and single-layer graphene sheets. The bilayer graphene sheets are

found to be offering remarkably higher buckling strengths as compared to single-layer sheets.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Graphene has attracted tremendous attention in both its 2D and
1D forms, since the discovery of superlattice monolayers and thin
films of graphite [1,2]. In an experimental work in 2004, Meyer
et al. [3] were the first to report the possibility of suspending
single-layer graphene sheets (SLGSs) [4] in vacuum, e.g., the
possibility of bilayer graphene sheets (BLGSs). BLGSs are two atom
thick array of carbon sp2 bonds forming a double layer SLGS, with
an interlayer spacing of 0.34 nm [5]. Pal and Ghosh [6,7] have
investigated the low-frequency electrical resistance fluctuations in
bilayer and multilayer graphene. BLGSs offer unique and excellent
electrical properties making them very suitable candidate for next
generation semiconductors [8,9]. Significant studies [5,10–16] exist
on the stiffness of single and multilayer graphene sheets by
considering static deformations and natural frequencies. However,
very few literature [17,18] exists in the area of elastic instabilities
of graphene sheets using nonlocal continuum mechanics. In the
present work, we have performed eigenvalue buckling analysis on
both SLGSs and BLGS structures. The extraction of buckling modes
by eigenvalue scheme is viable in this case, since the objective of
this paper is to compute critical buckling loads. However it is a
common practice to perform nonlinear buckling analysis on carbon
nanotubes [19–21], since the simulation of local buckling mode
shapes was the key objective of these research papers.

The authors have recently formulated a modelling approach,
where the equivalent homogenised properties of a graphene sheet

are expressed in terms of the thickness, equilibrium lengths and
force-field models used to represent the C–C bonds of the
graphene lattice [22]. The covalent bonds are represented as
structural beams with stretching, bending, torsional and deep
shear deformation, based on the equivalence between the harmo-
nic potential expressed in terms of Morse and Amber models [23],
and the strain energies associated to affine deformation mechan-
isms. The overall mechanical properties and geometric configura-
tions of the nanostructures represented as truss assemblies (finite
elements) are then calculated minimising the total potential
energy associated to the loading, thickness and average equili-
brium lengths of the bonds. A typical example of a BLGS is shown
in Fig. 1. Various possible scenarios, namely different boundary
conditions and aspect ratio are considered in the present study.
The layout of the paper is as follows. In the next section, we
present the atomistic approach utilised in the present analysis.
This discussion will include mathematical behavior of C–C cova-
lent bonds and interlayer Lennard-Jones (L-J) potential. The results
of the analysis will be presented in the fourth section. The results
will elucidate dependence of buckling response on aspect ratio,
boundary conditions and number of layers. Finally, the paper will
be completed by concluding remarks on the present study.

2. Atomistic finite element approach

2.1. Modelling of carbon–carbon covalent bonds

The carbon–carbon sp2 are modelled as Timoshenko beams
with axial, out-of-plane and in-plane rotational degrees of freedom.
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The harmonic potential of the C–C bond is given as [24–26]

Ur ¼
1
2 krðdrÞ2, Uy ¼

1
2 kyðdyÞ2, Ut ¼

1
2ktðdjÞ2 ð1Þ

The equivalent mechanical properties of the C–C bond can be
calculated using a beam mapping technique, imposing the equiva-
lence between the harmonic potential and the mechanical strain
energies of a hypothetical structural beam of length L [22]:

kr

2
ðdrÞ2 ¼

EA

2L
ðdrÞ2 ð2aÞ

kt
2
ðdjÞ2 ¼ GJ

2L
ðdjÞ2 ð2bÞ

ky
2
ðdyÞ2 ¼

EI

2L

4þF
1þF

ðdyÞ2 ð2cÞ

Eq. (2a) represents stretching and axial deformation mechanism
(with E being the equivalent Young’s modulus), while Eq. (2b)
represents the torsional deformation of the C–C bond with the pure
shear deflection of the structural beam associated to an equivalent
shear modulus G. Eq. (2c) accounts for the shear deformation in the
cross section. For circular cross sections, the shear deformation
constant can be expressed as [22]

F¼
12EI

GAsL2
ð3Þ

In Eq. (3), As ¼ A=Fs is the reduced cross section of the beam by the
shear correction term Fs [27]:

Fs ¼
6þ12nþ6n2

7þ12nþ4n2
ð4Þ

The insertion of Eqs. (3) and (4) in Eq. (2) leads to a nonlinear
relation between the thickness d and Poisson’s ratio n of the
equivalent beam [22]:

ky ¼
krd2

16

4AþB

AþB
ð5Þ

where

A¼ 112L2ktþ192L2ktnþ64L2ktn2 ð6Þ

B¼ 9krd2þ18krd4nþ9krd
4n2 ð7Þ

The values of the Morse force constants are kr¼8:74�10�7 N mm�1,
ky ¼ 9:00� 10�10 N nm rad�2 and kt ¼ 2:78� 10�10 N nm�1 rad�2.
The equivalent mechanical properties of the C–C bond can be
calculated by performing a nonlinear optimisation of Eqs. (2a)–(2c)
using a Marquardt algorithm [28]. The C–C bond can then be
discretised as a single two-node 3D FE model beam with a stiffness
matrix described in Ref. [29], where the nodes represent the atoms.
For comprehensive understanding of the above procedure, readers
are referred to Refs. [12,22].

2.2. Modelling the interlayer potential

The equivalent axial force due to the L-J potential between the
pair of atoms (i, j) belonging to different graphite layers can be
expressed as [12]

Fij ¼
@Vij

@r
ð8Þ

where r is the atomic displacement along ij (layer–layer length).
According to Girifalco et al. [30], the force between the atoms (ij)
can also be represented by

Fij ¼�12e rmin

y

� �13

�
rmin

y

� �7
" #

ð9Þ

where y¼ rminþdr, dr is the atomic displacement along the length
ij. The rmin (in Å) is given by 21=6s, where s¼ ðA=BÞ1=6. The B and A

are attractive and repulsive constants, and for our cases of
boundary conditions, they are given by 24:3� 103 eV Å

12
and

15.4 eV Å6 respectively, and e is B2=ð4AÞ. In the atomistic models,
we have used spring elements to form a nonlinear connection
between two layers of the bilayer structure representing L-J
potentials. The force deflection curve for L-J springs has been
calculated by using the relation in Eq. (9).

3. Results and discussions

The eigenvalue analysis of bilayer graphene sheets depends on
the boundary conditions. Thus, in this work, we analyze two
groups of BLGS, i.e., cantilevered BLGS and bridged BLGS with
varying aspect ratio. The cantilever (CFFF) and bridge models
(CCFF) are depicted in Figs. 2(a) and 3(a) respectively. Buckling
analysis has been carried out using the atomistic finite element
approach, consisting in creating a geometric stiffness matrix imposing
first a unit force along the buckling direction, and then computing the
eigenvalues and related eigenmodes with a Lanczos solver. The BLGS
buckling mode shapes at CFFF and CCFF conditions are depicted in
Figs. 2(b) and 3(b) respectively. These buckling mode shapes for BLGS
are found to be identical to those of SLGS (figure not shown).

3.1. Dependence of SLGS and BLGS buckling loads on length and

aspect ratio

The variation of SLGS critical buckling load with length is shown
in Fig. 4. Fig. 5 presents the variation of BLGS buckling with length.
The value of critical buckling load at a given length is found to be
independent of aspect ratio, and decreases with increase in length.
This variation of buckling strength with the side length is also
inline with those of elastic plates presented in the classical
literature [31,32]. For bridged SLGS with length raising from 2 to
20 nm, the critical buckling load is found to be decreased in the
range of about 6–1 N. For bridged BLGS, this range is found to be
about 180–80 N. This indicates that, at a given length and under
buckling loads, the BLGS is stronger than SLGS by a factor of more
than 30. The pattern of variation of buckling loads for BLGS is found
to be dissimilar to that of SLGS. This dissimilarity is primarily due
to the presence of nonlinearity in the interlayer L-J potential.

3.2. Dependence of SLGS and BLGS buckling load on the

boundary condition

Under the influence of buckling loads, the bridged plate
structure generally offers higher stiffness [31,32] as compared to
the cantilever structure. Referring to Fig. 4 and making a compar-
ison between CCFF-SLGS and CFFF-SLGS models indicates that
changing the boundary condition from one edge fixed to both

Fig. 1. Bilayer graphene sheet: atomic configuration of width¼19.074 Å and

length¼19.538 Å.
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edges fixed will increase the critical buckling to about three times.
This trend remains same for BLGS (see Fig. 5). For SLGS models, the
slope for cantilever and bridge plots is found to be identical.
Whereas for BLGS models, the slope for cantilever model is found
to be higher than that of bridge model. This difference occurs due
to the presence of nonlinear interlayer L-J potential in BLGS.

3.3. Dependence on number of graphene layers in the sheet

From the above discussion, it is understood that a bilayer
graphene (see Fig. 6) sheet offers stiffer response as compared to a

single-layer sheet. This can be further clarified by referring to
Table 1. The trend of variation of BLGS critical load with side
length is found to be identical with that of SLGS. This trend
confirms reduction in critical load with increase in length. How-
ever, there is a noticeable difference in slope. The slope for SLGS is
found to be higher than that of BLGS. This indicates that the rate
at which critical buckling load decreases with length is higher for
SLGS. By referring to Table 1, we can conclude that BLGS is stiffer
than SLGS. At lower side length (i.e. 3.24 nm) the bilayer structure
is found to be 30 times stronger than that of single layer. At
higher length (i.e. 20 nm), this factor is found to be as high as 80.

Fig. 3. Bridge BLGS and its first buckling mode shape. The forces are prescribed at the edges to simulate buckling behavior. (a) Bridge SLGS and (b) First buckling mode

shape for bridge SLGS.
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Fig. 4. Variation of buckling loads with length for SLGS at four different values of aspect ratio. The aspect ratio considered are 0.2, 0.4, 0.8 and 1.04. For cantilever sheet, the

buckling load at 2.34 nm side length is 2.22 N/nm and at 22.3 nm side length is 0.25 N/nm. For bridge sheet, the buckling load at 2.34 nm side length is 6.22 N/nm and at

22.3 nm side length is 1.0 N/nm. (a) Buckling loads for cantilever SLGS. (b) Buckling loads for bridged SLGS.

Fig. 2. Cantilever BLGS and its first buckling mode shape. The forces are prescribed at the edges to simulate buckling behavior. (a) Cantilever SLGS and (b) First buckling

mode shape for cantilever SLGS.
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This indicates that the factor increases with the side length. The
inclusion of further layers will further enhance the buckling
strength of the nanostructure.

4. Conclusions

The stiffness and in-plane buckling properties of single and
bilayer graphene sheets are investigated using atomistic finite
element approach. The C–C bonds are represented by equivalent
structural beams with stretching, bending, torsional and deep
shear deformation, based on the equivalence between the har-
monic potential expressed in terms of Morse force-field model.
This analysis confirms that, bilayer graphene sheets offer higher
stiffness leading to a higher value of critical buckling load. For
both single and bilayer sheets, the critical buckling load decreases
with the increase in the side-length. The bucking response of
graphene sheets is found to be not sensitive to the aspect ratio at
a given side-length. The bridged configurations are found to be
exhibiting higher critical buckling loads as compared to cantilev-
ered configurations. The critical buckling load increases consider-
ably with the increase in the number of graphene layers. Our
results show that critical buckling loads of bilayer graphene
sheets are in excess of 20 times that of single-layer graphene
sheets. This implies that bilayer graphene sheets can be a superior
choice for the future generation of nano-composite materials.
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Table 1
Comparison of BLGS buckling loads against SLGS buckling loads. Graphene sheets
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buckling strength than SLGS. Length has been varied by keeping aspect ratio 0.24.
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