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Bilayer graphene sheets (BLGSs) are currently receiving increasing attention. In this paper, the vibration
characteristics of BLGSs are investigated using analytical and atomistic finite element approaches. Various
possible scenarios, namely different geometrical configuration (armchair and zigzag), boundary conditions,
and aspect ratio are considered in the present study. The dynamic characteristics of BLGS studied have shown
dependence on aspect ratio and the boundary conditions. The unique vibrational properties and large stiffness
of BLGS identified in the present work make them suitable candidates for manufacturing nanosensors;
electromechanical resonators also will aid the nanomaterials research community to design nanodevices.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Growing research interest in the application of carbon nanos-
tructures has emerged since the discovery of superlattice monolayers
and thin films in graphite [1,2], also denominated as graphene [3-6].
Graphene has attracted tremendous attention in both its 2D and 1D
forms, the latter being obtained by patterning the layer into strips or
ribbons [7]. In an experimental work in 2004, Meyer et al. [8] reported
the possibility of suspending single-layer graphene sheets (SLGSs) in
vacuum, e.g., the possibility of bilayer graphene sheets (BLGSs). BLGSs
are two atom thick array of carbon sp? bonds forming a double layer
SLGS, with an inter layer width of 0.34 nm [9-11]. Bilayer graphene
has been proposed as the only semiconductor to produce insulating
state and switch-off electrical conduction [12,13]. Another unusual
property associated to this nanostructure is the presence of two
structural domains at 180° when grown on SiC substrate, showing a
“shifted stacking” of the layers due to lattice mismatch induced by the
roughness of the silicon carbide [14]. Pal and Gosh [15,16] have
investigated the low-frequency electrical resistance fluctuations in
bilayer and multilayer graphenes. Although the mechanical properties
of SLGSs (stiffness and natural frequencies) have been studied by
many authors [9-11,17-22], limited literature exists for the case of
double and multi-layered graphene structures [21,23-28]; experi-
mental data on the out-of-plane properties of multilayer graphene
have been obtained by Frank et al. [29]. Behfar and Naghdabadi [28]
investigated the nanoscale vibration of a multi-layered graphene
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sheet embedded in an elastic medium, in which the natural
frequencies as well as the associated modes were determined using
a continuum-based model. In line with this study, Liew et al. [27]
derived a set of explicit formulas for the natural frequencies and the
associated modes for double- and triple-layered graphene sheets
embedded in an elastic matrix.

The authors have recently formulated a modeling approach, where
the equivalent homogenized properties of a graphene sheet are
expressed in terms of the thickness, equilibrium lengths, and force-
field models used to represent the C—C bonds of the graphene lattice
[17]. The covalent bonds are represented as structural beams with
stretching, bending, torsional and deep shear deformations, based on
the equivalence between the harmonic potential expressed in terms
of Morse and Amber models [30], and the strain energies associated to
affine deformation mechanisms. The overall mechanical properties
and geometric configurations of the nanostructures represented as
truss assemblies (finite elements) are then calculated minimizing the
total potential energy associated to the loading, thickness, and
average equilibrium lengths of the bonds. In the present work, we
have focused on the nanoscale dynamics of BLGS. A typical example of
a BLGS is shown in Fig. 1. Various possible scenarios, namely different
geometrical configurations (armchair and zigzag), boundary condi-
tions, and aspect ratio are considered in the present study. We
propose also an analytical plate model to simulate in a compact form
the mechanical vibrational behavior of BLGS, providing a further
benchmark to the atomistic finite element (FE) model of the bilayer
graphene.

The paper is organized in the following way. The continuum
mechanics approach for the frequency analysis of graphene sheets is
presented in Section 2. Section 3 will be centered on the modeling,
analysis, and calculation of the frequencies using atomistic FE
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Fig. 1. Bilayer graphene sheet: atomic configuration of width=19.074 A and
length=19.538 A.

approach. The numerical results and discussion will be presented in
Section 4. Finally, the major conclusions of this paper will be drawn in
Section 5 based on the results and analyses in Section 4.

2. Vibration of bilayer graphene

For the monolayer graphene sheets, linear as well as nonlinear
[31] elasticity models have been proposed. At its simplest
approximation, a bilayer graphene sheet may be represented by
an elastic plate with an equivalent thickness. The governing
equation of motion of an elastic plate undergoing flexural vibration
can be given as [32-35]:

o'w
D| = +2
(8x4
where w=w(x, y, t) is the deflection distributed over the x, y

coordinates of the plate, t is the time, p is the mass density. The
bending rigidity (D) is given by
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The bending rigidity is governed by the Young's modulus E, the
interlayer distance h, the thickness d of each SLGS, and the
Poisson's ratio v of the equivalent graphene material. The natural
frequency for an elastic plate of dimensions ax b is given by [36]:

o= {10t @)+ (0 o, + -]}
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where i, j=1, 2, 3, ... are mode indices. The values of the
coefficients Gy, Hy, Jx and Gy, H,, ], for three different boundary
conditions are given in Table 1.

From a structural mechanics point of view, the BLGS forms a
composite structure involving Lennard-Jones (L-J) potential sand-
wiched (the “core”) between two graphene sheets [23]. One can
estimate the equivalent Young's modulus Eq of the bilayer using the

Table 1

Coefficients for the various boundary conditions.
BC i j Gy Hy Jx G Hy Jy
Cantilever (CFFF) 1 0 0597 -—0087 0471 00 00 00
Bridged (CCFF) 1 0 1.506 1248 1248 00 00 00
Simply supported (SSSS) 1 0 1 1 1 1 1 1

standard rule of mixture for unidirectional composites [37] and
neglecting the stiffness contribution of the L-] potential:

1
Eeq = EGraphene ﬁ . (4)

2d

The equivalent Young's modulus has been considered for the
calculation of elastic plate natural frequencies using Eq. (3).

3. Atomistic finite element approach
3.1. Modeling of carbon—carbon covalent bonds

The carbon—carbon sp? bonds can be considered as equivalent
beams having axial, out-of-plane, and in-plane rotational deformation
mechanisms. The harmonic potential associated to the C—C bond can
be expressed as [11]:

1 1 1
Uy = ok(or) Uy = Sky(0)" Uy = k- (60)"- ()

The equivalent mechanical properties of the C—C bond can be
calculated using a beam mapping technique, imposing the equiva-
lence between the harmonic potential and the mechanical strain
energies of a hypothetical structural beam of length L [17]:
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Eq. (6) corresponds to the equivalence between stretching and axial
deformation mechanism (with E being the equivalent Young's
modulus), while Eq. (7) equates the torsional deformation of the
C—C bond with the pure shear deflection of the structural beam
associated to an equivalent shear modulus G. Contrary with similar
approaches previously used [11,22], the term equating the in-plane
rotation of the C—C bond (Eq. (8)) is equated to a bending strain
energy related to a deep shear beam model, to take into account the
shear deformation of the cross section. The shear correction term
becomes necessary when considering beams with aspect ratio lower
than 10 [32]. For circular cross sections, the shear deformation
constant can be expressed as [17]:

o 128
GAJZ

9)

In Eq. (9), A;=A/Fsis the reduced cross section of the beam by the
shear correction term F; [38]:

6+ 12v + 67

=
7+ 12v + 4v

(10)

The insertion of Egs. (9) and (10) in (2) leads to a nonlinear relation
between the thickness d and the Poisson's ratio v of the equivalent
beam [17]:

ky =

(1)
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where
A = 1121%k, + 1921k, v + 641k (12)
B = 9k,d* + 18k.d*v + 9k,d**. (13)

For the values for the force constants for the Morse model, we adopt
k;=8.74x10" 7 Nmm~ ', k,=9.00x10" ' Nnmrad~?, and
k;=2.78x107 ' Nnm™ 'rad~2. The equivalent mechanical proper-
ties of the C—C bond can be determined performing a nonlinear
optimization of Egs. (6)-(8) using a Marquardt algorithm [39]. The
C—C bond can then be discretized as a single two-node, three-
dimensional FE model beam with a stiffness matrix described in
reference 40, where the nodes represent the atoms. The atomistic and
lattice models of the square graphene sheets are assembled using the
FE discretization as presented in Fig. 1. In the lattice model, at each
substep of the Newton-Raphson solver technique [41], the total
potential energy is minimized to identify the thickness of the C—C
bonds and the average equilibrium length of the covalent bonds. The
nonlinear minimization technique is performed in two steps, with a
zero order method to identify first the minimal clusters and a
subsequent first order derivative-based method to identify the
absolute minimum of the potential energy. For a comprehensive
understanding of the above procedure, readers are referred to
references 17,20,23.

In the atomistic FE approach, BLGSs are modeled as space-frame
structures (Fig. 1). Overall mass and stiffness matrices of the atomistic
FE models are generated from the equivalent matrices of the beams
representing C—C bonds and concentrated masses at each node. The
lumped mass matrix for a single beam element can be represented as:

. m m m
[Mlezd‘ag[?c 3 3

00 0], (14)

where m.=1.9943x10"26kg is the mass of a carbon atom [9].
The general equation of motion of the undamped system
([K]x + [M]x = 0) leads to a standard undamped eigenvalue problem
(((K]—«?[M]){x} = {0}), which has been solved using a block
Lanczos algorithm.

3.2. Modeling the interlayer potential

The equivalent axial force related to the L-] potential between pair
of atoms (i, j) belonging to different graphite layers can be expressed
as [23]:

v,
=%

(15)
where r is the atomic displacement along ij (layer-layer length).
According to Girifalco et al. [42], the force between the atoms (ij) can
also be represented by:

e -(5)]

where y = iy + 61, 6r is the atomic displacement along the length ij.
The romin (in A) is given by 26 o, where & = (A/B)'/®. The B and A are
attractive and repulsive constants, and for our cases of boundary
conditions, they are given by 24.3x10%eVxA!? and 15.4 eVxAS,
respectively, and € is B/(4A). In the atomistic models, we have used
spring elements to form a nonlinear connection between two layers of
the bilayer structure representing L-] potentials. The force deflection
curve for L-J springs has been calculated by using the relation in
Eq. (16).

3.3. Boundary conditions

Since the atomic configurations can have a significant impact on
the mechanical properties of graphene sheets, zigzag and armchair
models [9,18] are adopted in this study. The zigzag and armchair
models of the graphene sheets under consideration are as follows:

BLGS1: armchair model clamped at one edge (cantilevered
condition)
BLGS2: armchair model clamped at two opposite edges (bridged
condition)
BLGS3: zigzag model clamped at one edge (cantilevered condition)
BLGS4: zigzag model clamped at two opposite edges (bridged
condition)

Schematic diagrams of the four BLGS models are shown in Fig. 2.

4. Results and discussions

The resonant frequencies of SLGS and BLGS based resonators
depend on the geometric configurations. The atomic structures of
SLGS and BLGS could also exert significant influence on their vibration
behaviors. Thus, in this work, we analyze two groups of resonators,
i.e,, zigzag and armchair with varying length and width. An initial
free-free modal simulation has been carried out to verify the dynamic
behavior of the bilayer structure without the influence of external
clamps and/or supports. The four mode shapes of cantilever and
bridged SLGS are given in Figs. 3 and 4, respectively. The first four
mode shapes for the cases BLGS1 and BLGS2 are presented in Figs. 5
and 6, respectively. We have chosen a model with aspect ratio of 4 and
width of 1.49 nm, for the purpose of demonstrating vibration modes.
In both cases (BLGS1 and BLGS2), the first two modes are flexural
while the third is constituted by an out-of-plane torsional. It was
observed that the first four mode shapes related to BLGS1 and BLGS2
are identical with those associated to BLGS3 and BLGS4 nanostruc-
tures. Also, the corresponding mode shapes of SLGS are found to be
similar to those of BLGS, for both the boundary conditions.

(b)BLGS2

A A

(c)BLGS3 (d)BLGS4

Fig. 2. Four BLGS models: BLGS1 = armchair cantilevered, BLGS2 = armchair bridged,
BLGS3 = zigzag cantilevered, BLGS4 = zigzag bridged. The triangular gaps will not occur
in an actual sheet.
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Fig. 3. The first four mode shapes of cantilever SLGS with aspect ratio of 4 and width of 1.49 nm: (a) mode 1, bending; (b) mode 2, bending; (c) mode 3, out-of-plane twisting; (d) mode 4,

bending.
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Fig. 4. The first four mode shapes of bridged SLGS with aspect ratio of 4 and width of 1.49 nm: (a) mode 1, bending; (b) mode 2, bending; (c) mode 3, out-of-plane twisting; (d) mode

4, bending.

4.1. Dependence on the length and aspect ratio

The results related to the fundamental frequencies of armchair and
zigzag BLGS are presented in Fig. 7, for bridged and cantilevered
boundary condition. One can observe that armchair BLGS
(width=4.33 nm) with the increasing length from ~15 A to ~140 A
have fundamental frequencies in the range between 25 and 470 GHz
and 80 and 1110 GHz. Zigzag BLGS (width =4.06 nm) have instead
their natural frequencies distributed between 23 and 300 GHz and 75
and 770 GHz for cantilevered and bridged boundary conditions,
respectively, this time with increasing lengths between 20 A and
120 A. The trend observed (Fig. 7) is similar to the one identified for
SLGS [9]. However, BLGS does show an increase of the fundamental
frequency by a factor around 4 for a given aspect ratio. In our
atomistic-FE model, the BLGS nanostructure behaves at first approx-
imation as a sandwich beam, a mechanical behavior consistent with
the one observed under static loading, and benchmarked against
experimental results [23]. From these results, we can assume that the

R it
\\\\ms\fs“‘““%x\\‘i\x%“\\\%\“““

(a) Mode 1

B
TN ““\\x}x\x\m\\

percentage decreases of the natural frequency follows a series of
increasing powers (a, ar?, ar®, ar®.....), where the scale factor a is the
natural frequency associated to the lowest considered length. The
common ratio r is found to be approximately between 0.6 and 0.5.

In Fig. 8, the variations of natural frequencies with respect to
length at a given aspect ratio are shown. The plots in Fig. 8 are similar
to the ones obtained by Sakhaee-Pour et al. [9] for SLGS, suggesting
that the pattern related to the variation of the natural frequencies
versus the nanostructure length is identical for SLGS and BLGS
structures. In Fig. 8, the first value of the frequency associated to an
aspect ratio (AR) of 1.15 coincides with the second natural frequency
for AR=0.57, i.e., at width reduction of about 50%.

4.2. Dependence on the boundary condition

The bridged structure generally offers higher natural frequency
[35] as compared to the cantilever one. Referring to Fig. 7, the change
of the boundary condition from one-edge-fixed to both-edge-fixed

AL
i o 1““‘3‘9“‘““
“““ﬁ?“\'“““‘:“.{E;?\;;L““ “‘\‘“

(b) Mode 2

(c) Mode 3

(d) Mode 4

Fig. 5. The first four mode shapes of BLGS1 with aspect ratio of 4 and width of 1.49 nm: (a) mode 1, bending; (b) mode 2, bending; (c) mode 3, out-of-plane twisting; (d) mode 4,

bending.
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Fig. 6. The first four mode shapes of BLGS2 with aspect ratio of 4 and width of 1.49 nm: (a) mode 1, bending; (b) mode 2, bending; (c) mode 3, out-of-plane twisting; (d) mode 4,

bending.

increases the fundamental frequency to about three times. We have
observed a similar trend for the second natural frequency also.
Clamping the BLGS at all edges will further enhance the stiffness and
consequently increase the natural frequency. These results suggest
that, with the increasing of the aspect ratio, the natural frequency of a
cantilever model will be lowered at higher rate compared to a bridged
BLGS. From these observations, we can also conclude that the models
associated to BLGS2 and BLGS4 topologies are suitable for nano-
electro-mechanical-system applications, where resonant frequencies

(a) Cantilever model
500 T T T

—— Armchair-BLGS1

450 —k—Zigzag-BLGS3

400
350
300
250
200
150
100 |
50

o, (GHz)

0 1 1 1 1 1 1
0 2 4 6 8 10 12 14

Length (nm)

(b) Bridged model
1200 T T T

'—-—Arr'nchair-B:LGSZ

1000 —+—Zigzag-BLGS4

800 1

600 1

o, (GHz)

400 1

200 1

0 1 1 1 1 1 1
0 2 4 6 8 10 12 14

Length (nm)

Fig. 7. The dependence of the natural frequency with length: (a) cantilevered boundary
condition, fundamental frequencies of armchair and zigzag BLGS as a function of the length
of BLGS. The widths are as follows: BSLGS1, 4.33 nm; BLGS3, 4.06 nm; (b) bridged
boundary condition, fundamental frequencies of armchair and zigzag BLGS as a function of
the length of BLGS. The widths are as follows: BLGS2: 4.33 nm; BLGS4, 4.06 nm.

are required to be very high [43-45], whereas the models BLGS1 and
BLGS3 are suitable for low resonant frequency applications.

4.3. The effect of chirality
Chirality and aspect ratio have a significant influence on the natural

frequencies of vibration (Fig. 7). For almost identical widths and lengths,
the fundamental frequencies of armchair BLGS are higher than the

(a) Model-BLGSH

10* T T T
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3 i
0°F o AR-3.4
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¥
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(b) Model-BLGS3
108 T T T T
. * AR-0.57
* AR-1.15
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2 | * 4
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Fig. 8. The variation of natural frequencies with length at a given aspect ratio.
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(a) BLGS of smaller dimensions
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Fig. 9. Simply supported boundary condition—fundamental vibrational frequencies of
the BLGS. Atomistic FE results and continuum mechanics results are compared for
different values of the length. Considerable error (~18%) occurred for smaller-sized
models (width =2.2 nm). However, for larger-sized model (width =10 nm), the error
margin becomes negligible for higher lengths. At higher lengths (above 40 nm), the
numerical frequencies are found to be very close (error =~42%) to analytical values.

zigzag BLGS for bridged case. However, increasing the BLGS length
diminishes the effect provided by the atomic configuration. The
maximum relative difference calculated as (wsigzag — Warmchair) /wWarmchair
is of the order of 0.35 and 0.31 for cantilevered and bridged boundary
conditions, respectively. In contrast, the difference between the
frequencies of the two chiral configurations (i.e., zigzag and armchair)
of carbon nanotubes (CNTs) does not show such large discrepancy, with
a maximum relative difference for CNTs being of the order of 0.08 [46].
The frequency of CNTs is primarily determined by their geometry
[47,48],1.e.,diameter and the aspect ratio, and is not significantly altered
by varying their atomic structure, especially for long tubes, leading to a
general good fidelity of continuum models to predict the vibration of
CNTs with different atomic structures. For the case of BLGS, the
frequencies seem dependent on both the geometric configuration as
well as their chirality for nanostructures with low dimensions.

4.4. Comparison with the continuum theory

The fundamental frequencies obtained from the two equations
(reference, Eq. (3)) presented in Section 2 are compared against those
from the atomistic-FE models and presented in Fig. 9. The boundary
conditions considered in these cases is the simple support at all edges
since Eq. (3) takes its simplest form due to the values of coefficients

Table 2
The comparison of numerical results against analytical results. The width considered
here is 10 nm. Length unit is in nanometer and the frequency unit is in gigahertz.

Length WAtomisticFE w[35]

109 126.0 153.05
134 113.0 130.86
15.9 106.0 118.66
183 101.0 111.08
20.8 98.00 105.81
232 95.8 102.26
25.7 94.6 99.57
28.2 93.3 97.57
30.6 924 96.08

(reference, Table 1) corresponding to this boundary condition.
According to the low-dimensional models considered in Fig. 9a, the
pattern of variation of natural frequency with length for an atomistic
model is found to be dissimilar to that of analytical models. This figure
indicates considerable error (~18%) margin for smaller-sized models,
as expected when using continuum theories where the equivalent
homogenized properties should be averaged over long scales, in
particular for the hexagonal lattices of the SLGS. Moreover, finite size
SLGS does show orthotropic mechanical properties rather than
isotropic as considered in the plate continuum model [17]. For BLGS
with larger dimension (Fig. 9b), the atomistic-FE approach provides
similar results to the ones predicted by the continuum plate theory. At
higher lengths (above 40 nm), the numerical frequencies are found to
be very close (error = ~4.2%), giving the evidence of the applicability
of the continuum model for relatively large-sized BLGS. From Table 2,
we can conclude also that continuum models derived from reference
35 give higher values of the natural frequencies compared to the
atomistic-FE model proposed.

5. Conclusions

An atomistic finite element method is proposed for the dynamic
analysis of BLGS. In the atomistic-FE model, the C—C bonds are
represented by equivalent structural beams with stretching, bending,
torsional and deep shear deformation capabilities, based on the
equivalence between the harmonic potential expressed in terms of
Morse force-field model. The vibrational properties of two types of
BLGS (zigzag and armchair) have been investigated using the
atomistic finite element approach and continuum plate theory. The
mode shapes of SLGS are found to be similar to those of BLGS. It is
observed that the BLGS offers a higher bending stiffness compared to
SLGSs, leading to higher natural frequencies. Similar to the behavior
observed in SLGS, the fundamental natural frequency decreases with
increasing length and aspect ratio. The bridged models are found to
exhibit higher natural frequencies as compared to cantilever models,
making them more suitable for high resonance applications. There is
no considerable difference between the dynamic behaviors of
armchair and zigzag models for large BLGS configurations, while the
chirality affects significantly the dynamic behavior of bilayer
graphene for lengths lower than 3 nm.
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