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Introduction where u(t) e RN is the vector of generalized coordinates and
The nature of damping forces is one of the least understood topics€ i~ denotes time. The kernel functiogit, ) « R"*™, or others

in structural dynamics. From the theory of classical mechanics, Closely refated to them, are described under many different names
we know why the inertia and elastic forces are as they are, but thein the literature of different subjects, for example, retardation
same is not exactly true for damping. Unlike the inertia and elas- functions, heredity functions, after-effect functions, relaxation
tic forces, it is not clear what are the relevant state variables thatfunctions, etc. This model was originally introduced by Biot
effect the damping forces. By far the most common approach is to (1958 Often the kernel depends upon the differenice ) only;
assume so-called “viscous damping,” which supposes that the then G(t,7)=G(t—7). In the special case whed(t,7)=C5(t
instantaneousgeneralized velocities are the only relevant state —7), Whered(t) is the Dirac delta function, Eq1) reduces to
variables that determine damping. However, viscous damping the case of viscous damping. The damping model of this kind is a
cannot be the only damping mechanism within the scope of linear further generalization of the familiar viscous damping.

analysis. Some examples include damping in composite materials _The central theme of this paper is to analyze multiple-degree-
(Baburaj and Matsukai 1994energy dissipation in structural of-freedom linear systems whose_ damping characteristics may be
joints (Earls 1966; Beards and Williams 197a damping mecha- successfully modeled by E@l). It is assumed that the system is

nism in composite beam@anks and Inman 1991to mention “nonproportionally damped,” that is, the_ equations of motion
only a few. The development of new methodologies is needed to cannot be decoupled by the undamped eigenvectors. For the sake
deal with nonviscously damped systems. of generality, the traditional restriction of symmetry has not been

A key issue in considering nonviscously damped systems is to imPosed on the system matrices. The nature of the eigenvalues
decide on an appropriate damping model. In principle, any causal@nd elger}vgctors is dlgcussed under certain S|mpllf|ed but physi-
model which makes the energy dissipation functional non- cally_reallsnc assumptions on the system matrices and kernel
negative is a possible candidate for a damping model. Possiblyfunctions. A series expansion method for the determination of the
the most general method of model damping within the linear COmplex right and left eigenvectors is proposed. The transfer
range is to use nonviscous damping models which depend on thdunction matrix of the system is derllved in terms of these eigen-
past history of motion via convolution integrals over some kernel VECtors. Exact closed-form expressions are derived for the tran-

functions. The damping force using such a model can be ex- Sient response and the response due to nonzero initial conditions.
pressed by The approach does not require conversion of the equation of mo-

¢ tion into the first-order form and is consistent with traditional
Fd(t):f G(t,m)u(t)dr (1) modal analysis. Applications of the proposed method and related

—w numerical issues are discussed using a nonviscously damped
three-degree-of-freedom system.
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w(0)=upe RN and u(0)=uye RN (3) causeg(t) is a real functionG(s) is also a real function of the
parameters. We assume thaG(s) is such that the motion is

The aim of this paper is to develop a solution methodftt) R . )
analogous to the traditional modal analysis. For most of the prob_dlssmatn/_e._Golla and I—_|ughe(1983 have given several ph_yS|-
cally realistic mathematical forms of the elementsG{f) avail-

lems we encounter in practic®), K, and are symmetric. . . . . . .
However. there are cages in ?//Jvhich the g)(/;)tem mgtrices can beable in the literature. For the linear viscoelastic case, it can be

asymmetric; some examples are gyroscopic and circulatory sys-Shown that(see Bland 1960; Muravyov 1987in general, the
tems (Huseyin and Liepholz 19733 aircraft flutter (Fawzy and elements of5(s) can be represented as
Bishop 1977, ship motion in sea watdBishop and Price 1979 Pjk(S)
contact problemgSoom and Kim 1988 and many actively con- Gj(s)= q(s) ®)
trolled systems(Caughey and Ma 1993 For this reason, to o . o
achieve generality, we allow the system matrices to be asymmet-Wherepj«(s) andq;.(s) are finite-order polynomials is. Here,
ric. However, it is assumed th&s) M ! exists and(b) all the we do not assume any specific functional form@jf(s) but we
eigenvalues oM K are real and distinct. do assume tth,—k(s)|<oo whens—oo. This in turn implies that

Eq. (2) or similar expressions occur in many different subjects. the elements 06(s) are at most of order $/in s or constant, as
Bishop and Price1979 have considered equations of motion [N the case of viscous damping. The eigenvalggsissociated
similar to Eq.(2) in the context of ship dynamics. The convolu- With Eq. (4) are roots of the characteristic equation
tion term appeared in order to represent the fluid forces and mo- defs?M +sG(s)+K]=0 (6)
ments. They have discussed the eigenvalue problem associated . )
with Eq. (2) and presented an orthogonality relationship for the !f the elements of5(s) have simple forms, for example as in Eq.
right and left eigenvectors. They have also given an expression(): then the characteristic equation becomes a polynomial equa-
for the system response due to sinusoidal excitation. Their resultsion of finite order. In other cases, the characteristic equation can
were not very efficient because the orthogonality relationship of P& €xpressed as a polynomial equation by expandi(®) in a
the eigenvectors was not utilized due to the difficulty associated 12Y!0r series. However, the order of the equation will be infinite
with the form of the orthogonality equation, which itself become [N those cases. For practical purposes, the Taylor expansion of
frequency-dependent. Equations of motion like E2).also arise G(s) can be truncatgd toa flnlte series to make the characte.rlstlc
in the dynamics of viscoelastic structures. Golla and Hughes €duation @ polynomial equation of finite order. Such equations
(1989 and McTavis and Hughed993 have proposed a method ~ ¢&n be solved using standard numerical metHsds P.refs,s et al.
to obtain such equations using a time-domain finite-element for- 1992, Chap.  Suppose the order of the characteristic polyno-
mulation. Their approackthe GHM method, which introduces ~ Mial ism. In generalm is more than &, that is,m=2N+p; p
additional dissipation coordinates corresponding to the internal =0- Thus, although the system hakdegrees of freedom, the

dampers, increases the size of the problem. Dynamic responses dfumber of eigenvalues is more thahl 2This is a major differ-
the system were obtained by using the eigensolutions of the aug-£MCc€ between the nonviscously damped systems and the viscously

mented problem in the state space. Muravy997; 1998 has damped systems, where the number of eigenvalues is exddfly 2

proposed a method to obtain the time and frequency-domain de-including any multiplicities. , ,
scription of the response by introducing additional coordinates A 9eneral analysis on the nature of the eigenvalues of nonvis-
such as the GHM method. To reduce the order of the problem, COUSly damped systems is beyond the scope of this paper. It is
recently Friswell and Inmafl999 have proposed a state-space assumed thadll m el_genvalues are distinct. We further restrict our
approach which employs a modal truncation and uses an iterative?{tention to a special case when, among riheigenvalues, ®
approach to obtain the eigensolutions. Using a first-order pertur-2PP€ar in complex conjugate pairs and the remaipieggenval-
bation approach, Woodhou¢E998 has obtained expressions for Ues are purely real. The mathematical conditions wiithK,
the eigensolutions and transfer functions of systétn His and G(s) must satisfy in order to produce such eigenvalues will
method, although it avoids the state-space representations and adhot be (_)btalned but_a physical justification will follow shortly. For
ditional dissipation coordinates, is valid for small damping terms cOnvenience, the eigenvalues are arranged as
only. x ok *

|):'l this paper, we propose a method to obtain the response of 5152 NS %2 '“_.,SN ’iSZNH'“”Sm ")
system(2) in an exact manner. Our method does not employ Where(+)* denotes complex conjugation. . .
additional dissipation coordinates and the state-space representa- 1heright andleft eigenvalue problem associated with E2).
tion of the equation of motion is avoided. It is not assumed that ¢an be defined from Ed4) as

the damping is small, nor is it assumed tgét) is such that it can D(sj)u;=0 (8a)
be simultaneously diagonalized with andK so that the classi- . .
cal modal analysis may be applied. We begin our discussion with v;D(s))=0" for j=1,.m (8b)

the eigensolutions associated with syst@n where

D(sj)=sM +5;G(s)) +K (9)

is thedynamic stiffness matrisorresponding to thgh eigenvalue
Considering free vibration, that i$(t)=u,=U,=0, and taking and u;,v; are, respectively, thgth right and left eigenvectors.
the Laplace transform of E@2), one has Here ()" denotes the matrix transpose. From E@s) and (8b)
MU+ SG(s)U+ Ki =0 4) it is clear that, \(vhersj appear in comple>_< conjugate paltg,and
- v; also appear in complex conjugate pairs, and wjei real,u;
Here u(s)=L[u(t)]eCN; G(s)=£[G(t)]eCNN,  and andv; can be selected to also be real. Corresponding to e 2
L[*]=Laplace transform. In the context of structural dynamics, complex conjugate pairs of eigenvalues, tNeright and left
s=iw, wherei=\—1 andweR"* denotes the frequency. Be- eigenvectors together with their complex conjugates will be

Eigenvalues and Eigenvectors
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calledelastic modesThese modes are related to thenodes of Neumann Expansion Method

vibration of the structural system. Physically, the assumption of For distinct undamped eigenvaluesew?), X, and y,, VI
“2 N complex conjugate pairs of eigenvalues” implies that all the =1,...N, form acompleteset of vectors. For this reasom, can
elastic modes are oscillatory in nature, that is, they are subcriti- be expanded as a complex linear combinatiom,aind similarly
cally damped. The modes corresponding to the “additiomal” v, can also be expanded in termsypf Thus, expansions of the
eigenvalues will be callesonviscous modesThese modes are  form

induced by the nonviscous effect of the damping mechanism.

Nonviscous modes, or similar modes, are known by different N )

names in the literature of different subjects, for example, “wet UJZE 0‘|(')X| (12a)
modes” in the context of ship dynami¢Bishop and Price 1979

and “damping modes” in the context of viscoelastic structures N
(McTavis and Hughes 1993The assumption that “the remaining Vi = E Bl(nyI (12b)
p eigenvalues are purely real” implies that the damping kernel &

function matrixG(s) is purely dissipative. Thus, for stable pas- ) ) )

sive systems the nonviscous modes are overcritically damped™aY b(e) con3|dere(d). Without any loss of generality, we can assume

(i.e., negative real eigenvalyeand not oscillatory in nature. De-  thata’ :(% an(d)Bj’ =1 (normalization, which leaves us to de-

termination of the eigenvectors is considered next. terminea;”’, B}, VI1#j. A Galerkin-type of error minimization
combined with a complex Neumann expansion method is adopted

for this purpose.

Substituting the expansion of , from Eqg.(8a) the error vec-
Once the eigenvalues are knows,andv;, Vj=1,...,2N can be tor for thejth mode can be expressed as
obtained from Eqs(8a) and (8b) by fixing any one element and
inverting the matrixD(s;) e C"*N. Note that inversion of anN
—1)X(N—1) complex matrix is required for calculation of
everyu; andv; . Although the method is exact, it is computation-
ally expensive and does not offer much physical insight. Here we Consider the undamped left eigenvectys, Yk=1,..N, as
propose an alternative method which utilizes the familiar un- “weighting functions” and following the Galerkin method we

Elastic Modes

N
A= |21 stafMx; +sja /! G(s))x +af Kx e CN - (13)

damped right and left eigenvectors. have yfA)=0. Using the biorthogonality property of the un-
damped right and left eigenvectors described by @&d), one
Undamped Eigenvectors obtains

The eigenproblem of asymmetric undamped systems has been

well studied in the literature; see, for example, Huseylii78. 2 (i) N (et 2 (i)
The undamped right and left eigenvalue problem can be ex- S +Sj|21 oGy (s) + o’ =0, Vk=1,.N (14)
pressed by -

KX = w2Mx . (10a) whereGy(s;) =yxG(s;)x . Thejth equation of this set obtained

b by settingk=] is a trivial case becausxej(”= 1 has already been
yjK=0?y[M, Vj=1,.N (10b) assumed. From the above set of equations, excluding this trivial
wherew; e R is the jth undamped natural frequency ard vy; case, one has
e RN are, respectively, thigh undamped right and left eigenvec- N
tors. For distinct eigenvalues it is easy to show thatndy, SJ,ZOL(ki)Jrsj Gﬁj(sj)+af<j>G{<k(Sj)+ > a6y (s) | + o)
satisfy the biorthogonality relationship with respectMoand K I#k#]
(see Huseyin 1978, Sec. 1.5, for detpiM/e also normalize the oy
eigenvectors such that =0, Vk=1,.Ni#] (15)
leijzglj and y|TKXj=wj28|j . VLj=1,.N (11) These equations can be combined into a matrix form as

whered; =Kronecker delta function. These undamped right and [p<J)_Q(j)]§(i):gEji> (16)
left eigenvectors will now be used to obtain the elastic modes of
the nonviscously damped system. In the above equation

2 / 2 2 / 2
_ ST+5;G14(S) ST+SGyn(Si) +o
p(J):diag{ 13 _115’ L. {jth term delete}...,~— NNS ! N| e cN-Dx(N-1) (17)
j B!
the traceless matrix
r 0 GiJsj) -+ {ith term deletef --- Gi\(s))T
Ga(s) 0 : : D Gon(s))

Q= : : : {jth term deletef : : e CIN"DX(N=1) (18)

| Gua(s))  GRa(sj) -+ {jth term deleted --- 0
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0 ={Gj;(s)),GY(s)),... {jth term deletef... G ;(s;)}Te CN"D (19)

and bO={p{),BY,... {jth term deleteH... BV} e N1
abh={a) o, . [jth term deletef... a}Te N~ (30)
(20) is the vector of unknow{), Vk+#j. Now, using the Neumann
is the vector of unknowi (), Vk+j. From Eq.(16), &) hasto ~ €xpansion method and defining
_be det_ermined by _performing the associateql matrix inversio_n gnd R = P(j)ilQ(j)TE C(N=DX(N-1) (31)
is achieved by using the Neumann expansion method. A similar v
procedure was used by Adhikaf1999 in the context of vis- bg)=P(i)7lgme‘C<N‘1) 32)
cously damped systems. Now, using the Neumann expansion we v
have from Eq. (28) one obtaind() as a series
AD=[ly_,—PH 'QW]-Lp) ‘gl B =[1y_1+RU+RI +RI +.--]pY)
— o1+ RD+RD 4+ RO 4. 100 (1) — b+ b+ -+ b+ (33)
wherely_4 is an N—1)X(N—1) identity matrix Here
R =pi) Q) e C(N-DX(N-1) (22) b =RbY b =RIBY . bI=RIbY ,  (34)
agj)= p(J)’lgEJD e ((N-1) (23) Thejth left eigenvectory;, can now be obtained by substituting

b)) in Eq. (12b). This method does not require much computa-

(J) . - B . . . . i - . 1 s
BecauseP') is a diagonal matrix, its inversion can be carried out tional time as closed-form expressions R{’ and bg) can be

analytically and subsequently the closed-form expressiof!bf

: - obtained
anda$’ can be obtained as
oSGl (s)(1—8y)
L =G () (1-8) R = VK| #] (35)
RU) = _ 17K VK% 24 Uk 2152456l (s) '
Ui (DE‘FSjZ‘i‘Sle,(k(Sj) ’ A7) @4 kTS TGS
) -s;G/|(s)
. —5G/ (s) b= TNy 36
ay)= L V1] (25) 0" wl+s2+5G|(s) ) (36)

of +s7+5,Gj(s))’
It may be noted that by taking more terms in the se(&3 one
can obtairv; to any desired accuracy if the complex matrix power
seriesly_,+RO+RV'+ RO+ is convergent.
) _ _ _ From the preceding formulation one may verify that, corre-
dV=a) +al) +a) +---+al) +- - (26) sponding to the complex conjugate pairs of the eigenvalues, the
right and left eigenvectors also appear in complex conjugate
pairs. For many engineering problems it is often observed that the
al)=RVal)’, a))=RVal), .. al=RVal (27) damping forces are not very “big” and that by retaining only a
o i) ) ) ) few terms in the series, expressia2$é) and(33) will result in an
This implies that all thea/” can be obtained using successive geceptable accuracy. Closed-form approximate expressions for
matrix-vector multiplications only. Noting that!) is the vector of  ha elastic modes obtained by retaining one and two terms of
o), Vk#j, substitution of it in Eq.(12a) will give the right these series expressions are given in the Appendix. These expres-
eigenvectors. It is easy to see that by taking more terms in thesjons might be useful whenever we find that the entries of the
series represented by E@6), one can obtain the right eigenvec-  gamping kernel functions are small compared to thosk! aind
tors to any desired accuracy provided the complex matrix power k
seriesly_;+RV+ RO’ + RO+ is convergent. Convergence
of this series will be addressed later. Convergence of the Neumann Series
The left eigenvectors can be obtained by substituting the ex- For the validity of the series expressions &P andb® in Egs.
pansion ofv; in Eqg. (8b) and lettingx, be “weighting functions” (26) and(33), it is required that
while applying the Galerkin method. Following the procedure
employed for the right eigenvectors, one can write Si= Iy 1 +RV+RIHRI 4. (372)

[P1)— Q) =gl (28) and

This makes further calculations involving these quantities sim-
pler. From Eq.(21), a8 can be calculated in an efficient way as
one can write

where

where Sy=In_1+RV+RI LRI ... (37h)

(D =1G’.(s) G (s i 1T . Y 0
9/ ={G{1(5)),Ga(s)),... {ith term deletel....G|y(s;)} are convergent. Looking at the expressioR§f andR{) in Egs.
(N=1) (24) and(35), it may be revealed that they are quite similar and it
eC (29) ; .
is sufficient to study the convergence property of any one of the

and series. Here the seri& in Eq. (37a) is considered.
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Condition 1. The complex matrix power seri& converges if,
and only if, for all the eigenvalues()) of the matrixR{’, the
inequality || <1 holds

Although this condition is both necessary and sufficient,
checking convergence for gli=1,...N is often not feasible. So
we look for a sufficient condition which is relatively easy to
check and which ensures convergence foyj allL,...N.

Condition 2. The complex matrix power seri€s converges for
any g,o; if G'(s;) is a diagonally dominant matrix

Proof. Since a matrix norm is always greater than or equal to
its maximum eigenvalue, it follows from Condition 1 that conver-
gence of the series is guaranteedR{)|| < 1. Writing the sum of
absolute values of entries 8 results in the following inequal-
ity as the required sufficient condition for convergence:

S SiGu(s) |

2 2
k=1i=1 u)k+SJ- +SjG|;k(Sj)’
k#j 1#]

(1-3<1 (38)

Dividing both numerator and denominator By, the above in-
equality can be written as

. Gii(s))l

- 1 39
1 51 |Usj(0i+s)) +Gpy(s))] (39)
k#j 1#i#k

Taking the maximum for alk# j, this condition can further be
represented as

3% |Gy(s)
1#j,k

ma - 1 40
e | Usj(0F+57) +Gp(s))] (40)
It is clear that(40) always holds if
N
2 1Bu(s)l<IGu(s)l.  Vk#] (41)
1#]%k

which in turn implies that, for allj=1,..N, the inequality
IRP[[<1 holds ifG'(s;) is a diagonally dominant matrix. It is
important to note that the diagonal dominancezd(s;) is only a

where Dyy(s;) € R, Dy(sj) e RN, Dyy(s)) e RND*L, and
DY e RIN-DX(N"D) n view of Eq. (43) and recalling thau;
=1, from Eq.(8a) we can have

Doa(Sj) Uy = — Dyy(s;)

or
Upj= —[Dax(sj) 1 *Dp(sj) (44)
Similarly, for the left eigenvectors one has
Vo= —[Eoa(s)) ] *Ep(s)) (45)

Here E(sj)=D(sj)T and is partitioned in a manner similar to Eq.
(43).

It may be noted that determination of the nonviscous modes is
computationally more demanding than the elastic modes because
inversion of an N—1)X(N—1) real matrix is associated with
each eigenvector. However, for most physically realistic nonvis-
cous damping models it appears that the number of nonviscous
modes is not very high and also their contribution to the global
dynamic response is not very significaisee the example sec-
tion). For this reason, calculation of the first few nonviscous
modes may be sufficient from a practical point of view.

Transfer Function

The transfer functiorimatrix) of a system completely defines its
input-output relationship in a steady state. It is well known that
for any linear system, if the forcing function is harmonic, that is,
f(t)y=fexdst] with s=iw and amplitude vectofeRN, the
steady-state response will also be harmonic at frequancy
eR". So we seek a solution of the fornft) =u exgdst], where
ueCN is the response vector in the frequency domain. Substitu-
tion of u(t) andf(t) in Eq. (1) gives

sufficient condition and the lack of it does not necessarily prevent Where

convergence 08§,.

Nonviscous Modes

When 2N<j=m, the eigenvalues are real and consequently from
Eqg. (9) we observe thab(s;) € RN*N. The nonviscous modes can
be obtained from Eq¢8a) and(8b) by fixing any one element of
the right and left eigenvectors. Sinds;) e RN*N, from Egs.
(8a) and(8b) it is easy to see that;,v; e RN, Partitionu; andy;

as
U= -
J u2j

vi={

I~ Vs
We selectuy;=vy;=1 so thatuy v, RN"Y has to be deter-
mined from Eqs(8a) and(8b). Further, partitiorD(s;) as

Dy(sj) Dias))
Doy(sj)  Dogs))

(422)

(420)

D(s))= (43)
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$?Mu+sG(s)u+Ku=f or D(s)u=f (46)
Here thedynamic stiffness matrix
D(s)=5?M +sG(s)+K e CNXN (47)
From Eq.(46) the response vectar can be obtained as
u=D"Y(s)f=H(s)f (48)
H(s)=D"1(s) e CNXN (49)

is the transfer function matrix. From this equation one has in
addition

adjD(s)]
H(S)= GefD(s)]

The poles of H(s), denoted bys;, are the eigenvalues of the
system. Because it is assumed thttthe m eigenvalues are dis-
tinct, each pole is aimple pole The matrix inversion in Eq48)
is difficult to carry out in practice because of the singularities
associated with the poles. Moreover, such an approach would be
an expensive numerical exercise and may not offer much physical
insight. For these reasons, we seek a solution analogous to the
classical model series solution of the undamped or proportionally
damped systems.

Using the residue theoreilisee Riley et al. 1997, Chap. 18
the transfer function can be expressed in terms of the poles and
residuesas

(50)

s R
H(s)= 2, 5=¢ (51)



Here

def
res [H(s)]_ lim (s— SJ)[H(S)]

S— SJ

(52)

is the residue of the transfer function at the psje It may be
noted that Eq(51) is equivalent to expressing the right-hand side
of Eq. (50) in the partial-fraction form. Here we try to obtain the
residues, that is, the coefficients in the partial-fraction form, in
terms of the system eigenvectors.

Eigenvectors of Dynamic Stiffness Matrix

It turns out that the eigenvectors of the dynamic stiffness matrix
play an important role in determining the residues of the transfer
function. For any giverse C, the right and left eigenvalue prob-

lem associated with the dynamic stiffness matrix can be expressed

by
D(s)di(s) =vi(s)di(s) (539)
Br(s)D(S)=v(s)Wr(s), Vk=1,.N (53b)

In these equations the eigenvaluggs) € C are the roots of the
characteristic equation

defD(s)—v(s)Iy]=0 (54)

and by (s), Py (s) e CN are, respectively, théth right and left
eigenvectors 0D(s). The symbolsy,(s), bi(s), andys(s) in-

dicate the functional dependence of these quantities on the com-

plex parameters. Such a continuous dependence is expected
wheneverD(s) is a sufficiently smooth matrix function of It
should be noted that becau3és) is anN X N complex matrix for

a fixeds, the number of eigenvaluéand consequently the eigen-
vectors must beN. Further, it can be shown that, for distinct
eigenvaluesg,(s) andis;(s) also satisfy a biorthogonality rela-
tionship althoughu, andv; do not enjoy any such simple rela-
tionship. We normalizeb,(s) ands(s) such that

U (S)dy(s)=8y;, Vk,j=1,.N (55)

In view of the above relationship, from Eg&3a) and (53b) we
have

U/ (S)D(S) bi(8) =vi(9)dyj, VK, j=1,...N (56)
or in the matrix form
WT(s)D(s)®(s)=v(s) (57)
Here
D(5) =[b1(8),d2(9), ... ,dn(S)] € (NN (58)
W(s)=[P1(S),P2(85), ... n(s)] e NN (59)
v(s)=diad v,(8),v5(S),...,vn(s)] e CNXN (60)

It is possible to establish the relationships between the original
eigenvalue problems of the system defined by E8g). and(8b)
and that by Eqs(53a) and (53b). Consider the case in which the

parameters approaches any one of the system eigenvalues, say

s;. Sinceall the v,(s) are assumed to be distinct, for nontrivial
eigenvectors, comparing Eq8a), (8b), (53a), and(53b) we can
conclude that one and only one of thg(s) must be zero when
s—s; (see Yang and Wu 1998Suppose that theth eigenvalue

of the eigenvalue problem¢s3a) and (53b) is zero whens
—s;j. Itis also clear that the eigenvectors in E@#3a) and(53b)
corresponding to theth eigenvalue also approach the eigenvec-
tors in Egs.(8a) and (8b) ass—s;. Thus, whers=s;, one has

vr(sj)zo and vk(sj);eo, Vk=1,..N;#r (61)

and also
d.(s) = (62)
P, (S))=V; (63)

These equations completely relate the eigensolutions of (Bgks.
and(8b) with Egs.(53a) and(53b). Now, these relationships will
be utilized to obtain the transfer function residues.

Calculation of the Residues
From Eq.(57) one has
D Y(s)=

Using the expression of the transfer function in E49) and
noting thatv(s) is a diagonal matrix, we may expand the right-
hand side of the above equation to obtain

bi(S)B(s)

Cowls)

D(s)v~H(s)W(s) (64)

N

=2

H(s)=D"*(s) (65)

Separation of theth term in the above sum yields

T N T
m$:@wmw$+{ bi(s)¥(9)

vi(S) =1 vi(s)

k#r

] (66)

Clearly, whens—s;, the second term of the right-hand side of
Eqg. (66) is analytic because according to E@1) v(s;)#0,
Vk=1,...N;#r. From Eq.(52) the residue as=s; may be ob-

tained as
N
k=1
k#r

dr(S)U] ()
[¢u9¢<$]

v (s)
avi(s)
as

def
Rj=lim (s—sj)
$—§j

dr()U](s)
vi(S)

di(S)BL(9)

vi(s)

=lim(s—s)

S—5j

(s—s]
lim
SHSJ'

be(S)W{ (5)]s—s
N av(s)
Jas

S= SJ-

(using I'Hospital’s rule

UJ'VT

:av,(s)]_ [by Egs. (62 and (63)]

Js

(67)

S= Sj

The denominator in the above expression for the residues,
[av,(s)/as]|5:5j, is still unknown. Now, consider theth right

eigenvalue problem associated with the dynamic stiffness matrix.
Differentiation of Eq.(53a) for k=r with respect tos yields

a r
()¢<>+m> ¢®) ($¢()+w()¢($

(68)

Premultiplying the above equation iy (s) and rearranging, one
obtains
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oD
Uy (s) a(ss) b (5)+ [W] (5)D(5) — W/ (S)vi (s

r()

=/ (s) d(9) (69)

From the definition of the left eigenvectoxk,(s), in Eq.(53b), it

follows that the second term on the left-hand side of the above 3.

equation is zero. Using the normalizing condition in Egf) and
settings—s; , from Eq.(69) we have
T aD(SJ)

aD(s)\

T frd — .

=V; os | U=vi— Y (70)
s=s )

aVr(s)|
Jas

S=SJ-

dd(S) 2.
Jas

Viscously damped symmetric systefsse Vigneron 1986
In this caseM=MT, K=KT, G(s)=C=C", andm=2N
results inv;=u; andy;= 1/(ujT[ZSJ- M+ C]u;). These reduce
expression73) to
* u* u*
YiYj i Yi Yy }

H(Iu)) E iow— S] iow— S]-

Viscously damped asymmetrlc systepadhikari 1999: In

(76)

this case,G(s)=C and m=2N results inyjzll(va[Zst
+CJu;). These reduce expression3) to
N -
YUV} LYY

H 77

(Im 2 io— S] io— SJ- ( )

The termaD(s;)/ds; can be obtained by differentiating EGt7)
as

aD(s)) G(s;) Dynamic Response

as, —25,M+G(s,)+s, as,

(71)

The steady-state response due to harmonic loads or the response
due to broadband random excitation can be obtained directly from
the expression of the transfer function in EG3). In this section,

Using Egs.(67) and(70), one finally obtains the residue as

R| :L (72) we consider the system response due to transient loads and initial
VTaD(Sl) U conditions in the time and frequency domains.
Iooasy Taking the Laplace transform of ER) and considering the

The above equation completely relates the transfer function resi-'mtIal conditions in Eq.(3), we have

dues to the eigenvalues and eigenvectors of the system. Recalling

_ _ _ S$?Mu — sMu g— MU+ sG(S)u— G(S)up+ Ku =f(s)
that, among then eigenvalues R appear in complex conjugate

pairs, from Eq.(51) the transfer function may be obtained as or

. 2 vy vy I, [$2M +SG(5) + KIU=f(5) + Mig +[SM+G(9)]ug  (78)

iw L= —
lo=§  iw—=sf | j=iN+1i0—S Using the expression for the transfer function derived before, the
where response vectan may be obtained as
1 il v/
Y= "35(5) (74) :Z {f(s)+MuO+[sM +G(s)ugt (79
V}r as.J U]' R
) This can be simplified further to

The transfer function has two parts. The first part is due to the
elastic modes and the second part is due to the nonviscous modes. YiA(io)
Using a first-order perturbation method and considekihgndK E uj (80)

=1 oy
as symmetric matrices, Woodhous®98, Eq.(35)] has obtained 1O

an expression of the transfer function similar to E6@). How-
ever, the nonviscous part of the transfer function has not been
obtained by him.

where the frequency-dependent complex scalar
Aj(i0)=v/f(iw)+V]Mlg+iov/Mu+v/G(imw)u, (81)

The summation in Eq(80) may be split into two different parts.
The first part would correspond to theN2complex conjugate
The expression for the transfer function in E@3) is a natural pairs of elastic modes and the second part would be the contribu-
generalization for the familiar expressions for the transfer func- tion of the nonviscous modes.

tion of undamped or viscously damped systems. Transfer func-  The response in the time domain due to any forcing function
tions for several useful special cases may be obtained from Eq.can be obtained using a convolution integral over ii@ulse

(73) as follows: response functiarFrom the expression of the transfer function in

1. Undamped systemin this caseG(s) =0 results the order of ~ Ed- (73), the impulse response functidit) e R"*N may be ob-

Special Cases

the characteristic polynomiah=2N; s; is purely imaginary tained as
so thats;=i w;, wherew;e R are the undamped natural N m
frequenciesy;=x; andv;=y; . In view of the mass normal- h(t) = uvTesit+ *U*V*Tes*t + uivTesit
ization relationship in Eq(ll), v;=1(2iw;) and Eq.(79 ® 121 Lvityvy viuy el j=%+1 YiE
leads to (82)
N T
Hiw)= E 1 1 xyT=S XY The response due to the initial conditions may also be obtained by
2"”1 io—iw iw+im,— ] wjz_wz taking the inverse transform of Er9). First, simplify Eq.(79)

(75) to obtain
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- z 3 g(t)=pe ', u,t=0 (87)

w '_;\/\;\/\/, r_;\/\/\/\/_ ,—> and for the second modéllouble exponential
ku u u m,

u

§m ku u g(t)=3(pn1€ Mt poe ), g,y t=0 (88)

cg(?)

The exponential function in Eq(87) is possibly the simplest
Fig. 1. Three degree-of-freedom nonviscously damped system,  physically realistic nonviscous damping model. This function,
=1kg, ky=1N/m often known as a “relaxation function,” was introduced by Biot
(1959. It has been used extensively in the context of viscoelastic
systems. Recently, Adhikari and Woodhou&®00 have pro-

m T. T T\
u_(s)=2 ¥, vif(s)+y G(S)u°+ vjMuo posed a method to identify such damping models using modal
j=1 S—Sj S—Sj testing. The double exponential damping function, known as the
GHM model, was introduced by Golla and Hugh@®85 and
S T McTavis and Hughe$1993. Identification of GHM models has
+(l+s—_sj Vi MUO} Yj (83) been discussed by Friswell et &lL997. Both of the damping

functions have been scaled so as to have unit area when integrated
to infinity. This makes them directly comparable with the viscous
N model in which the corresponding damping function would be a
u(t)=L"u(s)]= 2 [vjaj(t)y +yl* al* (t)uj*] unit delta functiong(t) =3(t), and the coefficient would be the
=1 usual viscous damping coefficient. The difference betweeén a
m function andg(t) given by Eqs(87) and(88) is that att=0 they
+ E via(ty, (84) start with finite values of. ar_1d (uqit+ p_Lz)/Z, respe_ctively. Thus,_
j=2N+1 the values ofx, n1, andu, give a notion of nonviscousness—if
they are large the damping behavior will be near-viscous, and

From the above, one has

where the time-dependent scalar coefficients

vice versa.
I T The mass and stiffness matrices and the damping matrix in the
a(t)= Oe Y I(T) F vy G(T) UotdT Laplace domain for the problem can be obtained as
+eS{v]Muo+s;v/Mug}, Vt>0 (85) rgu 0 8
The expression of the system response, either the frequency- M M (89)
domain description in Eq80) or the time-domain description in 0 0 m,
Eq. (84), is similar to the classical modal superposition result for 2k, -k, O
undamped or proportionally damped systems usually obtained
using the mode-orthogonality relationships. Thus, the formulation K=| —ky 2ky  —ky (90)
presented here is a generalization of the classical result where the 0 -k, 2k,
real normal modes are appropriately replaced by the elastic modes
and the nonviscous modes. Also note that we have not used any 0 0 0
orthogonality relationship; the expression of the transfer function G(s)=[ 0 cG(s) 0 (91)
residue in Eq(72) allows us to express the response in terms of a 0 0 0
superposition of individual modes even when the equations of
motion cannot be decoupled. Here G(s) is the Laplace transform af(t). Next, the eigensolu-

In summary, the procedure to obtain the dynamic response istions and the dynamic response of the system are discussed for
general, simple, direct, and provides better physical insights asthe two functional forms of(t).
only the familiar N-space eigenvectors are used. The approach
also offers a reduction in computational effort because it uses
neither the state-space formalism nor additional dissipation coor-
dinates. Applications of the proposed method are illustrated next.

Example 1: Exponential Damping

Eigensolutions

Because all the system matrices are symmetric, the right and left

Numerical Examples eigenvectors are identical for this problem. We assomé@.3, as
considered by Newland1989, p. 149 for the equivalent vis-

We consider a three-degree-of-freedom system to illustrate thecously damped system. From E@&7), one obtains

proposed method. Fig. 1 shows the example taken together with 1

the numerical values considered for mass and stiffness properties. G(s)= —— (92)

A similar system with viscous damping has been studied by New- St

land (1989, see pp. 148—1h1Damping is associated only with  ysing this expression, the characteristic equation can be simpli-

the middle mass, and the kernel function corresponding to this fied as

damper has the form
m3s”+ m3ps®+ [ 2m2k, + my(wemy,+4myk,) 1s°+ 6k, mZus?

Gox(t)=cg(t) (86)
wherec=damping coefficient and(t) =damping function. Two +[2ky(pemy+4myky) +my(2pck, +2k3) Is
different forms ofg(t) available in the literature will be consid- ) 5 5 3
ered here. For the first mod&xponential + 10kymyp s+ 2k (2pcky +2ky) s+ 4kgu =0 (93)
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e f f { f f v ; close to the viscously damped casee Newland 1989, p. 149
: ’ ’ ’ ‘ ' For the one nonviscous mode, we obtain

1.0

s,=—49.6984 andu,= { 2.471%10°
1.0

Becauses; is purely real and negative, this mode is nonoscilla-
tory (overcritically dampegand stable.

When n=0.5, the damping is significantly nonviscous. For
this case, performing similar calculations for the elastic modes

1.89

1.88

(98)

Imaginary
-3
14
T

@
1)
T

one has
1eer e ecous daming case {s1,S,,83}={—0.0207 0.8,1.4142,—0.0053+1.8671}
. ; ; ; . A ‘ (99)
Bos o7 o0e 005  —0a 003 ooz oo 0 and
Fig. 2. Root-locus plot showing locus of third eigenvalug;)( as [Ug,Uz,Us]

function of p
0.4983+0.0204 0.7071 —0.5002+0.0491

=| 0.678# 0.0112 0.0 0.7442-0.0630
0.4983+0.0204 —0.7071 —0.5002+0.0491

The order of the above polynomiati=7. Since the system has
i (100)

three degrees of freedom, there are three elastic modes corre- o . ]
sponding to the three modes of vibration. The number of nonvis- These values are not significantly different from those obtained
cous modep=m—2N=1. for w=50.0 in EQ.(97). For this problem, the elastic modes are

It is of interest to us to understand the effect of “nonviscous- NOt Very sensitive to the damping mechanism. However, we em-
ness” on the eigensolutions. Fig. 2 shows the locus of the third phas!ze that this factannotbe generalized to all systems. For the
eigenvalue, that iss,, plotted as a function of. It is interesting ~ nonviscous mode one has
to observe that the locus is much more sensitive in the region of 1.0
lower values ofw (|_.e., When_damp|r_19 is significantly no_nwscOus s,=—0.4480 andu,=1{ 2.2007 (101)
compared to that in the region of higher values. The eigenvalue of 1.0
the corresponding viscously damped system is also plotted o )
(marked by an asterigkn the same diagram. Note that the non- These values are, however, quite different from those obtained for
viscous damping mechanism approaches the viscous damping+=50.0 in Eq.(98). It is difficult physically to visualize the na-
when p>~50.0. Similar behavior has been obseryessults not ture of the nonviscous modes in general. These modes are intrin-
shown hergfor the locus ofs; also. The second mode, in which ~ Sic to the dampers and we do not have sufficient generalized
the middle mass remains stationary, is not affected by damping. coordinates to represent them properly. Nevertheless, they yield

The eigenvectors of the system, i.e., the three elastic modesnONZero residues in the system transfer functions and thus con-
(together with their complex conjugaleand one nonviscous tribute to the global dynamic response.
mode, can be obtained in a straightforward manner by following ) _
the procedure outlined earlier. We select two representative valuePynamic Response Analysis
of w, one whenp is large (i.e., the near-viscous cgsand the The problem of stationary random vibration analysis of the sys-
other wheny, is small. The undamped eigenvalues and eigenvec- tem is considered here. Suppose the system is subjected to a
tors are obtained as band-limited Gaussian white noise at the third degree of freedom
(DOF). We are interested in the resulting displacement of the

{w1,02,03}={0.7654,1.4142,1.8478 (94) system at the third DOFi.e., u;). The power spectral density
0.5 0.7071 —-05 (PSD of the responsésee Nigam 1983 for detajlgan be given
b
[X,X.Xs]=| 0.7071 0.0  0.707 9 7 | o
0.5 ~0.7071 -05 Suu(|(’3):|H33(|(’3)| Sii(io) (102)
Using these results, whau=50.0, for the elastic modes we have where
. 1 if 0O<w=2.5 rad/s
{s1,55,53}={—0.07570.7659,1.4142,—-0.0751+ 1.8416} Sii(iw)= . (103)
(96) 0 otherwise
[U;,Uy,Us] In Fig. 3, the PSD of, that is,|Hsg(iw)|?, is plotted for the
cases in whichn=50.0 and 0.5. These results are obtained by
0.4983+0.0204 0.7071 —0.5002+0.0491 direct application of Eq(73). From the diagram, observe that the

—1| 0.7095-0.0289 0.0 0.7069-0.0694 | (97) damping is less for the case wher=0.5 than whenu=>50.0.
_ _ Also note the(horizonta) shift in the position of the natural fre-
0.4983+0.0204 0.7071 —0.5002+0.0491 guencies. These features may also be observed in the root locus
The above calculation is performed by retaining five terms in the diagram as shown in Fig. 2. To understand the effect of “nonvis-
series(26). It may be verified that, becauseis large (about 27 cosity,” in the same diagram we have plotted the nonviscous term
times the maximum natural frequengyhe results obtained are  (the second terimappearing in Eq(73) for both values of.. For
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10 T T T

T

TH (o), n=50.0
] Has(i o) n=05 — Exact, by matrix inversion

i 33 ' ) — — Approximate, by series expansion

F | - - Non-viscous term, p. = 50.0 4
. Non-viscous term, p = 0.5

) : L L L L L L
o 0.5 1 15 2 25 0 05 1 1.5 2 25
Frequency (rad/sec) Freguency (rad/sec)

Fig. 3. Power spectral density function of displacement at third DOF Fig. 4. Transfer functiorH z5(iw)

(u3)

=4.1164 andQ;=13.8540. Small values of th@ factor indicate
this problem, the nonviscous part is quite small and becomesthat these modes are quite heavily damped. Comparing(E@fs.
smaller at higher frequencies. Observe that whefD.5, that is, and (107), it may be observed that the approximate values are
when damping is significantly nonviscous, the value of the non- quite close to the exact one even when damping is reasonably
viscous part of the response is more than that whe®0.0. This high.
plot also clearly demonstrates that the nonviscous part of the re-  In order to check the numerical accuracy of the eigenvectors,
sponse isot oscillatory in nature. first the exact values are calculated by the matrix inversion
method. For the elastic modes we obtain

Example 2: GHM Damping [uq,us,u3]
Taking the Laplace transform of E(B88), one obtains 0.5114+0.0299 0.7071 —0.4639+0.0403
G(s)= (R1tR2)/25+ pyps (104) —| 0.6905-0.0431 0.0 0.7596-0.0562
S*H (atpo) St pips 0.5114+0.0299 —0.7071 —0.4639 0.0403

Using this equation, together with the expressions of the system (108)
matrices given by Eq€89)—(91), it can be shown that the order

of the characteristic polynomiah=38. Thus, the number of the  and their complex conjugates. For the two nonviscous modes one
nonviscous modep=m—2N=2. In this section, we focus our has

atten_tion on the numerical accuracy of the formulation developed 1.0000 1.000
in this paper.

Regarding the numerical values of the damping parameters, [u7,ug]=| 9.7847 2.763 (109)
we assume=0.5,n,=1, andw,=3. Small values ofv; andw, 1.0000 1.000

indicate that the damping mechanism is strongly nonviscous. . . . .
; o A . Approximate eigenvectors corresponding to the elastic modes,
Solving the characteristic equation, exact eigenvalues correspond-

ing to the three elastic modes can be obtained as calculated by Eq(1138), are obtained as

{S1,S5,53} ={—0.0994+ 0.8180,1.4142, — 0.0687%+ 1.9025} [z, Uz, UsJapprox
(105) 0.5114+0.0299  0.7071 —0.4639+0.0403
and their complex conjugate pairs. Eigenvalues corresponding to —| 0.6910-0.0422 0.0 0.7582- 0.0569

the two nonviscous modes are found to be
{s7,88}={—2.7901,-0.8738 (106)

110
Eigenvalues corresponding to the elastic modes can also be ob- ) , ( ,)
tained approximately by Eq111) in the Appendix. Recall that The_a_bove values are eq_uwalent to performing the calculation by
only the undamped eigensolutions are required in order to apply "étaining only one term in the serié¢26). Also recall that the

0.5114+0.0299 —0.7071 —0.4639+0.0403

this equation. Approximate eigenvalues using Ed.1) are cal- a}pproximate values_ are obtained from the_ u_ndamped eigensolu-
culated as tions only. Comparing Eq9108 and (110, it is clear that the

results obtained from the approximate method match the exact
{51,52,S3}approx solutions to an excellent accuracy.

_ As a final check on the formulation developed in this paper,
={~0.0981-0.8105,1.4142, - 0.0595-1.9018}.  (107) we compare the transfer function obtained from &§) with the

It is useful to compare the exact and approximate eigenvalues inexact transfer function calculated by inversion of the dynamic

light of the Q factors. In this problem, the second mode is not stiffness matrix. Fig. 4 shows such a comparison, Higg(i ).

damped, s@,=0. For the first and third modes we obtaiy Approximate natural frequencies and modes given by Eif¥/)
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and (110 are used and also the nonviscous term in &®) is sight as familiarN-space eigenvectors are utilized. The results
neglected in order to calculate the approximate transfer function. developed here are very general in nature and most of the familiar
Thus, in turn, the approximate transfer function in Fig. 4 is ob- linear dynamic systems, e.g., classically/nonclassically damped
tained only by proper “post-processing” of the undamped eigen- symmetric systems, viscously damped asymmetric systems,
solutions. From this figure it may be observed that, except in a damped/undamped gyroscopic systems, etc., can be treated as
few places, the approximate transfer function is reasonably closespecial cases.
to the exact one. These results demonstrate the usefulness of the
proposed method.
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The assumed nonviscous damping model is such that the damping

forces depend on the past history of motion via convolution inte-

grals over some kernel functions. The familiar viscous damping Appendix: Approximate Expressions for Elastic

model is a special case of this general linear damping model whenModes

the kernel functions have no memory. It has been assumed that, in

general, the mass and stiffness matrices as well as the matrix ofThe expressions for the elastic modes obtained by taking one term

the kernel functions are not symmetric and cannot be simulta- in the series26) and (33) are close to those obtained from the

neously diagonalized by any linear transformation. The analysis first-order perturbation analysis. The validity of these results re-

is, however, restricted to systems with nonrepetitive eigenvalueslies on the fact that the entries Gf(s;) are not very big for als; .

and nonsingular mass matrices. Considering thgth set of Eq.(14) and neglecting the second-
System eigenvalues were obtained by solving the characteris-order terms involvingx(’ and G,(s;), Vk#1, and also noting

tic equation. It turns out that, unlike the viscously damped case, thata{") =1, one obtains

the order of the characteristic equation for &hdegree-of-

freedom system is more tharN2 As a consequence, the number

of modes becomes more thalN2and they are grouped into two

types:(a) elastic modes antb) nonviscous modes. It is assumed

2 ' 2.

that the elastic modes appear in complex conjugate pairs, that is, si~*iwj—Gjj(xiw)/2=i0;—G(in))/2,

they are subcritically damped. The elastic modes, which consist ) L

of N right and left eigenvectors together with their complex con- —lwj=Gjj(—ie))/2.

jugate pairs, correspond d modes of vibration of the structural (111)
system. Thes& right and left eigenvectors were expressed as a This is the first-order approximate expression for the complex
complex linear combination of the right and Iéfea)) eigenvec-  eigenvalues of systerf®) corresponding to the elastic modes. A

tors of the corresponding undamped system. The vectors of thes&imilar result was also obtained by Woodhot($898. In deriv-
complex constants for both right and left eigenvectors were fur- ing this expression, the assumption has been madeGls))
ther determined from a series obtained by the Neumann expan-~G(iw;). BecauseG(s;) is assumed small, it is expected that
sion method. Based on this analysis, some approximate formulaghis approximation will not result in significant errors. Note that,
for the eigenvalues and eigenvectors were suggested and theigsg(t) is a real functionG/;(+) satisfies the property

accuracy was verified using numerical examples. The nonviscous

modes, which occur due to the nonviscous damping mechanism, Gjj(—iwj) =G (iw)) (112)
are assumed to be real, overcritically damped, and nonoscillatory
in nature. These modes were obtained by inversion of a partition
of the dynamic stiffness matrix evaluated at the corresponding
eigenvalues.

Using this relationship, it may be confirmed that the eigenvalues
corresponding to the elastic modes, approximately given by Eg.
(111), appear in complex conjugate pairs.

. . . T in roxim xpressions for the right and | igen-
The transfer function of the system was derived in terms of the 0 obtain approximate expressions for the right and left eige

. . ectors, one simply considers only the first term of the series
eigenvalues and eigenvectors of the second-order system. Exac . 26 d (33 4 substitutea® and b in E
closed-form expressions of the response due to arbitrary forcing(ei(g)ess'g?f%))t an biai ) and substitutes™ an In £gs.
functions and initial conditions were obtained. The response can an 0 obtain

be expressed as a sum of two parts, one that arises in the usual N 5;Gi(S)) Xk
viscously damped systems and another that occurs due to nonvis- Uj~xj— E — ' G (113%)
cous damping mechanisms. Through an example, it was shown K wit 57+ 5G(s;)
that the nonviscous part of the response is purely dissipative and
nonoscillatory in nature. and
The method developed here is analogous to classical modal N s.GL.(s)Y,
analysis where undamped natural frequencies and modes have to v~y — E > '2 kiR~ ,k (113)
be appropriately replaced by elastic modes and nonviscous modes = Wi+ 7 +8;Gy(s)

of the nonconservative system. The method presented offers a ko]

reduction in computational effort because neither the first-order Now, retaining the first two terms of the series expressi@és
formalisms nor the additional dissipation coordinates are em- and(33) and substituting®) andb®!) in Egs.(12a) and(12b), one
ployed. Moreover, this approach also provides better physical in- obtains
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The above two equations are second-order approximate expres-

linear theory of ship response to waved.”Sound Vib.62(3), 353—
363.
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