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Dynamics of Nonviscously Damped Linear Systems
S. Adhikari1

Abstract: This paper is aimed at extending classical modal analysis to treat lumped-parameter nonviscously damped linear
systems. It is supposed that the damping forces depend on the past history of velocities via convolution integrals over som
functions. The traditional restriction of symmetry has not been imposed on the system matrices. The nature of the eigenva
eigenvectors is discussed under certain simplified but physically realistic assumptions concerning the system matrices and ke
tions. A numerical method for calculation of the right and left eigenvectors is suggested. The transfer function matrix of the s
derived in terms of the right and left eigenvectors of the second-order system. Exact closed-form expressions for the dynamic
due to general forces and initial conditions are presented. The proposed method uses neither the state-space approach no
dissipation coordinates. Suitable examples are given to illustrate the derived results.
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Introduction
The nature of damping forces is one of the least understood to
in structural dynamics. From the theory of classical mechan
we know why the inertia and elastic forces are as they are, bu
same is not exactly true for damping. Unlike the inertia and e
tic forces, it is not clear what are the relevant state variables
effect the damping forces. By far the most common approach
assume so-called ‘‘viscous damping,’’ which supposes that
instantaneousgeneralized velocities are the only relevant st
variables that determine damping. However, viscous damp
cannot be the only damping mechanism within the scope of lin
analysis. Some examples include damping in composite mate
~Baburaj and Matsukai 1994!, energy dissipation in structura
joints ~Earls 1966; Beards and Williams 1977!, a damping mecha
nism in composite beams~Banks and Inman 1991!, to mention
only a few. The development of new methodologies is neede
deal with nonviscously damped systems.

A key issue in considering nonviscously damped systems i
decide on an appropriate damping model. In principle, any ca
model which makes the energy dissipation functional n
negative is a possible candidate for a damping model. Poss
the most general method of model damping within the lin
range is to use nonviscous damping models which depend on
past history of motion via convolution integrals over some ker
functions. The damping force using such a model can be
pressed by

Fd~ t !5E
2`

t

G~ t,t!u̇~t!dt (1)
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where u(t)PRN is the vector of generalized coordinates andt
PR1 denotes time. The kernel functionsG(t,t)PRN3N, or others
closely related to them, are described under many different na
in the literature of different subjects, for example, retardat
functions, heredity functions, after-effect functions, relaxati
functions, etc. This model was originally introduced by Bi
~1958!. Often the kernel depends upon the difference (t2t) only;
then G(t,t)5G(t2t). In the special case whenG(t,t)5Cd(t
2t), whered(t) is the Dirac delta function, Eq.~1! reduces to
the case of viscous damping. The damping model of this kind
further generalization of the familiar viscous damping.

The central theme of this paper is to analyze multiple-degr
of-freedom linear systems whose damping characteristics ma
successfully modeled by Eq.~1!. It is assumed that the system
‘‘nonproportionally damped,’’ that is, the equations of motio
cannot be decoupled by the undamped eigenvectors. For the
of generality, the traditional restriction of symmetry has not be
imposed on the system matrices. The nature of the eigenva
and eigenvectors is discussed under certain simplified but ph
cally realistic assumptions on the system matrices and ke
functions. A series expansion method for the determination of
complex right and left eigenvectors is proposed. The tran
function matrix of the system is derived in terms of these eig
vectors. Exact closed-form expressions are derived for the t
sient response and the response due to nonzero initial condit
The approach does not require conversion of the equation of
tion into the first-order form and is consistent with tradition
modal analysis. Applications of the proposed method and rela
numerical issues are discussed using a nonviscously dam
three-degree-of-freedom system.

Problem Formulation
The equations of motion of anN-degree-of-freedom linear system
with nonviscous damping of the form~1! can be expressed by

M ü~ t !1E
2`

t

G~ t2t!u̇~t!dt1Ku~ t !5f~ t ! (2)

Here M and KPRN3N are the mass and stiffness matrices a
f(t)PRN is the forcing vector. The initial conditions associat
with the above equation are

o
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be
u~0!5u0PRN and u̇~0!5u̇0PRN (3)

The aim of this paper is to develop a solution method foru(t)
analogous to the traditional modal analysis. For most of the p
lems we encounter in practice,M , K , and G~t! are symmetric.
However, there are cases in which the system matrices ca
asymmetric; some examples are gyroscopic and circulatory
tems ~Huseyin and Liepholz 1973!, aircraft flutter ~Fawzy and
Bishop 1977!, ship motion in sea water~Bishop and Price 1979!,
contact problems~Soom and Kim 1983!, and many actively con-
trolled systems~Caughey and Ma 1993!. For this reason, to
achieve generality, we allow the system matrices to be asym
ric. However, it is assumed that~a! M21 exists and~b! all the
eigenvalues ofM21K are real and distinct.

Eq. ~2! or similar expressions occur in many different subjec
Bishop and Price~1979! have considered equations of motio
similar to Eq.~2! in the context of ship dynamics. The convol
tion term appeared in order to represent the fluid forces and
ments. They have discussed the eigenvalue problem assoc
with Eq. ~2! and presented an orthogonality relationship for t
right and left eigenvectors. They have also given an expres
for the system response due to sinusoidal excitation. Their re
were not very efficient because the orthogonality relationship
the eigenvectors was not utilized due to the difficulty associa
with the form of the orthogonality equation, which itself becom
frequency-dependent. Equations of motion like Eq.~2! also arise
in the dynamics of viscoelastic structures. Golla and Hug
~1985! and McTavis and Hughes~1993! have proposed a metho
to obtain such equations using a time-domain finite-element
mulation. Their approach~the GHM method!, which introduces
additional dissipation coordinates corresponding to the inte
dampers, increases the size of the problem. Dynamic respons
the system were obtained by using the eigensolutions of the
mented problem in the state space. Muravyov~1997; 1998! has
proposed a method to obtain the time and frequency-domain
scription of the response by introducing additional coordina
such as the GHM method. To reduce the order of the probl
recently Friswell and Inman~1999! have proposed a state-spa
approach which employs a modal truncation and uses an itera
approach to obtain the eigensolutions. Using a first-order pe
bation approach, Woodhouse~1998! has obtained expressions fo
the eigensolutions and transfer functions of system~1!. His
method, although it avoids the state-space representations an
ditional dissipation coordinates, is valid for small damping ter
only.

In this paper, we propose a method to obtain the respons
system ~2! in an exact manner. Our method does not emp
additional dissipation coordinates and the state-space repres
tion of the equation of motion is avoided. It is not assumed t
the damping is small, nor is it assumed thatG~t! is such that it can
be simultaneously diagonalized withM andK so that the classi-
cal modal analysis may be applied. We begin our discussion
the eigensolutions associated with system~2!.

Eigenvalues and Eigenvectors

Considering free vibration, that is,f(t)5u05u̇050, and taking
the Laplace transform of Eq.~2!, one has

s2Mū1sG~s!ū1Kū50 (4)

Here ū(s)5L@u(t)#PCN; G(s)5L@G(t)#PCN3N; and
L@•#5Laplace transform. In the context of structural dynami
s5 iv, where i 5A21 and vPR1 denotes the frequency. Be
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causeG(t) is a real function,G(s) is also a real function of the
parameters. We assume thatG(s) is such that the motion is
dissipative. Golla and Hughes~1985! have given several physi
cally realistic mathematical forms of the elements ofG(s) avail-
able in the literature. For the linear viscoelastic case, it can
shown that~see Bland 1960; Muravyov 1997!, in general, the
elements ofG(s) can be represented as

Gjk~s!5
pjk~s!

qjk~s!
(5)

wherepjk(s) and qjk(s) are finite-order polynomials ins. Here,
we do not assume any specific functional form ofGjk(s) but we
do assume thatuGjk(s)u,` whens→`. This in turn implies that
the elements ofG(s) are at most of order 1/s in s or constant, as
in the case of viscous damping. The eigenvaluessj associated
with Eq. ~4! are roots of the characteristic equation

det@s2M1sG~s!1K #50 (6)

If the elements ofG(s) have simple forms, for example as in E
~5!, then the characteristic equation becomes a polynomial e
tion of finite order. In other cases, the characteristic equation
be expressed as a polynomial equation by expandingG(s) in a
Taylor series. However, the order of the equation will be infin
in those cases. For practical purposes, the Taylor expansio
G(s) can be truncated to a finite series to make the character
equation a polynomial equation of finite order. Such equati
can be solved using standard numerical methods~see Press et al
1992, Chap. 9!. Suppose the order of the characteristic polyn
mial is m. In general,m is more than 2N, that is,m52N1p; p
>0. Thus, although the system hasN degrees of freedom, the
number of eigenvalues is more than 2N. This is a major differ-
ence between the nonviscously damped systems and the visc
damped systems, where the number of eigenvalues is exactlyN,
including any multiplicities.

A general analysis on the nature of the eigenvalues of non
cously damped systems is beyond the scope of this paper.
assumed thatall m eigenvalues are distinct. We further restrict o
attention to a special case when, among them eigenvalues, 2N
appear in complex conjugate pairs and the remainingp eigenval-
ues are purely real. The mathematical conditions whichM , K ,
andG(s) must satisfy in order to produce such eigenvalues w
not be obtained but a physical justification will follow shortly. F
convenience, the eigenvalues are arranged as

s1 ,s2 ,...,sN ,s1* ,s2* ,...,sN* ,s2N11 ,...,sm (7)

where~•!* denotes complex conjugation.
The right and left eigenvalue problem associated with Eq.~2!

can be defined from Eq.~4! as

D~sj !uj50 (8a)

vj
TD~sj !50T for j 51,...,m (8b)

where

D~sj !5sj
2M1sjG~sj !1K (9)

is thedynamic stiffness matrixcorresponding to thejth eigenvalue
and uj ,vj are, respectively, thejth right and left eigenvectors
Here (•)T denotes the matrix transpose. From Eqs.~8a! and ~8b!
it is clear that, whensj appear in complex conjugate pairs,uj and
vj also appear in complex conjugate pairs, and whensj is real,uj

and vj can be selected to also be real. Corresponding to theN
complex conjugate pairs of eigenvalues, theN right and left
eigenvectors together with their complex conjugates will
JOURNAL OF ENGINEERING MECHANICS / MARCH 2002 / 329
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ivial
calledelastic modes. These modes are related to theN modes of
vibration of the structural system. Physically, the assumption
‘‘2 N complex conjugate pairs of eigenvalues’’ implies that all t
elastic modes are oscillatory in nature, that is, they are subc
cally damped. The modes corresponding to the ‘‘additional’p
eigenvalues will be callednonviscous modes. These modes are
induced by the nonviscous effect of the damping mechani
Nonviscous modes, or similar modes, are known by differ
names in the literature of different subjects, for example, ‘‘w
modes’’ in the context of ship dynamics~Bishop and Price 1979!
and ‘‘damping modes’’ in the context of viscoelastic structur
~McTavis and Hughes 1993!. The assumption that ‘‘the remainin
p eigenvalues are purely real’’ implies that the damping ker
function matrixG(s) is purely dissipative. Thus, for stable pa
sive systems the nonviscous modes are overcritically dam
~i.e., negative real eigenvalues! and not oscillatory in nature. De
termination of the eigenvectors is considered next.

Elastic Modes

Once the eigenvalues are known,uj andvj , ; j 51,...,2N can be
obtained from Eqs.~8a! and ~8b! by fixing any one element and
inverting the matrixD(sj)PCN3N. Note that inversion of an (N
21)3(N21) complex matrix is required for calculation o
everyuj andvj . Although the method is exact, it is computatio
ally expensive and does not offer much physical insight. Here
propose an alternative method which utilizes the familiar u
damped right and left eigenvectors.

Undamped Eigenvectors
The eigenproblem of asymmetric undamped systems has
well studied in the literature; see, for example, Huseyin~1978!.
The undamped right and left eigenvalue problem can be
pressed by

Kx j5v j
2Mx j (10a)

yj
TK5v j

2yj
TM , ; j 51,...,N (10b)

wherev jPR is the jth undamped natural frequency andxj , yj

PRN are, respectively, thejth undamped right and left eigenvec
tors. For distinct eigenvalues it is easy to show thatxj and yl

satisfy the biorthogonality relationship with respect toM andK
~see Huseyin 1978, Sec. 1.5, for details!. We also normalize the
eigenvectors such that

yl
TMx j5d l j and yl

TKx j5v j
2d l j , ; l , j 51,...,N (11)

whered l j 5Kronecker delta function. These undamped right a
left eigenvectors will now be used to obtain the elastic mode
the nonviscously damped system.
330 / JOURNAL OF ENGINEERING MECHANICS / MARCH 2002
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Neumann Expansion Method
For distinct undamped eigenvalues, (vl

2), xl , and yl , ; l
51,...,N, form a completeset of vectors. For this reason,uj can
be expanded as a complex linear combination ofxl and similarly
vj can also be expanded in terms ofyl . Thus, expansions of the
form

uj5(
l 51

N

a l
~ j !xl (12a)

vj5(
l 51

N

b l
~ j !yl (12b)

may be considered. Without any loss of generality, we can ass
that a j

( j )51 andb j
( j )51 ~normalization!, which leaves us to de

terminea l
( j ) , b l

( j ) , ; lÞ j . A Galerkin-type of error minimization
combined with a complex Neumann expansion method is ado
for this purpose.

Substituting the expansion ofuj , from Eq.~8a! the error vec-
tor for the jth mode can be expressed as

D~ j !5(
l 51

N

sj
2a l

~ j !Mx l1sja l
~ j !G~sj !xl1a l

~ j !Kx lPCN (13)

Consider the undamped left eigenvectorsyk , ;k51,...,N, as
‘‘weighting functions’’ and following the Galerkin method we
have yk

TD( j )50. Using the biorthogonality property of the un
damped right and left eigenvectors described by Eq.~11!, one
obtains

sj
2ak

~ j !1sj(
l 51

N

a l
~ j !Gkl8 ~sj !1vk

2ak
~ j !50, ;k51,...,N (14)

whereGkl8 (sj)5yk
TG(sj)xl . The jth equation of this set obtaine

by settingk5 j is a trivial case becausea j
( j )51 has already been

assumed. From the above set of equations, excluding this tr
case, one has

sj
2ak

~ j !1sj S Gk j8 ~sj !1ak
~ j !Gkk8 ~sj !1 (

lÞkÞ j

N

a l
~ j !Gkl8 ~sj !D 1vk

2ak
~ j !

50, ;k51,...,N;Þ j (15)

These equations can be combined into a matrix form as

@P~ j !2Q~ j !#â~ j !5gu
~ j ! (16)

In the above equation
P~ j !5diagFsj
21sjG118 ~sj !1v1

2

2sj
,...,$ j th term deleted%,...,

sj
21sjGNN8 ~sj !1vN

2

2sj
GPC~N21!3~N21! (17)

the traceless matrix

Q~ j !5F 0 G128 ~sj ! ¯ $ j th term deleted% ¯ G1N8 ~sj !

G218 ~sj ! 0 ] ] ] G2N8 ~sj !

] ] ] $ j th term deleted% ] ]

] ] ] ] ] ]

GN18 ~sj ! GN28 ~sj ! ¯ $ j th term deleted% ¯ 0

GPC~N21!3~N21! (18)



gu
~ j !5$G1 j8 ~sj !,G2 j8 ~sj !,...,$ j th term deleted%,...,GN j8 ~sj !%

TPC~N21! (19)
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â~ j !5$a1
~ j ! ,a2

~ j ! ,...,$ j th term deleted%,...,aN
~ j !%TPC~N21!

(20)

is the vector of unknownak
( j ) , ;kÞ j . From Eq.~16!, â( j ) has to

be determined by performing the associated matrix inversion
is achieved by using the Neumann expansion method. A sim
procedure was used by Adhikari~1999! in the context of vis-
cously damped systems. Now, using the Neumann expansio
have

â~ j !5@ IN212P~ j !21
Q~ j !#21$P~ j !21

gu
~ j !%

5@ IN211Ru
~ j !1Ru

~ j !2

1Ru
~ j !3

1¯#a0
~ j ! (21)

whereIN21 is an (N21)3(N21) identity matrix

Ru
~ j !5P~ j !21

Q~ j !PC~N21!3~N21! (22)

a0
~ j !5P~ j !21

gu
~ j !PC~N21! (23)

BecauseP( j ) is a diagonal matrix, its inversion can be carried o
analytically and subsequently the closed-form expressions ofRu

( j )

anda0
( j ) can be obtained as

Rukl

~ j !5
2sjGkl8 ~sj !~12dkl!

vk
21sj

21sjGkk8 ~sj !
, ;k,lÞ j (24)

a0l

~ j !5
2sjGl j8 ~sj !

v l
21sj

21sjGll8 ~sj !
, ; lÞ j (25)

This makes further calculations involving these quantities s
pler. From Eq.~21!, â( j ) can be calculated in an efficient way a
one can write

â~ j !5a0
~ j !1a1

~ j !1a2
~ j !1¯1ak

~ j !1¯ (26)

where

a1
~ j !5Ru

~ j !a0
~ j ! , a2

~ j !5Ru
~ j !a1

~ j ! , ..., ak
~ j !5Ru

~ j !ak21
~ j ! (27)

This implies that all theak
( j ) can be obtained using successi

matrix-vector multiplications only. Noting thatâ( j ) is the vector of
ak

( j ) , ;kÞ j , substitution of it in Eq.~12a! will give the right
eigenvectors. It is easy to see that by taking more terms in
series represented by Eq.~26!, one can obtain the right eigenve
tors to any desired accuracy provided the complex matrix po

seriesIN211Ru
( j )1Ru

( j )2
1Ru

( j )3
1¯ is convergent. Convergenc

of this series will be addressed later.
The left eigenvectors can be obtained by substituting the

pansion ofvj in Eq. ~8b! and lettingxl be ‘‘weighting functions’’
while applying the Galerkin method. Following the procedu
employed for the right eigenvectors, one can write

@P~ j !2Q~ j !T
#b̂~ j !5gv

~ j ! (28)

where

gv
~ j !5$Gj 18 ~sj !,Gj 28 ~sj !,...,$ j th term deleted%,...,GjN8 ~sj !%

T

PC~N21! (29)

and
e

b̂~ j !5$b1
~ j ! ,b2

~ j ! ,...,$ j th term deleted%,...,bN
~ j !%TPC~N21!

(30)

is the vector of unknownbk
( j ) , ;kÞ j . Now, using the Neumann

expansion method and defining

Rv
~ j !5P~ j !21

Q~ j !T
PC~N21!3~N21! (31)

b0
~ j !5P~ j !21

gv
~ j !PC~N21! (32)

from Eq. ~28! one obtainsb̂( j ) as a series

b̂~ j !5@ IN211Rv
~ j !1Rv

~ j !2

1Rv
~ j !3

1¯#b0
~ j !

5b0
~ j !1b1

~ j !1b2
~ j !1¯1bk

~ j !1... (33)

Here

b1
~ j !5Rv

~ j !b0
~ j ! ,b2

~ j !5Rv
~ j !b1

~ j ! ,...,bk
~ j !5Rv

~ j !bk21
~ j ! (34)

The jth left eigenvector,vj , can now be obtained by substitutin
b̂( j ) in Eq. ~12b!. This method does not require much compu
tional time as closed-form expressions forRv

( j ) and b0
( j ) can be

obtained

Rvkl

~ j !5
2sjGlk8 ~sj !~12dkl!

vk
21sj

21sjGkk8 ~sj !
, ;k,lÞ j (35)

b0l

~ j !5
2sjGjl8 ~sj !

v l
21sj

21sjGll8 ~sj !
, ; lÞ j (36)

It may be noted that by taking more terms in the series~33! one
can obtainvj to any desired accuracy if the complex matrix pow

seriesIN211Rv
( j )1Rv

( j )2
1Rv

( j )3
1¯ is convergent.

From the preceding formulation one may verify that, cor
sponding to the complex conjugate pairs of the eigenvalues,
right and left eigenvectors also appear in complex conjug
pairs. For many engineering problems it is often observed that
damping forces are not very ‘‘big’’ and that by retaining only
few terms in the series, expressions~26! and~33! will result in an
acceptable accuracy. Closed-form approximate expressions
the elastic modes obtained by retaining one and two terms
these series expressions are given in the Appendix. These ex
sions might be useful whenever we find that the entries of
damping kernel functions are small compared to those ofM and
K .

Convergence of the Neumann Series
For the validity of the series expressions forâ( j ) and b̂( j ) in Eqs.
~26! and ~33!, it is required that

Su5IN211Ru
~ j !1Ru

~ j !2

1Ru
~ j !3

1¯ (37a)

and

Sv5IN211Rv
~ j !1Rv

~ j !2

1Rv
~ j !3

1¯ (37b)

are convergent. Looking at the expression ofRu
( j ) andRv

( j ) in Eqs.
~24! and~35!, it may be revealed that they are quite similar and
is sufficient to study the convergence property of any one of
series. Here the seriesSu in Eq. ~37a! is considered.
JOURNAL OF ENGINEERING MECHANICS / MARCH 2002 / 331
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Condition 1. The complex matrix power seriesSu converges if,
and only if, for all the eigenvaluess l

( j ) of the matrixRu
( j ) , the

inequality us l
( j )u,1 holds.

Although this condition is both necessary and sufficie
checking convergence for allj 51,...,N is often not feasible. So
we look for a sufficient condition which is relatively easy
check and which ensures convergence for allj 51,...,N.

Condition 2. The complex matrix power seriesSu converges for
any sj ,v j if G8(sj) is a diagonally dominant matrix.

Proof. Since a matrix norm is always greater than or equa
its maximum eigenvalue, it follows from Condition 1 that conve
gence of the series is guaranteed ifiRu

( j )i,1. Writing the sum of
absolute values of entries ofRu

( j ) results in the following inequal-
ity as the required sufficient condition for convergence:

(
k51
kÞ j

N

(
l 51
lÞ j

N U sjGkl8 ~sj !

vk
21sj

21sjGkk8 ~sj !
U~12d lk!,1 (38)

Dividing both numerator and denominator bysj , the above in-
equality can be written as

(
k51
kÞ j

N

(
l 51

lÞ iÞk

N uGkl8 ~sj !u

u1/sj~vk
21sj

2!1Gkk8 ~sj !u
,1 (39)

Taking the maximum for allkÞ j , this condition can further be
represented as

max
kÞ j

(
lÞ j ,k
l 51
N uGkl8 ~sj !u

u1/sj~vk
21sj

2!1Gkk8 ~sj !u
,1 (40)

It is clear that~40! always holds if

(
l 51

lÞ j Þk

N

uGkl8 ~sj !u,uGkk8 ~sj !u, ;kÞ j (41)

which in turn implies that, for all j 51,...,N, the inequality
iRu

( j )i,1 holds if G8(sj) is a diagonally dominant matrix. It is
important to note that the diagonal dominance ofG8(sj) is only a
sufficient condition and the lack of it does not necessarily prev
convergence ofSu.

Nonviscous Modes

When 2N, j <m, the eigenvalues are real and consequently fr
Eq. ~9! we observe thatD(sj)PRN3N. The nonviscous modes ca
be obtained from Eqs.~8a! and~8b! by fixing any one element o
the right and left eigenvectors. SinceD(sj)PRN3N, from Eqs.
~8a! and~8b! it is easy to see thatuj ,vjPRN. Partitionuj andvj

as

uj5 Hu1j

u2j
J (42a)

vj5 H v1j

v2j
J (42b)

We selectu1j5v1j51 so thatu2j ,v2jPR(N21) has to be deter-
mined from Eqs.~8a! and ~8b!. Further, partitionD(sj) as

D~sj !5FD11~sj ! D12~sj !

D21~sj ! D22~sj !
G (43)
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where D11(sj)PR, D12(sj)PR13(N21), D21(sj)PR(N21)31, and
D22

( j )PR(N21)3(N21). In view of Eq. ~43! and recalling thatu1j

51, from Eq.~8a! we can have

D22~sj !u2j52D21~sj !

or

u2j52@D22~sj !#
21D21~sj ! (44)

Similarly, for the left eigenvectors one has

v2j52@E22~sj !#
21E21~sj ! (45)

HereE(sj)5D(sj)
T and is partitioned in a manner similar to E

~43!.
It may be noted that determination of the nonviscous mode

computationally more demanding than the elastic modes bec
inversion of an (N21)3(N21) real matrix is associated with
each eigenvector. However, for most physically realistic nonv
cous damping models it appears that the number of nonvisc
modes is not very high and also their contribution to the glo
dynamic response is not very significant~see the example sec
tion!. For this reason, calculation of the first few nonvisco
modes may be sufficient from a practical point of view.

Transfer Function

The transfer function~matrix! of a system completely defines it
input-output relationship in a steady state. It is well known th
for any linear system, if the forcing function is harmonic, that
f(t)5f exp@st# with s5 iv and amplitude vectorfPRN, the
steady-state response will also be harmonic at frequencyv
PR1. So we seek a solution of the formu(t)5ū exp@st#, where
ūPCN is the response vector in the frequency domain. Subs
tion of u(t) and f(t) in Eq. ~1! gives

s2Mū1sG~s!ū1Kū5f or D~s!ū5f (46)

Here thedynamic stiffness matrix

D~s!5s2M1sG~s!1KPCN3N (47)

From Eq.~46! the response vectorū can be obtained as

ū5D21~s!f5H~s!f (48)

where

H~s!5D21~s!PCN3N (49)

is the transfer function matrix. From this equation one has
addition

H~s!5
adj@D~s!#

det@D~s!#
(50)

The poles of H(s), denoted bysj , are the eigenvalues of th
system. Because it is assumed thatall the m eigenvalues are dis
tinct, each pole is asimple pole. The matrix inversion in Eq.~48!
is difficult to carry out in practice because of the singulariti
associated with the poles. Moreover, such an approach woul
an expensive numerical exercise and may not offer much phys
insight. For these reasons, we seek a solution analogous to
classical model series solution of the undamped or proportion
damped systems.

Using the residue theorem~see Riley et al. 1997, Chap. 18!,
the transfer function can be expressed in terms of the poles
residuesas

H~s!5(
j 51

m
Rj

s2sj
(51)
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Here

Rj5s5sj

res @H~s!#5
def

lim
s→sj

~s2sj !@H~s!# (52)

is the residue of the transfer function at the polesj . It may be
noted that Eq.~51! is equivalent to expressing the right-hand si
of Eq. ~50! in the partial-fraction form. Here we try to obtain th
residues, that is, the coefficients in the partial-fraction form,
terms of the system eigenvectors.

Eigenvectors of Dynamic Stiffness Matrix

It turns out that the eigenvectors of the dynamic stiffness ma
play an important role in determining the residues of the tran
function. For any givensPC, the right and left eigenvalue prob
lem associated with the dynamic stiffness matrix can be expre
by

D~s!fk~s!5nk~s!fk~s! (53a)

ck
T~s!D~s!5nk~s!ck

T~s!, ;k51,...,N (53b)

In these equations the eigenvaluesnk(s)PC are the roots of the
characteristic equation

det@D~s!2n~s!IN#50 (54)

and fk(s),ck(s)PCN are, respectively, thekth right and left
eigenvectors ofD(s). The symbolsnk(s), fk(s), andck(s) in-
dicate the functional dependence of these quantities on the c
plex parameters. Such a continuous dependence is expec
wheneverD(s) is a sufficiently smooth matrix function ofs. It
should be noted that becauseD(s) is anN3N complex matrix for
a fixeds, the number of eigenvalues~and consequently the eigen
vectors! must beN. Further, it can be shown that, for distin
eigenvalues,fk(s) andcj(s) also satisfy a biorthogonality rela
tionship althoughuk and vj do not enjoy any such simple rela
tionship. We normalizefk(s) andck(s) such that

cj
T~s!fk~s!5dk j , ;k, j 51,...,N (55)

In view of the above relationship, from Eqs.~53a! and ~53b! we
have

cj
T~s!D~s!fk~s!5nk~s!dk j , ;k, j 51,...,N (56)

or in the matrix form

CT~s!D~s!F~s!5n~s! (57)

Here

F~s!5@f1~s!,f2~s!,...,fN~s!#PCN3N (58)

C~s!5@c1~s!,c2~s!,...,cN~s!#PCN3N (59)

n~s!5diag@n1~s!,n2~s!,...,nN~s!#PCN3N (60)

It is possible to establish the relationships between the orig
eigenvalue problems of the system defined by Eqs.~8a! and~8b!
and that by Eqs.~53a! and~53b!. Consider the case in which th
parameters approaches any one of the system eigenvalues,
sj . Sinceall the nk(s) are assumed to be distinct, for nontrivi
eigenvectors, comparing Eqs.~8a!, ~8b!, ~53a!, and~53b! we can
conclude that one and only one of thenk(s) must be zero when
s→sj ~see Yang and Wu 1998!. Suppose that therth eigenvalue
of the eigenvalue problems~53a! and ~53b! is zero whens
→sj . It is also clear that the eigenvectors in Eqs.~53a! and~53b!
corresponding to therth eigenvalue also approach the eigenve
tors in Eqs.~8a! and ~8b! ass→sj . Thus, whens5sj , one has
d

-

l

y

n r~sj !50 and nk~sj !Þ0, ;k51,...,N;Þr (61)

and also

fr~sj !5uj (62)

cr~sj !5vj (63)

These equations completely relate the eigensolutions of Eqs.~8a!
and~8b! with Eqs.~53a! and~53b!. Now, these relationships wil
be utilized to obtain the transfer function residues.

Calculation of the Residues

From Eq.~57! one has

D21~s!5F~s!n21~s!CT~s! (64)

Using the expression of the transfer function in Eq.~49! and
noting thatn(s) is a diagonal matrix, we may expand the righ
hand side of the above equation to obtain

H~s!5D21~s!5(
k51

N
fk~s!ck

T~s!

nk~s!
(65)

Separation of therth term in the above sum yields

H~s!5
fr~s!cr

T~s!

n r~s!
1F (k51

kÞr

N
fk~s!ck

T~s!

nk~s! G (66)

Clearly, whens→sj , the second term of the right-hand side
Eq. ~66! is analytic because according to Eq.~61! nk(sj)Þ0,
;k51,...,N;Þr . From Eq.~52! the residue ats5sj may be ob-
tained as

Rj5
def

lim
s→sj

~s2sj !H fr~s!cr
T~s!

n r~s!
1F (k51

kÞr

N
fk~s!ck

T~s!

nk~s! G J
5 lim

s→sj

~s2sj !
fr~s!cr

T~s!

n r~s!

5
fr~s!cr

T~s!us5sj

]n r~s!

]s U
s5sj

1 lim
s→sj

~s2sj !
]

]s
@fk~s!ck

T~s!#

]n r~s!

]s

~using l’Hôspital’s rule!

5
ujvj

T

]n r~s!

]s U
s5sj

@by Eqs. ~62! and ~63!# (67)

The denominator in the above expression for the residu
@]n r(s)/]s#us5sj

, is still unknown. Now, consider therth right
eigenvalue problem associated with the dynamic stiffness ma
Differentiation of Eq.~53a! for k5r with respect tos yields

]D~s!

]s
fr~s!1D~s!

]fr~s!

]s
5

]n r~s!

]s
fr~s!1n r~s!

]fr~s!

]s
(68)

Premultiplying the above equation bycr
T(s) and rearranging, one

obtains
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cr
T~s!

]D~s!

]s
fr~s!1@cr

T~s!D~s!2cr
T~s!n r~s!#

]fr~s!

]s

5cr
T~s!

]n r~s!

]s
fr~s! (69)

From the definition of the left eigenvectors,cr(s), in Eq.~53b!, it
follows that the second term on the left-hand side of the ab
equation is zero. Using the normalizing condition in Eq.~55! and
settings→sj , from Eq. ~69! we have

]n r~s!

]s U
s5sj

5vj
T
]D~s!

]s U
s5sj

uj5vj
T

]D~sj !

]sj
uj (70)

The term]D(sj)/]sj can be obtained by differentiating Eq.~47!
as

]D~sj !

]sj
52sjM1G~sj !1sj

]G~sj !

]sj
(71)

Using Eqs.~67! and ~70!, one finally obtains the residue as

Rj5
ujvj

T

vj
T

]D~sj !

]sj
uj

(72)

The above equation completely relates the transfer function r
dues to the eigenvalues and eigenvectors of the system. Rec
that, among them eigenvalues 2N appear in complex conjugat
pairs, from Eq.~51! the transfer function may be obtained as

H~ iv!5(
j 51

N F g jujvj
T

iv2sj
1

g j* uj* vj*
T

iv2sj*
G1 (

j 52N11

m
g jujvj

T

iv2sj
(73)

where

g j5
1

vj
T

]D~sj !

]sj
uj

(74)

The transfer function has two parts. The first part is due to
elastic modes and the second part is due to the nonviscous m
Using a first-order perturbation method and consideringM andK
as symmetric matrices, Woodhouse@1998, Eq.~35!# has obtained
an expression of the transfer function similar to Eq.~73!. How-
ever, the nonviscous part of the transfer function has not b
obtained by him.

Special Cases

The expression for the transfer function in Eq.~73! is a natural
generalization for the familiar expressions for the transfer fu
tion of undamped or viscously damped systems. Transfer fu
tions for several useful special cases may be obtained from
~73! as follows:
1. Undamped systems:In this caseG(s)50 results the order of

the characteristic polynomialm52N; sj is purely imaginary
so thatsj5 i v j , where v jPR are the undamped natura
frequencies,uj5xj andvj5yj . In view of the mass normal
ization relationship in Eq.~11!, g j51/(2iv j) and Eq.~73!
leads to

H~ iv!5(
j 51

N
1

2iv j
F 1

iv2 iv j
2

1

iv1 iv j
Gxjyj

T5(
j 51

N xjyj
T

v j
22v2

(75)
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2. Viscously damped symmetric systems~see Vigneron 1986!:
In this case,M5MT, K5KT, G(s)5C5CT, and m52N
results invj5uj andg j51/(uj

T@2sjM1C#uj). These reduce
expression~73! to

H~ iv!5(
j 51

N Fg jujuj
T

iv2sj
1

g j* uj* uj*
T

iv2sj*
G (76)

3. Viscously damped asymmetric systems~Adhikari 1999!: In
this case,G(s)5C and m52N results ing j51/(vj

T@2sjM
1C#uj). These reduce expression~73! to

H~ iv!5(
j 51

N F g jujvj
T

iv2sj
1

g j* uj* vj*
T

iv2sj*
G (77)

Dynamic Response

The steady-state response due to harmonic loads or the resp
due to broadband random excitation can be obtained directly f
the expression of the transfer function in Eq.~73!. In this section,
we consider the system response due to transient loads and i
conditions in the time and frequency domains.

Taking the Laplace transform of Eq.~2! and considering the
initial conditions in Eq.~3!, we have

s2Mū2sMu02Mu̇01sG~s!ū2G~s!u01Kū5f~s!

or

@s2M1sG~s!1K #ū5f~s!1Mu̇01@sM1G~s!#u0 (78)

Using the expression for the transfer function derived before,
response vectorū may be obtained as

ū5(
j 51

m
g jujvj

T

s2sj
$f~s!1Mu̇01@sM1G~s!#u0% (79)

This can be simplified further to

ū~ iv!5(
j 51

m
g jAj~ iv!

iv2sj
uj (80)

where the frequency-dependent complex scalar

Aj~ iv!5vj
Tf~ iv!1vj

TMu̇01 ivvj
TMu01vj

TG~ iv!u0 (81)

The summation in Eq.~80! may be split into two different parts
The first part would correspond to the 2N complex conjugate
pairs of elastic modes and the second part would be the contr
tion of the nonviscous modes.

The response in the time domain due to any forcing funct
can be obtained using a convolution integral over theimpulse
response function. From the expression of the transfer function
Eq. ~73!, the impulse response functionh(t)PRN3N may be ob-
tained as

h~ t !5(
j 51

N

@g jujvj
Tesj t1g j* uj* vj*

T

esj
* t#1 (

j 52N11

m

g jujvj
Tesj t

(82)

The response due to the initial conditions may also be obtaine
taking the inverse transform of Eq.~79!. First, simplify Eq.~79!
to obtain
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ū~s!5(
j 51

m

g jFvj
Tf~s!1vj

TG~s!u0

s2sj
1

vj
TMu̇0

s2sj

1S 11
sj

s2sj
D vj

TMu0Guj (83)

From the above, one has

u~ t !5L21@ ū~s!#5(
j 51

N

@g jaj~ t !uj1g j* aj* ~ t !uj* #

1 (
j 52N11

m

g jaj~ t !uj (84)

where the time-dependent scalar coefficients

aj~ t !5E
0

t

esj ~ t2t!$vj
Tf~t!1vj

TG~t!u0%dt

1esj t$vj
TMu̇01sjvj

TMu0%, ;t.0 (85)

The expression of the system response, either the freque
domain description in Eq.~80! or the time-domain description in
Eq. ~84!, is similar to the classical modal superposition result
undamped or proportionally damped systems usually obta
using the mode-orthogonality relationships. Thus, the formula
presented here is a generalization of the classical result wher
real normal modes are appropriately replaced by the elastic m
and the nonviscous modes. Also note that we have not used
orthogonality relationship; the expression of the transfer funct
residue in Eq.~72! allows us to express the response in terms o
superposition of individual modes even when the equations
motion cannot be decoupled.

In summary, the procedure to obtain the dynamic respons
general, simple, direct, and provides better physical insights
only the familiar N-space eigenvectors are used. The appro
also offers a reduction in computational effort because it u
neither the state-space formalism nor additional dissipation c
dinates. Applications of the proposed method are illustrated n

Numerical Examples

We consider a three-degree-of-freedom system to illustrate
proposed method. Fig. 1 shows the example taken together
the numerical values considered for mass and stiffness prope
A similar system with viscous damping has been studied by N
land ~1989, see pp. 148–151!. Damping is associated only wit
the middle mass, and the kernel function corresponding to
damper has the form

G22~ t !5cg~ t ! (86)

wherec5damping coefficient andg(t)5damping function. Two
different forms ofg(t) available in the literature will be consid
ered here. For the first model~exponential!

Fig. 1. Three degree-of-freedom nonviscously damped system,mu

51 kg, ku51 N/m
-

e
s
y

-
.

h
s.

g~ t !5me2mt, m,t>0 (87)

and for the second model~double exponential!

g~ t !5 1
2~m1e2m1t1m2e2m2t!, m1 ,m2 ,t>0 (88)

The exponential function in Eq.~87! is possibly the simplest
physically realistic nonviscous damping model. This functio
often known as a ‘‘relaxation function,’’ was introduced by Bi
~1955!. It has been used extensively in the context of viscoela
systems. Recently, Adhikari and Woodhouse~2000! have pro-
posed a method to identify such damping models using mo
testing. The double exponential damping function, known as
GHM model, was introduced by Golla and Hughes~1985! and
McTavis and Hughes~1993!. Identification of GHM models has
been discussed by Friswell et al.~1997!. Both of the damping
functions have been scaled so as to have unit area when integ
to infinity. This makes them directly comparable with the visco
model in which the corresponding damping function would be
unit delta function,g(t)5d(t), and the coefficientc would be the
usual viscous damping coefficient. The difference betweend
function andg(t) given by Eqs.~87! and~88! is that att50 they
start with finite values ofm and (m11m2)/2, respectively. Thus,
the values ofm, m1 , andm2 give a notion of nonviscousness—
they are large the damping behavior will be near-viscous,
vice versa.

The mass and stiffness matrices and the damping matrix in
Laplace domain for the problem can be obtained as

M5Fmu 0 0

0 mu 0

0 0 mu

G (89)

K5F 2ku 2ku 0

2ku 2ku 2ku

0 2ku 2ku

G (90)

G~s!5F 0 0 0

0 cG~s! 0

0 0 0
G (91)

HereG(s) is the Laplace transform ofg(t). Next, the eigensolu-
tions and the dynamic response of the system are discusse
the two functional forms ofg(t).

Example 1: Exponential Damping

Eigensolutions
Because all the system matrices are symmetric, the right and
eigenvectors are identical for this problem. We assumec50.3, as
considered by Newland~1989, p. 149! for the equivalent vis-
cously damped system. From Eq.~87!, one obtains

G~s!5
1

s1m
(92)

Using this expression, the characteristic equation can be sim
fied as

mu
3s71mu

3ms61@2mu
2ku1mu~mcmu14muku!#s516kumu

2ms4

1@2ku~mcmu14muku!1mu~2mcku12ku
2!#s3

110ku
2mums212ku~2mcku12ku

2!s14ku
3m50 (93)
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The order of the above polynomialm57. Since the system ha
three degrees of freedom, there are three elastic modes c
sponding to the three modes of vibration. The number of non
cous modesp5m22N51.

It is of interest to us to understand the effect of ‘‘nonviscou
ness’’ on the eigensolutions. Fig. 2 shows the locus of the th
eigenvalue, that is,s3 , plotted as a function ofm. It is interesting
to observe that the locus is much more sensitive in the regio
lower values ofm ~i.e., when damping is significantly nonviscou!
compared to that in the region of higher values. The eigenvalu
the corresponding viscously damped system is also plo
~marked by an asterisk! in the same diagram. Note that the no
viscous damping mechanism approaches the viscous dam
whenm.'50.0. Similar behavior has been observed~results not
shown here! for the locus ofs1 also. The second mode, in whic
the middle mass remains stationary, is not affected by dampi

The eigenvectors of the system, i.e., the three elastic mo
~together with their complex conjugates! and one nonviscous
mode, can be obtained in a straightforward manner by follow
the procedure outlined earlier. We select two representative va
of m, one whenm is large ~i.e., the near-viscous case! and the
other whenm is small. The undamped eigenvalues and eigenv
tors are obtained as

$v1 ,v2 ,v3%5$0.7654,1.4142,1.8478% (94)

@x1 ,x2 ,x3#5F 0.5 0.7071 20.5

0.7071 0.0 0.7071

0.5 20.7071 20.5
G (95)

Using these results, whenm550.0, for the elastic modes we hav

$s1 ,s2 ,s3%5$20.075710.7659i ,1.4142i ,20.075111.8416i %
(96)

@u1 ,u2 ,u3#

5F 0.498310.0204i 0.7071 20.500210.0491i

0.709520.0289i 0.0 0.706910.0694i

0.498310.0204i 20.7071 20.500210.0491i
G (97)

The above calculation is performed by retaining five terms in
series~26!. It may be verified that, becausem is large~about 27
times the maximum natural frequency!, the results obtained ar

Fig. 2. Root-locus plot showing locus of third eigenvalue (s3) as
function of m
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close to the viscously damped case~see Newland 1989, p. 149!.
For the one nonviscous mode, we obtain

s75249.6984 andu75H 1.0
2.47193103

1.0
J (98)

Becauses7 is purely real and negative, this mode is nonoscil
tory ~overcritically damped! and stable.

When m50.5, the damping is significantly nonviscous. F
this case, performing similar calculations for the elastic mo
one has

$s1 ,s2 ,s3%5$20.020710.8i ,1.4142i ,20.005311.8671i %
(99)

and

@u1 ,u2 ,u3#

5F 0.498310.0204i 0.7071 20.500210.0491i

0.678710.0112i 0.0 0.744220.0630i

0.498310.0204i 20.7071 20.500210.0491i
G

(100)

These values are not significantly different from those obtain
for m550.0 in Eq.~97!. For this problem, the elastic modes a
not very sensitive to the damping mechanism. However, we
phasize that this factcannotbe generalized to all systems. For th
nonviscous mode one has

s7520.4480 andu75H 1.0
2.2007

1.0
J (101)

These values are, however, quite different from those obtained
m550.0 in Eq.~98!. It is difficult physically to visualize the na-
ture of the nonviscous modes in general. These modes are in
sic to the dampers and we do not have sufficient general
coordinates to represent them properly. Nevertheless, they y
nonzero residues in the system transfer functions and thus
tribute to the global dynamic response.

Dynamic Response Analysis
The problem of stationary random vibration analysis of the s
tem is considered here. Suppose the system is subjected
band-limited Gaussian white noise at the third degree of freed
~DOF!. We are interested in the resulting displacement of
system at the third DOF~i.e., u3!. The power spectral densit
~PSD! of the response~see Nigam 1983 for details! can be given
by

Suu~ iv!5uH33~ iv!u2Sf f~ iv! (102)

where

Sf f~ iv!5H 1 if 0,v<2.5 rad/s

0 otherwise
(103)

In Fig. 3, the PSD ofu3 , that is, uH33( iv)u2, is plotted for the
cases in whichm550.0 and 0.5. These results are obtained
direct application of Eq.~73!. From the diagram, observe that th
damping is less for the case whenm50.5 than whenm550.0.
Also note the~horizontal! shift in the position of the natural fre
quencies. These features may also be observed in the root
diagram as shown in Fig. 2. To understand the effect of ‘‘nonv
cosity,’’ in the same diagram we have plotted the nonviscous t
~the second term! appearing in Eq.~73! for both values ofm. For
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this problem, the nonviscous part is quite small and beco
smaller at higher frequencies. Observe that whenm50.5, that is,
when damping is significantly nonviscous, the value of the n
viscous part of the response is more than that whenm550.0. This
plot also clearly demonstrates that the nonviscous part of the
sponse isnot oscillatory in nature.

Example 2: GHM Damping

Taking the Laplace transform of Eq.~88!, one obtains

G~s!5
~m11m2!/2s1m1m2

s21~m11m2!s1m1m2
(104)

Using this equation, together with the expressions of the sys
matrices given by Eqs.~89!–~91!, it can be shown that the orde
of the characteristic polynomialm58. Thus, the number of the
nonviscous modesp5m22N52. In this section, we focus ou
attention on the numerical accuracy of the formulation develo
in this paper.

Regarding the numerical values of the damping parame
we assumec50.5,m151, andm253. Small values ofm1 andm2

indicate that the damping mechanism is strongly nonvisco
Solving the characteristic equation, exact eigenvalues corresp
ing to the three elastic modes can be obtained as

$s1 ,s2 ,s3%5$20.099410.8180i ,1.4142i ,20.068711.9025i %
(105)

and their complex conjugate pairs. Eigenvalues correspondin
the two nonviscous modes are found to be

$s7 ,s8%5$22.7901,20.8738% (106)

Eigenvalues corresponding to the elastic modes can also be
tained approximately by Eq.~111! in the Appendix. Recall tha
only the undamped eigensolutions are required in order to a
this equation. Approximate eigenvalues using Eq.~111! are cal-
culated as

$s1 ,s2 ,s3%approx

5$20.098120.8105i ,1.4142i ,20.059521.9018i %. (107)

It is useful to compare the exact and approximate eigenvalue
light of the Q factors. In this problem, the second mode is n
damped, soQ25`. For the first and third modes we obtainQ1

Fig. 3. Power spectral density function of displacement at third D
(u3)
-

,

.
-

-

54.1164 andQ3513.8540. Small values of theQ factor indicate
that these modes are quite heavily damped. Comparing Eqs.~105!
and ~107!, it may be observed that the approximate values
quite close to the exact one even when damping is reason
high.

In order to check the numerical accuracy of the eigenvect
first the exact values are calculated by the matrix invers
method. For the elastic modes we obtain

@u1 ,u2 ,u3#

5F 0.511410.0299i 0.7071 20.463910.0403i

0.690520.0431i 0.0 0.759610.0562i

0.511410.0299i 20.7071 20.463910.0403i
G

(108)

and their complex conjugates. For the two nonviscous modes
has

@u7 ,u8#5F 1.0000 1.0000

9.7847 2.7636

1.0000 1.0000
G (109)

Approximate eigenvectors corresponding to the elastic mo
calculated by Eq.~113a!, are obtained as

@u1 ,u2 ,u3#approx

5F 0.511410.0299i 0.7071 20.463910.0403i

0.691020.0422i 0.0 0.758210.0569i

0.511410.0299i 20.7071 20.463910.0403i
G

(110)

The above values are equivalent to performing the calculation
retaining only one term in the series~26!. Also recall that the
approximate values are obtained from the undamped eigens
tions only. Comparing Eqs.~108! and ~110!, it is clear that the
results obtained from the approximate method match the e
solutions to an excellent accuracy.

As a final check on the formulation developed in this pap
we compare the transfer function obtained from Eq.~73! with the
exact transfer function calculated by inversion of the dynam
stiffness matrix. Fig. 4 shows such a comparison, forH33( iv).
Approximate natural frequencies and modes given by Eqs.~107!

Fig. 4. Transfer functionH33( iv)
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and ~110! are used and also the nonviscous term in Eq.~73! is
neglected in order to calculate the approximate transfer funct
Thus, in turn, the approximate transfer function in Fig. 4 is o
tained only by proper ‘‘post-processing’’ of the undamped eig
solutions. From this figure it may be observed that, except i
few places, the approximate transfer function is reasonably c
to the exact one. These results demonstrate the usefulness
proposed method.

Conclusions

The problem of dynamic analysis of nonviscously damp
multiple-degree-of-freedom linear systems has been conside
The assumed nonviscous damping model is such that the dam
forces depend on the past history of motion via convolution in
grals over some kernel functions. The familiar viscous damp
model is a special case of this general linear damping model w
the kernel functions have no memory. It has been assumed th
general, the mass and stiffness matrices as well as the matr
the kernel functions are not symmetric and cannot be simu
neously diagonalized by any linear transformation. The anal
is, however, restricted to systems with nonrepetitive eigenva
and nonsingular mass matrices.

System eigenvalues were obtained by solving the charact
tic equation. It turns out that, unlike the viscously damped ca
the order of the characteristic equation for anN-degree-of-
freedom system is more than 2N. As a consequence, the numb
of modes becomes more than 2N and they are grouped into tw
types:~a! elastic modes and~b! nonviscous modes. It is assume
that the elastic modes appear in complex conjugate pairs, th
they are subcritically damped. The elastic modes, which con
of N right and left eigenvectors together with their complex co
jugate pairs, correspond toN modes of vibration of the structura
system. TheseN right and left eigenvectors were expressed a
complex linear combination of the right and left~real! eigenvec-
tors of the corresponding undamped system. The vectors of t
complex constants for both right and left eigenvectors were
ther determined from a series obtained by the Neumann ex
sion method. Based on this analysis, some approximate form
for the eigenvalues and eigenvectors were suggested and
accuracy was verified using numerical examples. The nonvisc
modes, which occur due to the nonviscous damping mechan
are assumed to be real, overcritically damped, and nonoscilla
in nature. These modes were obtained by inversion of a part
of the dynamic stiffness matrix evaluated at the correspond
eigenvalues.

The transfer function of the system was derived in terms of
eigenvalues and eigenvectors of the second-order system. E
closed-form expressions of the response due to arbitrary for
functions and initial conditions were obtained. The response
be expressed as a sum of two parts, one that arises in the
viscously damped systems and another that occurs due to no
cous damping mechanisms. Through an example, it was sh
that the nonviscous part of the response is purely dissipative
nonoscillatory in nature.

The method developed here is analogous to classical m
analysis where undamped natural frequencies and modes ha
be appropriately replaced by elastic modes and nonviscous m
of the nonconservative system. The method presented offe
reduction in computational effort because neither the first-or
formalisms nor the additional dissipation coordinates are e
ployed. Moreover, this approach also provides better physica
338 / JOURNAL OF ENGINEERING MECHANICS / MARCH 2002
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sight as familiarN-space eigenvectors are utilized. The resu
developed here are very general in nature and most of the fam
linear dynamic systems, e.g., classically/nonclassically dam
symmetric systems, viscously damped asymmetric syste
damped/undamped gyroscopic systems, etc., can be treate
special cases.
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Appendix: Approximate Expressions for Elastic
Modes

The expressions for the elastic modes obtained by taking one
in the series~26! and ~33! are close to those obtained from th
first-order perturbation analysis. The validity of these results
lies on the fact that the entries ofG(sj) are not very big for allsj .
Considering thejth set of Eq.~14! and neglecting the second
order terms involvingak

( j ) and Gkl8 (sj), ;kÞ l , and also noting
that a j

( j )51, one obtains

sj
21sjGj j8 ~sj !1v j

2'0

or

sj'6 iv j2Gj j8 ~6 iv j !/25 iv j2Gj j8 ~ iv j !/2,

2 iv j2Gj j8 ~2 iv j !/2.
(111)

This is the first-order approximate expression for the comp
eigenvalues of system~2! corresponding to the elastic modes.
similar result was also obtained by Woodhouse~1998!. In deriv-
ing this expression, the assumption has been made thatG(sj)
'G( iv j). BecauseG(sj) is assumed small, it is expected th
this approximation will not result in significant errors. Note tha
asG(t) is a real function,Gj j8 (•) satisfies the property

Gj j8 ~2 iv j !5Gj j8* ~ iv j ! (112)

Using this relationship, it may be confirmed that the eigenval
corresponding to the elastic modes, approximately given by
~111!, appear in complex conjugate pairs.

To obtain approximate expressions for the right and left eig
vectors, one simply considers only the first term of the se
expressions~26! and ~33! and substitutesâ( j ) and b̂( j ) in Eqs.
~12a! and ~12b! to obtain

uj'xj2(
k51
kÞ j

N sjGk j8 ~sj !xk

vk
21sj

21sjGkk8 ~sj !
(113a)

and

vj'yj2(
k51
kÞ j

N sjGk j8 ~sj !yk

vk
21sj

21sjGkk8 ~sj !
(113b)

Now, retaining the first two terms of the series expressions~26!

and~33! and substitutingâ( j ) andb̂( j ) in Eqs.~12a! and~12b!, one
obtains
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uj'xj2(
k51
kÞ j

N sjGk j8 ~sj !xk

vk
21sj

21sjGk8~sj !

1(
k51
kÞ j

N

(
l 51

lÞ j Þk

N sj
2Gkl8 ~sj !Gl j8 ~sj !xk

@vk
21sj

21sjGkk8 ~sj !#@v l
21sj

21sjGll8 ~sj !#

(114a)

and

vj'yj2(
k51
kÞ j

N sjGk j8 ~sj !yk

vk
21sj

21sjGk8~sj !

1(
k51
kÞ j

N

(
l 51

lÞ j Þk

N sj
2Glk8 ~sj !Gjl8 ~sj !yk

@vk
21sj

21sjGkk8 ~sj !#@v l
21sj

21sjGll8 ~sj !#

(114b)

The above two equations are second-order approximate ex
sions for the right and left eigenvectors corresponding to the e
tic modes of system~2!.
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