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Overview of the course

The course is dived into eight topics:

Introduction to probabilistic models & dynamic systems

Stochastic finite element formulation

Numerical methods for uncertainty propagation

Spectral function method

Parametric sensitivity of eigensolutions

Random eigenvalue problem in structural dynamics

Random matrix theory - formulation

Random matrix theory - application and validation
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Outline of this talk

1 Matrix variate distributions

2 Matrix distributions for system matrices

Wishart random matrices

Parameter selection
Reduced computational modelling

3 Identification of the dispersion parameters

4 Examples applications for random matrix theory

5 Experimental validations

6 Hybrid uncertainty formulations

7 Domain decomposition for multi-frequency scale problems

Domain decomposition for two domains

Computational approach for uncertainty propagation
Stochastic interface problem
Stochastic interior problems

Numerical example
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Introduction

Broadly speaking, there are two complimentary approaches to quantify
uncertainties in a model. The first is the parametric approach and the

second is the non-parametric approach.

In the parametric approach the uncertainties associated with the system

parameters, such as Young’s modulus, mass density, Poisson’s ratio,
damping coefficient and geometric parameters are quantified using

statistical methods and propagated, for example, using the stochastic

finite element.

This type of approach is suitable to quantify aleatoric uncertainties.

Epistemic uncertainty on the other hand do not explicitly depend on the
systems parameters. For example, there can be unquantified errors

associated with the equation of motion (linear on non-linear), in the
damping model (viscous or non-viscous), in the model of structural joints,

and also in the numerical methods (e.g, discretisation of displacement

fields, truncation and roundoff errors, tolerances in the optimization and
iterative algorithms, step-sizes in the time-integration methods).

The parametric approach is not suitable to quantify this type of
uncertainties and a non-parametric approach is needed for this purpose.
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Non-parametric uncertainty

In majority of practical problems, the complete information regarding

uncertainties is not available.

In some ceases, for example, cars manufactured from a production chain

and soil property distribution in a construction site, it may be possible to

obtain probabilistic descriptions of the system parameters experimentally.

However, obtaining such probabilistic information may be prohibitively

expensive for many problems.

In another class of problems, for example, dynamic analysis of a space

vehicle, even ‘in principle’ it may not be possible to obtain probabilistic

information because there may be just ‘only one sample’. However, there
will still be some uncertainties in the model.

Regardless of what type of uncertainties exist in the model of a linear

dynamical system, it must be characterized by the random matrices M, C
and K.

These We obtain the probability density function of the random matrices
based on the maximum entropy principle.

It will be shown that Wishart random matrix is the simplest physically

realistic random matrix model for the system matrices appearing in linear
structural dynamical systems.
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Dynamics of a general linear system

The equation of motion is given by

Mq̈(t) + Cq̇(t) + Kq(t) = f(t) (1)

Due to the presence of uncertainty M, C and K become random matrices.

The main objectives in the ‘forward problem’ are:

to quantify uncertainties in the system matrices

to predict the variability in the response vector q

We aim to derive the probability density function of the system matrices
directly.
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Random Matrix Method (RMM)

Derive the matrix variate probability density functions of M, C and K1

using available information.

The main assumption is that a reliable model of the baseline system

matrices is known.

Additionally we need to assume that ‘some information’ on the dispersion

of the system matrices from the ‘mean’ model is available.

Once the distribution is identified, we propagate the uncertainty (using

Monte Carlo simulation or analytical methods) to obtain the response

statistics (or pdf)

Several ways the parameters of the distribution can be identified.

1AIAA Journal, 45[7] (2007), pp. 1748-1762
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Matrix variate distributions

A random matrix can be considered as an observable phenomenon
representable in the form of a matrix which under repeated observation

yields different non-deterministic outcomes.

Therefore, a random matrix is simply a collection of random variables

which may satisfy certain rules (for example symmetry, positive
definiteness etc). Random matrices were introduced by Wishart in 1928in

the context of multivariate statistics.

However, the Random Matrix Theory (RMT) was not used in other

branches until 1950s whenWigner published his works (leading to the
Nobel prize in Physics in 1963) on the eigenvalues of random matrices

arising in high-energy physics.

Using an asymptotic theory for large dimensional matrices, Wigner was

able to bypass the Schrödinger equation and explain the statistics of
measured atomic energy levels in terms of the limiting eigenvalues of

these random matrices.

Since then research on random matrices has continued to attract

interests in multivariate statistics, physics, number theory and more
recently in mechanical and electrical engineering.

S. Adhikari (Swansea) D2: Uncertainty quantification in Structural Dynamics January 2020, CSU, Changsha 8



Gaussian random matrix

The probability density function of a random matrix can be defined in a
manner similar to that of a random variable.

If A is an n×m real random matrix, the matrix variate probability density
function of A ∈ Rn,m, denoted as pA(A), is a mapping from the space of

n×m real matrices to the real line, i.e., pA(A) : Rn,m → R.

Density of a random matrix is effectively the joint density function of all its
elements

The random matrix X ∈ Rn,p is said to have a matrix variate Gaussian
distribution with mean matrix M ∈ Rn,p and covariance matrix Σ⊗Ψ,

where Σ ∈ R
+
n and Ψ ∈ R

+
p provided the pdf of X is given by

pX (X) = (2π)−np/2det {Σ}−p/2 det {Ψ}−n/2

etr

{
−1

2
Σ−1(X − M)Ψ−1(X − M)T

}
(2)

This distribution is usually denoted as X ∼ Nn,p (M,Σ⊗Ψ).
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Symmetric Gaussian random matrix

Let Y ∈ R
n×n be a symmetric random matrix and M,Σ and Ψ are n× n

constant matrices such that the commutative relation ΣΨ = ΨΣ holds. If

the n(n+ 1)/2× 1 vector vecp (Y) formed from Y is distributed as

Nn(n+1)/2,1

(
vecp (M) ,BT

n (Σ⊗Ψ)Bn

)
, then Y is said to have a

symmetric matrix variate Gaussian distribution with mean M and

covariance matrix BT
n (Σ⊗Ψ)Bn and its pdf is given by

pY (Y) = (2π)−n(n+1)/4det
{

BT
n (Σ⊗Ψ)Bn

}
−1/2

etr

{
−1

2
Σ−1(Y − M)Ψ−1(Y

(3)

This distribution is usually denoted as

Y = YT ∼ SNn,n

(
M,BT

n (Σ⊗Ψ)Bn

)
.

For a symmetric matrix Y ∈ R
n×n, vecp (Y) is a n(n+ 1)/2-dimensional

column vector formed from the elements above and including the

diagonal of Y taken columnwise. The elements of the translation matrix

Bn ∈ R
n2

×n(n+1)/2 are given by

(Bn)ij,gh =
1

2
(δigδjh + δihδjg) , i ≤ n, j ≤ n, g ≤ h ≤ n (4)

where δij is the usual Kronecker’s delta.
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Wishart matrix

A n× n symmetric positive definite random matrix S is said to have a
Wishart distribution with parameters p ≥ n and Σ ∈ R

+
n , if its pdf is given

by

pS (S) =

{
2

1

2
np Γn

(
1

2
p

)
det {Σ}

1

2
p

}
−1

|S| 12 (p−n−1)etr

{
−1

2
Σ−1S

}
(5)

This distribution is usually denoted as S ∼ Wn(p,Σ).
Note: If p = n+ 1, then the matrix is non-negative definite.

Wishart distribution is the most important distribution for structural

dynamics due to it symmetry and nonnegative definite property.
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Matrix variate gamma distribution

A n× n symmetric positive definite random matrix W is said to have a
matrix variate gamma distribution with parameters a and Ψ ∈ R

+
n , if its

pdf is given by

pW (W) =
{
Γn (a) det {Ψ}−a

}
−1

det {W}a−
1

2
(n+1)

etr {−ΨW} ;

ℜ(a) > 1

2
(n− 1) (6)

This distribution is usually denoted as W ∼ Gn(a,Ψ).

Comparing this distribution with the Wishart distribution, we have

Gn(a,Ψ) = Wn(2a,Ψ
−1/2). The main difference between the gamma

and the Wishart distribution is that originally only integer values were

considered for the shape parameter p in the Wishart distribution.

From an analytical point of view the gamma and the Wishart distributions

are identical.
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Distribution of the system matrices

The distribution of the random system matrices M, C and K should be such

that they are

symmetric

positive-definite, and

the moments (at least first two) of the inverse of the dynamic stiffness
matrix D(ω) = −ω2M + iωC + K should exist ∀ω. This ensures that the

moments of the response exist for all frequency values.

S. Adhikari (Swansea) D2: Uncertainty quantification in Structural Dynamics January 2020, CSU, Changsha 13



Maximum Entropy Distribution

Suppose that the mean values of M, C and K are given by M0, C0 and K0

respectively. Using the notation G (which stands for any one the system

matrices) the matrix variate density function of G ∈ R
+
n is given by

pG (G) : R+
n → R. We have the following constrains to obtain pG (G):

∫

G>0

pG (G) dG = 1 (normalization) (7)

and

∫

G>0

G pG (G) dG = G0 (the mean matrix) (8)
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Further constraints

Suppose that the inverse moments up to order ν of the system matrix

exist. This implies that E
[∥∥∥G

−1
∥∥∥
F

ν]
should be finite. Here the Frobenius

norm of matrix A is given by ‖A‖F =
(
Trace

(
AAT

))1/2

.

Taking the logarithm for convenience, the condition for the existence of
the inverse moments can be expresses by

E
[
ln det {G}−ν

]
< ∞

We extend the maximum entropy principle to matrix variate distribution to

obtain the density of the matrices

This requires calculus of variation on matrix quantities
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Maximum entropy distribution

The Lagrangian becomes:

L
(
pG

)
= −

∫

G>0

pG (G) ln
{
pG (G)

}
dG+

(λ0 − 1)

(∫

G>0

pG (G) dG − 1

)
− ν

∫

G>0

ln det {G} pG dG

+Trace

(
Λ1

[∫

G>0

G pG (G) dG − G0

])
(9)

Note: ν cannot be obtained uniquely!

Using the calculus of variation

∂L
(
pG

)

∂pG
= 0

or − ln
{
pG (G)

}
= λ0 +Trace (Λ1G)− ln det {G}ν

or pG (G) = exp {−λ0}det {G}ν etr {−Λ1G}
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Maximum entropy distribution

Using the matrix variate Laplace transform

(T ∈ Rn,n,S ∈ Cn,n, a > (n+ 1)/2)

∫

T>0

etr {−ST}det {T}a−(n+1)/2
dT = Γn(a)det {S}−a

and substituting pG (G) into the constraint equations it can be shown that

pG (G) = r−nr {Γn(r)}−1
det {G0}−r

det {G}ν etr
{
−rG0

−1
G
}

(10)

where r = ν + (n+ 1)/2.

Comparing it with the Wishart distribution we have: If ν-th order

inverse-moment of a system matrix G ≡ {M,C,K} exists and only the
mean of G is available, say G0, then the maximum-entropy pdf of G

follows the Wishart distribution with parameters p = (2ν + n+ 1) and
Σ = G0/(2ν + n+ 1), that is G ∼ Wn (2ν + n+ 1,G0/(2ν + n+ 1)).
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Properties of the distribution

Covariance tensor of G:

cov (Gij , Gkl) =
1

2ν + n+ 1

(

G0ik
G0jl

+G0il
G0jk

)

Normalized standard deviation matrix

δ
2

G =
E
[

‖G − E [G] ‖2
F

]

‖E [G] ‖2
F

=
1

2ν + n+ 1

{

1 +
{Trace (G0)}

2

Trace
(

G0
2
)

}

δ2G ≤
1 + n

2ν + n+ 1
and ν ↑ ⇒ δ2

G
↓.
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Wishart random matrix approach

Suppose we ‘know’ (e.g, by measurements or stochastic finite element
modeling) the mean (G0) and the (normalized) standard deviation (δG) of

the system matrices:

δ2G =
E
[
‖G − E [G] ‖2F

]

‖E [G] ‖2F
. (11)

This is known as the dispersion parameter.

The parameters of the Wishart distribution can be identified using the
expressions derived before.

Samples from the Wishart distribution can be drawn and MCS can be

sued to obtain system response and eigensolutions.

We consider some strategies for reduced computational approaches.
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Stochastic dynamic response

Taking the Laplace transform of the equation of motion:

[
s2M + sC + K

]
q̄(s) = f̄(s) (12)

The aim here is to obtain the statistical properties of q̄(s) ∈ C
n when the

system matrices are random matrices.

The system eigenvalue problem is given by

Kφj = ω2
jMφj , j = 1, 2, . . . , n (13)

where ω2
j and φj are respectively the eigenvalues and mass-normalized

eigenvectors of the system.

We form the truncated undamped modal matrices m ≤ n

Ω = diag [ω1, ω2, . . . , ωm] and Φ = [φ1,φ2, . . . ,φm] . (14)

so that ΦT KΦ = Ω2 and ΦT MΦ = Im (15)
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Stochastic dynamic response

Transforming it into the reduced modal coordinates:

[
s2Im + sC′ +Ω2

]
q̄′ = f̄

′

(16)

Here

C
′ = ΦTCΦ = 2ζΩ, q̄ = Φq̄′ and f̄

′

= ΦT f̄ (17)

When we consider random systems, the matrix of eigenvalues Ω2 will be

a random matrix of dimension m. Suppose this random matrix is denoted
by Ξ ∈ R

m×m:

Ω2 ∼ Ξ (18)
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Stochastic dynamic response

Since Ξ is a symmetric and positive definite matrix, it can be diagonalized

by a orthogonal matrix Ψr such that

ΨT
r ΞΨr = Ω2

r (19)

Here the subscript r denotes the random nature of the eigenvalues and

eigenvectors of the random matrix Ξ.

Recalling that ΨT
r Ψr = Im we obtain

q̄′ =
[
s2Im + sC′ +Ω2

]−1
f̄
′

(20)

= Ψr

[
s2Im + 2sζΩr +Ω2

r

]−1
ΨT

r f̄
′

(21)
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Stochastic dynamic response

The response in the original coordinate can be obtained as

q̄(s) = Φq̄′(s) = ΦΨr

[
s2In + 2sζΩr +Ω2

r

]−1
(ΦΨr)

T f̄(s)

=

m∑

j=1

xT
rj f̄(s)

s2 + 2sζjωrj + ω2
rj

xrj .

Here

Ωr = diag [ωr1 , ωr2 , . . . , ωrm ] , Xr = ΦΨr = [xr1 , xr2 , . . . , xrm ]

are respectively the matrices containing random eigenvalues and

eigenvectors of the system.

Conventional modal truncation has been applied to reduce the system.
This will lead to a smaller random eigenvalue problem to be solved.
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Parameter-selection of Wishart matrices

Approach 1: M and K are fully correlated Wishart (most complex). For this

case M ∼ Wn(pM ,ΣM ), K ∼ Wn(pK ,ΣK) with E [M] = M0 and E [K] = K0.

This method requires the simulation of two n× n fully correlated Wishart
matrices and the solution of a n× n generalized eigenvalue problem with two

fully populated matrices.

Here

ΣM = M0/pM , pM =
γM + 1

δM
(22)

and ΣK = K0/pK , pK =
γK + 1

δK
(23)

γG = {Trace (G0)}2/Trace
(

G0
2
)

(24)
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Parameter-selection of Wishart matrices

Approach 2: Scalar Wishart (most simple) In this case it is assumed that

Ξ ∼ Wm

(
p,

a2

n
Im

)
(25)

Considering E [Ξ] = Ω2
0 and δΞ = δH the values of the unknown parameters

can be obtained as

p =
1 + γH
δ2H

and a2 = Trace
(
Ω2

0

)
/p (26)
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Parameter-selection of Wishart matrices

Approach 3: Diagonal Wishart with different entries (something in the middle).
For this case Ξ ∼ Wm

(
p,Ω2

0/θ
)

with E
[
Ξ−1

]
= Ω−2

0 and δΞ = δH . This

requires the simulation of one n× n uncorrelated Wishart matrix and the
solution of an n× n standard eigenvalue problem.

The parameters can be obtained as

p = m+ 1 + θ and θ =
(1 + γH)

δ2H
− (n+ 1) (27)
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Parameter-selection of Wishart matrices

Defining H0 = M0
−1K0, the constant γH :

γH =
{Trace (H0)}2

Trace
(

H0
2
) =

{
Trace

(
Ω2

0

)}2

Trace
(
Ω4

0

) =

(∑
j ω

2
0j

)2

∑
j ω

4
0j

(28)

Obtain the dispersion parameter of the generalized Wishart matrix

δ2H =

(
pM

2 + (pK − 2− 2n) pM + (−n− 1) pK + n2 + 1 + 2n
)
γH

pK (−pM + n) (−pM + n+ 3)

+
pM

2 + (pK − 2n) pM + (1− n) pK − 1 + n2

pK (−pM + n) (−pM + n+ 3)
(29)
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Summary of the method

A step-by-step method for implementing the new computational approach in

conjunction with any general purpose finite element software is given below:

Form the deterministic mass and stiffness matrices M0 and K0 using the

standard finite element method and the modal damping factors ζj . Select
the number of modes m < n. The number of modes to be retained, m
should be selected based on the frequency of excitation.

Solve the deterministic undamped eigenvalue problem

K0φ0j = ω2
0jM0φ0j , j = 1, 2, . . . ,m (30)

and create the matrix

Φ0 =
[
φ01 ,φ02 , . . . ,φ0m

]
∈ R

n×m (31)

Calculate the ratio

γH =




m∑

j=1

ω2
0j




2

/

m∑

j=1

ω4
0j (32)

Obtain the dispersion parameters δM and δK corresponding to the mass

and stiffness matrices. This can be obtained from physical or computer
experiments.
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Summary of the method

Obtain the dispersion parameter of the generalized Wishart matrix H

δ2H =

(
pM

2 + (pK − 2− 2n) pM + (−n− 1) pK + n2 + 1 + 2n
)
γH

pK (−pM + n) (−pM + n+ 3)

+
pM

2 + (pK − 2n) pM + (1− n) pK − 1 + n2

pK (−pM + n) (−pM + n+ 3)
(33)

where

pM =
1

δ2M

{
1 + {Trace (M0)}2/Trace

(
M0

2
)}

(34)

and pK =
1

δ2K

{
1 + {Trace (K0)}2/Trace

(
K0

2
)}

(35)

Calculate the parameters

θ =
(1 + γH)

δ2H
− (m+ 1) and p = [m+ 1 + θ] (36)

where p is approximated to the nearest integer of m+ 1 + θ.
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Summary of the method

Create an m× p matrix Y such that

Yij = ω0i Ŷij/
√
θ; i = 1, 2, . . . ,m; j = 1, 2, . . . , p (37)

where Ŷij are independent and identically distributed (i.i.d.) Gaussian

random numbers with zero mean and unit standard deviation.

Simulate the m×m Wishart random matrix

Ξ = YYT or Ξij =
ω0iω0j

θ

p∑

k=1

ŶikŶjk; i = 1, 2, . . . ,m; j = 1, 2, . . . ,m

(38)
Since Ξ is symmetric, only the upper or lower triangular part need to be

simulated.

Solve the symmetric eigenvalue problem (Ωr,Ψr ∈ R
m×m) for every

sample
ΞΨr = Ω2

rΨr (39)

and obtain the random eigenvector matrix

Xr = Φ0Ψr = [xr1 , xr2 , . . . , xrm ] ∈ R
n×m (40)
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Summary of the method

Finally calculate the dynamic response in the frequency domain as

q̄r(iω) =

m∑

j=1

xT
rj f̄(s)

−ω2 + 2iωζjωrj + ω2
rj

xrj (41)

The samples of the response in the time domain can also be obtained
from the random eigensolutions as

qr(t) =

m∑

j=1

arj(t)xrj ,

where arj (t) =
1

ωrj

∫ t

0

xT
rj f(τ)e−ζjωrj

(t−τ) sin
(
ωrj(t− τ)

)
dτ (42)
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Identification of the dispersion parameters - 1

The dispersion parameter is related to the first and second moments of

eigenvalues

δ2G =

∑n
j=1 E

[
λ2
j

]
∑n

j=1 E [λj ]
2 − 1 (43)

so that, if information on the eigenvalues of the system is available, the

dispersion parameter can be retrieved.

Suppose the standard deviation of each eigenvalue is σj and mean of

each eigenvalue is λj . Therefore E [λj ] = λj and E
[
λ2
j

]
= σ2

j + λ
2

j

Suppose the standard deviation is expressed as a fraction of the
respective mean values σj = ǫjλj .

Using these and applying modal truncation, from Eq. (43) we have

δ2G =

∑m
j=1 λ

2

jǫ
2
j

∑m
j=1 λ

2

j

(44)

This can be measured from experiments.
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Identification of the dispersion parameters- 1

The dispersion parameter for the mass matrix can be obtained as

pM =
(n+ 1)

∑n
j=1 E [λj ]∑n

j=1 E [λj ]− Trace
(
(M)−1/2K(M)−1/2

) (45)

The dispersion parameter for the stiffness matrix can be obtained as

pK =
(pM − n− 1)3T 2

1 + (pM − n+ 3)(T2)

(n1 − pM )T 2
1 + (pM − n)T2((pM − n)(pM − n− 3)(δ2G − 1)− 1)

(46)

with

T1 = Trace
(
(M)−1K

)
and T2 = Trace

(
((M)−1K)2

)
. (47)
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Identification of the dispersion parameters- 2

We assume that the matrix G(θ) = {K(θ), M(θ)} can be expanded as

G(θ) = G0 + ǫG

M∑

j=1

ξGj
(θ)Gj (48)

Substituting this expansion in the expression of the dispersion parameter

one has

δ2G =

E

[∥∥∥ǫG
∑M

j=1 ξGj
(θ)Gj

∥∥∥
2

F

]

‖E [G] ‖2F
(49)

Because the matrices Gj are symmetric, using the definition of Frobenius

norm, from Eq. (49) we have

δ2G =
E
[
Trace

(
(ǫG

∑M
j=1 ξGj

(θ)Gj)(ǫG
∑M

k=1 ξGk
(θ)Gk)

)]

‖G0 ‖2F
(50)
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Identification of the dispersion parameters- 2

Since both trace and expectation operators are linear they can be
swaped. Doing this we obtain

δ2G =
ǫ2GTrace

(
E
[
(
∑M

j=1

∑M
k=1 ξGj

(θ)ξGk
(θ)GjGk)

])

‖G0 ‖2F
(51)

Recalling that the matrices Gj are not random and {ξG1
(θ), ξG2

(θ), . . . } is
a set of uncorrelated random variables with zero mean and

E
[
ξGj

(θ)ξGk
(θ)

]
= δjk, we have

δ2G =
ǫ2GTrace

(
(
∑M

j=1

∑M
k=1 E

[
ξGj

(θ)ξGk
(θ)

]
GjGk)

)

‖G0 ‖2F

=
ǫ2GTrace

(
(
∑M

j=1 G
2
j )
)

‖G0 ‖2F

(52)
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Identification of the dispersion parameters- 2

In the above expressions, the uncorrelated nature of the random
variables allowed us to transform the double summation into a single

summation. Finally, as trace and sum operators can be interchanged and

Trace
(

G
2
j

)
= ‖Gj‖2F, we have

δ2G = ǫ2G

∑M
j ‖(Gj)‖2F
‖G0 ‖2F

(53)

This result allows one to obtain the dispersion parameter using the

stochastic finite element, therefore avoiding the direct Monte Carlo
simulation. This expression also relates the stochastic finite element and

random matrix theory.

δM and δK obtained in this way can be used in (34) and (35) for the

simulation of the random matrices.
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A vibrating cantilever plate
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assumed for all the modes.
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Physical properties

Plate Properties Numerical values

Length (Lx) 998 mm

Width (Ly) 530 mm
Thickness (th) 3.0 mm

Mass density (ρ) 7860 kg/m3

Young’s modulus (E) 2.0× 105 MPa
Poisson’s ratio (µ) 0.3

Total weight 12.47 kg

Material and geometric properties of the cantilever plate consid-

ered for the experiment. The data presented here are available
from http://engweb.swan.ac.uk/∼adhikaris/uq/.
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Uncertainty type 1: random fields

The Young’s modulus, Poissons ratio, mass density and thickness are random

fields of the form

E(x) = Ē (1 + ǫEf1(x)) (54)

µ(x) = µ̄ (1 + ǫµf2(x)) (55)

ρ(x) = ρ̄ (1 + ǫρf3(x)) (56)

and t(x) = t̄ (1 + ǫtf4(x)) (57)

The strength parameters: ǫE = 0.15, ǫµ = 0.15, ǫρ = 0.10 and ǫt = 0.15.

The random fields fi(x), i = 1, · · · , 4 are delta-correlated homogenous
Gaussian random fields.
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Uncertainty type 2: random attached oscillators

Here we consider that the baseline plate is ‘perturbed’ by attaching 10

oscillators with random spring stiffnesses at random locations

This is aimed at modeling non-parametric uncertainty.

This case will be investigated experimentally later.
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Mean of cross-FRF: Utype 1
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Error in the mean of cross-FRF: Utype 1
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Standard deviation of driving-point-FRF: Utype 1
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Error in the standard deviation of driving-point-FRF: Utype 1
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Mean of cross-FRF: Utype 2

0 500 1000 1500 2000 2500 3000 3500 4000
−180

−160

−140

−120

−100

−80

−60

Frequency (Hz)

M
ea

n 
of

 a
m

pli
tu

de
 (d

B)

 

 

M and K are fully correlated Wishart
Scalar Wishart
Diagonal Wishart with different entries
Direct simulation

Mean of the amplitude of the response of the cross-FRF of the

plate, n = 1200, σM = 0.133 and σK = 0.420.

S. Adhikari (Swansea) D2: Uncertainty quantification in Structural Dynamics January 2020, CSU, Changsha 45



Error in the mean of cross-FRF: Utype 2
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Standard deviation of driving-point-FRF: Utype 2
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Error in the standard deviation of driving-point-FRF: Utype 2
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A cantilever plate: front view

The test rig for the cantilever plate; front view.
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A cantilever plate: side view

The test rig for the cantilever plate; side view.
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Comparison of driving-point-FRF
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Comparison of Cross-FRF
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Comparison of driving-point-FRF

0 500 1000 1500 2000 2500 3000 3500 4000
10

−2

10
−1

10
0

10
1

Re
lat

ive
 st

an
da

rd
 de

via
tio

n

Frequency (Hz)

 

 

M and K are fully correlated Wishart
Scalar Wishart
Diagonal Wishart with different entries
Experiment

Comparison of relative standard deviation of the amplitude
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proaches for the plate with randomly attached oscillators
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Comparison of Cross-FRF
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Role of vibration frequency on uncertainty modelling

For low- frequency vibration problems (longer wavelength), parametric

uncertainty model is normally used.

Random field or random variables can be used to model uncertain

parameters and stochastic finite element method can be used to

propagate uncertainty.

For high-frequency vibration problems (shorter wavelength),

nonparametric uncertainty model is normally used.

Random matrix model, such as those based on Wishart random

matrices, can be used for this purpose.

In majority of practical engineering problems, one expects a mixture of

wavelengths.
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Multifrequency dynamics

Complex dynamic structures such as aircrafts, helicopters contain several

substructures.

For a given frequency of excitation, the wavelength of vibration in different
substructures can be significantly different.

For example, in the context of an aircraft fuselage, the ring girders will
have significantly longer wavelength of vibration compared to the thin

panel for a given frequency of excitation.
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Multifrequency dynamics
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Multifrequency dynamics

(a) Aircraft fusulage (b) Car body
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Parametric uncertainty: low-frequency vibration problem

Fist few vibration modes (typically few tens) are participating in the
dynamical response of interest

Uncertainty models aim to characterise parametric uncertainty (type ‘a’)

Random variable or random field models are used to represent uncertain

parameters

Well established methods such as stochastic finite element method

(polynomial chaos, perturbation methods, spectral method) exist in

literature

A system matrix can be expressed as

A(θ1) = A0 +

M∑

i=1

ξi(θ1)Ai

A0: baseline model, ξi(θ1): random variables
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Non-parametric uncertainty: high-frequency vibration problem

Many vibration modes are (in hundreds) participating in the dynamical

response of interest

Uncertainty models aim to characterise non-parametric uncertainties
(type ‘b-d’)

Random matrix models can be used to represent uncertain system
matrices

A system matrix can be expressed as

A = Wn(δA,A0)

A0: baseline model, δA: dispersion parameter, Wn: Wishart random

matrix of dimension n.
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Domain decomposition method

Developed to solve a boundary value problem by splitting it into smaller

boundary value problems on subdomains

The problems on the subdomains are independent, which makes domain

decomposition methods suitable for parallel computing

Originally developed for numerical solution of partial differential equations
(not explicitly for uncertainty quantification)

Excellent and powerful computational tools are available
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Domain decomposition method

Long wavelength

Small wavelength

Domain 1

Domain 2

Longwavelength: domain 1

shortwavelength: domain 2

Domain 1: A(θ1) = A0 +
∑M

i=1 ξi(θ1)Ai (dimension n1) - parametric

uncertainty

Domain 2: A(θ2) = Wn2
(δA,A0) (dimension n2) - nonparametric uncertainty
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Two subdomains

The equation of motion of a linear dynamic system in the frequency domain is

A(ω)u = f (58)

where the dynamic stiffness matrix over the whole domain Ω, A(ω) is given by

A(ω) = −ω2M+ iωC+K ∈ C
n (59)

We aim to subdivide the domain Ω into two nonoverlapping domains.
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Two subdomains

The region Ω partitioned into two nonoverlapping subdomains Ω1 and Ω2 as
below

The equilibrium equation of the system can be partitioned as





[A1

II ]m1×m1
0 [A1

IΓ]m1×mΓ

0 [A2

II ]m2×m2
[A2

IΓ]m2×mΓ

[A1

ΓI ]mΓ×m1
[A2

ΓI ]mΓ×m2
[A1

ΓΓ +A
2

ΓΓ]m2×m2



× (60)







u
1

I

u
2

I

uΓ







=







f
1

I

f
2

I

f
1

Γ + f
2

Γ






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Equilibrium equations

The above equilibrium equation can be rearranged into following explicit forms

(interior and interface problems):

[A1
II ]{u1

I} = {f1I } − [A1
IΓ]{uΓ} (61)

[A2
II ]{u2

I} = {f2I } − [A2
IΓ]{uΓ} (62)

[[A1
ΓΓ]− [A1

ΓI ][A
1
II ]

−1[A1
IΓ]︸ ︷︷ ︸

S1

+ [A2
ΓΓ]− [A2

ΓI ][A
2
II ]

−1[A2
IΓ]︸ ︷︷ ︸

S2

]{uΓ} (63)

= [{f1Γ} − [A1
ΓI ][A

1
II ]

−1]{f1I }︸ ︷︷ ︸
F1

] + [{f2Γ} − [A2
ΓI ][A

2
II ]

−1]{f2I }︸ ︷︷ ︸
F2

]

The coefficient matrix S = S1 + S2 is known as the Schur complement matrix.
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Stochastic domain decomposition

We have two system matrices. For the domain with parametric uncertainty
(long wavelength scale):

[A1(θ1)]n1×n1
=

[
A1

II(θ1) A1
IΓ(θ1)

A1
ΓI(θ1) A1

ΓΓ(θ1)

]
= A1

0 +

M∑

i=1

ξi(θ1)A
1
i (64)

with n1 = m1 +mΓ.
For the domain with nonparametric uncertainty (short wavelength scale):

A2(θ2)n2×n2
=

[
A2

II(θ2) A2
IΓ(θ2)

A2
ΓI(θ2) A2

ΓΓ(θ2)

]
= Wn2

(δA2
,A2

0) (65)

with n2 = m2 +mΓ.
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Stochastic interface problem

For the stochastic interface problem we have a system of (densely) coupled
mΓ complex stochastic equations

[S1(θ1) + S2(θ2)]uΓ(θ1, θ2) = F1(θ1) + F2(θ2) (66)

where

S1(θ1) = A1
ΓΓ(θ1)− A1

ΓI(θ1)[A
1
II(θ1)]

−1A1
IΓ(θ1) (67)

F1(θ1) = f
1
Γ − A1

ΓI(θ1)[A
1
II(θ1)]

−1f
1
I (68)

and

S2(θ2) = A2
ΓΓ(θ2)− A2

ΓI(θ2)[A
2
II(θ2)]

−1A2
IΓ(θ2) (69)

F2(θ2) = f
2
Γ − A2

ΓI(θ2)[A
2
II(θ2)]

−1f
2
I (70)
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Stochastic interior problems

Solving the interface problem we have uΓ(θ1, θ2). This can used to obtain the

interior solutions as

u1
I(θ1, θ2) = [A1

II(θ1)]
−1[f1I − A1

IΓ(θ1)uΓ(θ1, θ2)] (71)

u2
I(θ1, θ2) = [A2

II(θ1)]
−1[f2I − A2

IΓ(θ1)uΓ(θ1, θ2)] (72)

The most computationally intensive parts of the solution process is obtaining

[A1
II(θ1)]

−1 and [A2
II(θ1)]

−1 which involves the solution of m1 and m2 number
of coupled complex stochastic equations.

Existing computational methods for uncertainty propagation can be used.
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Stochastic interior problems

Recall that in the frequency domain

AII(ω, θ) = −ω2MII(θ) + iωCII(θ) + KII(θ) (73)

Assuming proportional damping model, we have

[AII(ω, θ)]
−1 =

m∑

k=1

φk(θ)φ
T
k (θ)

ω2
k(θ)− ω2 + 2iζkωk(θ)

(74)

Here ζk are the modal damping factors and the eigenvalues are eigenvectors

are obtained from

KII(θ)φk(θ) = ω2
kMII(θ)φk(θ), k = 1, 2, · · · (75)

Any existing methods for random eigenvalue problem can be used

(perturbation, polynomial chaos, Neumann series . . .).
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An Euler-Bernoulli beam example

Two coupled Euler-Bernoulli beams with stochastic elasticity are
considered

x

z

L1 = 1, EI10 = 1/3, ρA1 = π2/12, ζ1 = 0.04

L2 = L1, EI20 = EI10/10
3, ρA2 = ρA1, ζ2 = ζ1/2

We study the deflection of the beam under the action of a point harmonic

load on the interior of beam 1.

S. Adhikari (Swansea) D2: Uncertainty quantification in Structural Dynamics January 2020, CSU, Changsha 70



Natural frequencies
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Due to the difference in the stiffness values, beam 1 has less number of

frequencies compared to beam 2 within a given frequency range.
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Frequency response
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Beam 1
Beam 2

Frequency response functions of the two beams in isolation (in cantilever

configuration with a point load at the end).
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Stochastic models

The bending modulus of the first beam is modelled by two Gaussian

random variables (a discretised random field with standard deviation

σa = 0.2). The stiffness matrix is of the form

K1(θ1) = K0 + ξ1(θ1)K
1
1 + ξ2(θ1)K

1
2

For the second beam, an Wishart random matrix model with δ = 0.2 is

considered.

The mass matrix and the damping factors are deterministic for both the

beams.

First-order perturbation is used for the interior random eigenvalue

problems. 1000-sample Monte Carlo sample is used to for the interface

problem.

For the numerical calculation we used n1 = 60, n2 = 328. In the domain

decomposition approach, m1 = 58, m2 = 336 and mΓ = 2.
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Stochastic response - driving point
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Response statistics of the stochastic multiscale system at the driving point.
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Stochastic response - tip point

0 5 10 15 20 25 30
−100

−80

−60

−40

−20

0

20

Frequency (Hz)

Am
pl

itu
de

 (d
B)

 o
f F

R
F 

at
 p

oi
nt

 2

 

 

Mean
Standard deviation

Response statistics of the stochastic multiscale system at the tip.
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