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Overview of the course

The course is dived into eight topics:
@ Introduction to probabilistic models & dynamic systems
@ Stochastic finite element formulation
@ Numerical methods for uncertainty propagation
@ Spectral function method
@ Parametric sensitivity of eigensolutions
@ Random eigenvalue problem in structural dynamics
© Random matrix theory - formulation
@ Random matrix theory - application and validation
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Outline of this talk

o

o
o

o

Parametric sensitivity of eigensolutions
o Derivative of eigenvalues
o Derivative of eigenvectors

Statistics of the eigensolutions

Higher order perturbation
@ Eigenvalue statistics using theory of quadratic forms

Asymptotic integral method
@ Multidimensional integrals in unbounded domains
@ Calculation of an arbitrary moment of the eigenvalues
9 Probability density function of the eigenvalues
@ Truncated Gaussian density function
@ Approximation by x2 probability density function
9 Application examples
@ A two DOF system
o A three DOF system with closely spaced eigenvalues
@ Case 1: All eigenvalues are well separated
@ Case 2: Two eigenvalues are close
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Parametric sensitivity of the eigensolutions

@ Changes of the eigenvalues and eigenvectors of a linear vibrating system
due to changes in system parameters are of wide practical interest.

@ Motivation for this kind of study arises, on one hand, from the need to
come up with effective structural designs without performing repeated
dynamic analysis, and, on the other hand, from the desire to visualise the
changes in the dynamic response with respect to system parameters.

@ This kind of sensitivity analysis of eigenvalues and eigenvectors has an
important role to play in the area of fault detection of structures and
modal updating methods.

@ Rates of change of eigenvalues and eigenvectors are useful in the study
of bladed disks of turbomachinery where blade masses and stiffness are
nearly the same, or deliberately somewhat altered (mistuned), and one
investigates the modal sensitivities due to this slight alteration.

o Eigensolution derivatives also constitute a central role in the analysis of
stochastically perturbed dynamical systems.
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Parametric sensitivity of the eigensolutions

@ The eigenvalue problem of undamped or proportionally damped systems
can be expressed by
KXx)p; = \;M(x)¢; (1)
© Here )\; and ¢; are the eigenvalues and the eigenvectors of the dynamic
system. M(x) : R™ — R"*" and K(x) : R™ — R"*", the mass and
stiffness matrices, are assumed to be smooth, continuous and at least
twice differentiable functions of a random vector x € R™.

@ The vector x may consist of material properties, e.g., mass density,
Poisson’s ratio, Young’s modulus; geometric properties, e.g., length,
thickness, and boundary conditions.

@ The eigenvalues and eigenvectors are smooth differentiable functions of
the random parameter vector x.
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Parametric sensitivity of the eigenvalues

@ We rewrite the eigenvalue equation as
K—A\M]¢; =0 (2)
or ¢ [K—X\;M] (3)
The functional dependence of x is removed for notational convenience.

@ Differentiating the eigenvalue equation (2) with respect to the element z;
of the parameter vector we have

oK 0\ oM O¢;
[&’Ei B ale_)\Ja_:| ¢j+[K—/\]M] ox; =0 (4)

@ Premultiplying by ¢, we have

r[OK 9N . OM Toe 2P _
¢j {&rl 8xiM /\] 0x; ¢j+¢j [K /\]M] 0x; =0 (5)
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Parametric sensitivity of the eigenvalues

@ Using the identity in (3) we have

r[0K 0N OM B
K M
o, b [g—mi — A gm} b
or —= = = (7)
Oz ¢; Mo,

@ Note that when the modes are mass normalised ¢>JTM¢>j =1

@ The derivatives need to be evaluated at certain value x. It is customary to
evaluate this at the nominal value (which is normally the mean value if x
is a random vector).

@ Denote the mean of x as u € R™, and consider that

M(p) =My, and K(p) =Ko (8)

are the ‘deterministic parts’ of the mass and stiffness matrices
respectively.
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Parametric sensitivity of the eigenvalues

@ The deterministic part of the eigenvalues:

oy = N (1) (9)
is obtained from the deterministic eigenvalue problem:
Ko ¢’0j = /\Oj M, ¢0j- (10)

@ Using these, the derivative at the mean/nominal point can be obtained as

O\ oK
o =0, |5 =0 5 0 (1)

@ Consider the standard expansion of the stiffness and mass matrices
mg
=Ko+ > xK; and M(x M0+le ; (12)

where m = myg +muy
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Parametric sensitivity of the eigenvalues

@ Therefore

M
ZKi,iEmK and 0 ZMi,iemM (13)
Ox; Ox;
@ Using these, the eigenvalue derive can be obtained succinctly as
O\
8; = ¢o," [Ki — Ao, M;] ¢, (14)

@ Each eigenvalues can be expanded in a Taylor series about the mean of
the parameter values as

(%)~ Aj(a) +dT (@) (x— @) + % (x— )" Dy, () (X — a) +--- (15)

@ Without any loss of generality, considering the mean of x is zero and
retaining only the first order terms we have

A0 % X, + D (0,7 [Ki = 20, M) ¢, ) 24 (16)
=1
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Parametric sensitivity of the eigenvectors

@ Different methods have been developed to calculate the derivatives of the
eigenvectors. One of these methods expands the derivative of
eigenvectors as a linear combination of the eigenvectors

0p; &
Ty = 2 irdr (17)

r=1
It is necessary to find expressions for the constant «;;, for all
r=1,2,---n.

@ Substituting this in Eq. (4) we have

{8K O\

oM "

@ Premultiplying by ¢} we have

¢Z[8K—%

oM L -
dx;  Om; )\73_3;1,] é; + ; or (K= X\M]ajirp, =0 (19)
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Parametric sensitivity of the eigenvectors

@ We consider » = k and the orthogonality of the eigenvectors:
¢i Ko, = Ny and M@, = 5y, (20)
@ Using these we have

oK
br [

oM

@ From this we obtain

b [35 - Ajg—m 2
pYy !

VE#j (22)

Qjike = —
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Parametric sensitivity of the eigenvectors

o To obtain the j-th term «;;; we differentiate the mass orthogonality
relationship in (20) as

AP M) _ 8@

oM
T

¢+¢>TM8¢) =0 (23)

M¢> to55

@ Considering the symmetry of the mass matrix and using the expansion of
the eigenvector derivative we have

T8M 7an 0P, 7 OM
é; ¢> +2¢; M— =0 or Tzlw Moy, = — ) 8—@@ (24)
@ Ultilising the othonormality of the mode shapes we have
oM
Qjij = ¢T ?; (25)

7 Ox;
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Parametric sensitivity of the eigenvectors

@ The complete eigenvector derivative is therefore given by

M
0 7 OM bk |:8w1 Aj gmt} b;
10t - +k_% e (26)

@ Considering the conventional expansion of the mass and stiffness
matrices, the derivative at the mean values of the parameter can be

obtained as
09, T ¢0k [ )\OJ } ¢07
5o = 5 (60 Md0,) on, + > N o P @D

k=1#£j

@ Considering the mean of x is zero and retaining only the first order terms
we have

"~ 0,
X) ~ ¢0j + Z 8 ¢)OJ + Z <Z ajlk:d)ok) (28)
i=1 =1 =
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Covariance of the eigensolutions

@ Suppose X, is the ir-th element of the covariance matrix, that is
Yir = cov (z;, x,) (29)

@ The covariance of eigenvalue j and s can be obtained as
E (A = Xo;) (As = Xo,)]

= i i (¢0_7T [Ki — Ao, Mi} ¢0j) ((ﬁosT K — Ao, M, ] (ﬁos) Y (30)

i=1r=1

@ The covariance matrix of eigenvector j and s can be obtained as

£ K¢)j B %J) (#: = ¢0,) } ii%k@{ iiajirasrlzir (31)

k=11=1 i=1r=1
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Numerical example

o

o

o

K, My K, My K m, K my L E
§ G “ 8-th
An eight DOF system consisting of a linear array of spring-mass

oscillators is considered

Eight masses, each of nominal mass m, = 1 kg, are connected by
springs of nominal stiffness &, = 10 N/m

It is assumed that the mass and stiffness associated with all the units are
random. Randomness associated with each unit has the following form

Here g;,V;j are assumed to be uncorrelated, identically distributed,
zero-mean, unit-standard-deviation Gaussian random variables (N (0, 1)).
For this assumption, the joint covariance matrix > becomes a diagonal
matrix.
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Numerical example

@ ‘ (b)

Standard deviation

(a) The mean of the natural frequencies (b) Standard deviation of the natural
frequencies; X-axis’ Mode number; ‘— Analytical; *-.-.-- MCS
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Numerical example

@ Numerical values of the ‘strength parameters’, ¢,,,; and ¢, are assumed
to be 0.1, that is, we consider 10% randomness for all the parameter
values.

@ Because the random variables describing the system properties are
assumed to be Gaussian, the mean values are the same as the nominal
values.

@ In the same figure, the mean values obtained from the proposed theory
are compared with the results obtained from an independent Monte Carlo
simulation (MCS) using 5000 samples. Both the curves follow each other
very closely.
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Mode shape statistics
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Mode shape statistics

Mode: 1 Mode: 2
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Higher-order perturbation

@ Higher-order perturbation method can be used to improve upon the
results obtained from the first-order perturbation method

@ Statistical properties of the system are completely described by the joint
probability density function px(x) : R™ — R. For mathematical
convenience we express

px(X) = exp{—L(X)} (33)

where —L(x) is often known as the log-likelihood function.

@ For example, if x is a m-dimensional multivariate Gaussian random
vector with mean p € R™ and covariance matrix X ¢ R™*™ then

L(x) = % In(27) + %ln det {Z} + % X—p) ' = (x—p). (34)

9 Itis assumed that M and K are symmetric and positive definite random
matrices so that all the eigenvalues are real and positive.
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Higher-order perturbation

@ The eigenvalues, \;(x) : R™ — R are non-linear functions of the
parameter vector x.

o If the eigenvalues are not repeated, then each \;(x) is expected to be a
smooth and twice differentiable function since the mass and stiffness
matrices are smooth and twice differentiable functions of the random
parameter vector.

@ In the mean-centered perturbation approach the function A;(x) is
expanded by its Taylor series about the point x = 1 as

A7) = Xy() + () (K — o) + 3 (X~ )" Do, () (X~ ). (35)

o Hered,, (1) e R™ and Dy, () € R™*™ are respectively the gradient
vector and the Hessian matrix of A;(x) evaluated at x = p, that is

{dy (W)}, = M)Ixu (36)

and {Dy,(w)},, = ﬁg")mx:“. (37)
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Higher-order perturbation

@ Providing the eigenvalues are distinct, the element of the Hessian matrix
can be explicitly obtained as

Pr(x) 92K (x) a2M( X)
TN 007 [axk 02 M) } é,(x)
OM(x
~ (0,007 50,0 ) (6,007 65000, )

— (,00m % 0 ) (6,007 G008, 0))

N (6,007 0)0;00) (6,07 Gu(0),(x))
22 30— A0 |

(38)

r=1

@ The elements of the gradient vector and Hessian matrix of the
eigenvalues are therefore completely defined in closed-form.
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The theory of quadratic forms

@ When x is a multivariate Gaussian random vector, the moment
generating function of A;(x), for any s € C, can be obtained from (35) as

M (s) = Blexo (), 001 = [ exp {0 + 0] () (= ) (39)

S (x= @)Dy, (W) (x— )~ L) | dx  (40)

where L(x) is given by equation (34).
@ Using the transformation

+

y=(Xx-p) (41)
the integral in (39) can be evaluated exactly as

My, (s) = (2m)~™/2|| 2|1/ /Rm exp {SXJ‘ + sdipj (n)y
1 _
=Y [B7 =D, (w)] v} dy

exp {sz +2d] (WE[1-sE Dy, ()] Hdy, (u)}

V=535 ()
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The theory of quadratic forms

9 To obtain the pdf of A;(x), the inverse Laplace transform of equation (42)
is required. T

@ If the mean-centered first-order perturbation is used then D, (1) = O
and from equation (42) we obtain

2
M, (s) =~ exp {ij + %dfj ()X dy, (u)} . (43)

@ This implies that \;(x) is a Gaussian random variable with mean A; and
variance d} (1) d, ().

@ However, for second-order perturbations in general the mean of the
eigenvalues is not the deterministic value. The cumulants of A;(x) can be
obtained from

r_ d
ﬁ;‘ ) = @ In M)\j (S)|S:0. (44)
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The theory of quadratic forms

o Here ") is the rth order cumulant of jth eigenvalue and from equation

(42) we have
2
In My, (s) = sh; + %d{j (W) [1- sZ Dy, ()] ' d, (1)
_ %m = sSDy, (). (45)

@ Using this expression and after some simplifications it can be shown that

/i;r) =\ + %Trace (Dy, (w)XE),r =1, (46)
ny) = %!dx,- (1) [Z D, ()] Sy, (1) (47)
+ (r _2 1)!Trace ([Dy, (N)Er) ,7 2> 2. (48)
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The theory of quadratic forms

@ The mean and first few cumulants of the eigenvalues can be explicitly

obtained as

No= R =%+ %Trace (Dy, (1)X) (49)

Var ] = 2 = dT (1) d, () + 5 Trace (D3, (1)5]°) (50)
w? = 301 (1) [ D, ()] B dy, () + Trace ([Da, (1)3]"),

(51)

and (Y = 12d7 (1) [£ Dy, (1)]* £ dy, (1) + 3Trace ([DAj (u)z]“) .

(52)

@ From the cumulants, the raw moments ”jr) = E [\7] and the central
moments u;(r) =E [(\; — A;)"] can be obtained using standard formulae.
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Asymptotic integral method

@ The moments of the eigenvalues are obtained based on an asymptotic
approximation of the multidimensional integral.

@ Consider a function f(x) : R™ — R which is smooth and at least twice
differentiable. Suppose we want to evaluate an integral of the following
form:

T= [, o0 (=100} dx. (53)
This is a m-dimensional integral over the unbounded domain R™.

@ The maximum contribution to this integral comes from the neighborhood
where f(x) reaches its global minimum. Suppose that f(x) reaches its
global minimum at a unique point 8 € R™. Therefore, at x =6

0f(x)
85Ek

=0,Yk or d;(6)=0. (54)
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Higher-order perturbation

@ Using this, f(x) is expanded in a Taylor series about 8 and equation (53)
is rewritten as

J:/Rmexp{—{f(H)—F%(X—0)TDf(0)(X—0)+8(X,0)}} dx

=exp{—f(6) lexp{—% (x—6)"D;(0) (x —0) —s(x,é))} dx

(59)

-

where ¢ (X, 0) is the error if only the terms up to second-order were
retained in the Taylor series expansion.

@ With suitable scaling of x the integral in (53) can be transformed to the so
called ‘Laplace integral’. Under special conditions such integrals can be
well approximated using asymptotic methods.

@ We neglect the error ¢ (x, 8) considering the higher-order derivatives are
small.
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Higher-order perturbation

@ The integral in (55) can be approximated as

J ~exp{—f(0)} Rmexp{—%(x—e)TDf (6) (x—O)} dx.  (56)

If 8 is the global minimum of f(x) in R™, the symmetric Hessian matrix
D, () € R™*™ is also expected to be positive definite.
@ Using the coordinate transformation

¢=(x-0)D;"*(0). (57)
The Jacobian of this transformation is
det {J} = det {D; (8)} /2. (58)

@ Using equation (57), the integral in equation (56) can be evaluated as
_ 1
e (@) [ de (D00 e {5 (¢7¢) L (s

or J~ (21)™ % exp{—f(0)}det {D; (6)} /7. (60)

@ This approximation is expected to yield good result if the minimum of f(x)
around x = @ is sharp. Equation (60) will now be used to obtain moments

Q1 Ine elgenvalu
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Moments of the eigenvalues

@ An arbitrary rth order moment of the eigenvalues can be obtained from
i =B D00] = [ X (x) dx
= / Cexp{—(L(x) —rln);(x))} dx, r=1,2,3---.
(61)
@ The equation can be expressed in the form of equation (53) by choosing
f(X) = L(X) — rIn\;(X). (62)
@ Differentiating the above equation with respect to z;, we obtain

of(x) _ OL(x)  r 0X(x)
833k a 8$k /\j(X) 8J$k ' (63)
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Moments of the eigenvalues

@ The optimal point 6 can be obtained from (54) by equating the above
expression to zero. Therefore at x = 6

9f(x)

—0, Vk (64)
833k
r 0N (0)  OL(6)
W) der ~ o F (65)
or dy, (8)r = A;(0)d.(6). (66)

@ Equation (66) needs to be solved numerically to obtain 6. It implies that
at the optimal point the gradient vectors of the eigenvalues and
log-likelihood function are parallel.

@ The non-linear set of equations (66) have to be solved numerically. Due
to the explicit analytical expression of dy; in terms of the derivative of the
mass and stiffness matrices, expensive numerical differentiation of A;(x)
at each step is not needed.
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Moments of the eigenvalues

@ For most px(x), a closed-form expression of d (x) is available.

9 For example, when x has multivariate Gaussian distribution, L(x) is given
by equation (34). By differentiating this we obtain

d(X) ="' (x—p). (67)
Substituting this in equation (66), the optimal point 6 can be obtained as
1

@ This equation also gives a recipe for an iterative algorithm to obtain 6.
One starts with an initial 8 in the right-hand side and obtains an updated
6 in the left-hand side.

@ This procedure can be continued until the difference between the values
of 6 obtained from both sides of (68) is less than (I, vector norm can be
used to measure the difference) a predefined small value.

@ A good value to start the iteration process is 8 = u, as in the case of
mean-centred approach. Note that the solution of a deterministic
eigenvalue problem is needed at each step of the iteration process.
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Moments of the eigenvalues

@ The elements of the Hessian matrix D (@) can be obtained by
differentiating equation (63) with respect to x;:

PIx LX) ( L NN 1 a%(x)ﬂ)

xry =

85Ek2 aku ?(X 8%[ &rk )\j(X) 85Ek2
82L( X) - 1 r o 0N (X) r o 82)\j(x)x
T 02 r 8xk (x) 83:1 Aj(X)  Ozy? a
(69)
@ At x = 6 we can use equation (65) so that equation (69) reads
82f( X) 0%L(0) 10L(6) OL(0) r o 0%);(0)
_ - — . (7
aku l|x 0~ 8 k2 Tt T 85Ek &rl )\j(a) 85Ek2 o ( O)
@ Combining this equation for all k¥ and [ we have
o 1 T T
D;(6) =DL(6) + ;dL(e)dL(e) X 0) D, (6). (71)

where D), () is defined in equation (37).
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Moments of the eigenvalues

@ Using the asymptotic approximation (60), the rth moment of the
eigenvalues can be obtained as

W7 = (2m)™207(0) exp {~L (8)}

—-1/2
., /

WDM (9)‘

This is perhaps the most general formula to obtain the moments of the
eigenvalues of linear stochastic dynamic systems. The optimal point 8
needs to be calculated by solving non-linear set of equations equation
(66) for each \; and r. Several special cases arising from equation (72)
are of practical interest:

@ Mean of the eigenvalues: The mean of the eigenvalues can be obtained
by substituting » = 1 in equation (72), that is

[D10)+ Tas o) (0" - (72)

;= p{? = (2m)™/2);(8) exp {~L (6)}

det {DL(B) +d.(6)d.(0)" —D,,(6) /Aj(o)}fl/ * L 73)
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Moments of the eigenvalues

@ Central moments of the eigenvalues: Once the mean in known, the

central moments can be expressed in terms of the raw moments ué-r)
using the binomial transform

i =eo-a) ] - S (v o

@ Random vector x has multivariate Gaussian distribution: In this case L(x)
is given by equation (34) and by differentiating equation (67) we obtain

and Dp(x)=X2"" (75)

The optimal point @ can be obtained from equation (66) as

0=p+ %z d,, (6). (76)
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Moments of the eigenvalues

@ Using equation (67) and equation (75), the Hessian matrix can be derived
from equation (71) as

Aj(6)

=y (I + % (0 —p)(6—p)" 2_1> NG

D/ () =57+ 157 (0 ) (6 - w) B~ D, (6)

(77)

@ Therefore, the rth moment of the eigenvalues can be obtained from Eq.
(72) as

W~ 1 (6) exp{—é 0 -w's (6~ m} det {3} /> det {D; (0)} />
(78)
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Moments of the eigenvalues

@ Using Eq. (77) and recalling that for any two matrices A and B,
det {A} det {B} = det {AB} we have

W =X @ e {3027 @ w)aa1+B,0) " 09

where
r

D, (6) = % O—p)(@—p)' =t - ¥D,,(6) (80)

Aj(0)

@ The probability density function of the eigenvalues can be obtained from
these moments.
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Maximum entropy probability density function

@ Once the cumulants/moments of the eigenvalues are known, the pdf of
the eigenvalues can be obtained using the Maximum Entropy Method
(MEM). Because equations (46), (47) and (72) can be used to calculate
any arbitrary order cumulant and moment, the pdf can be obtained
accurately by taking higher order terms.

@ Since M and K are symmetric and positive definite random matrices, all
the eigenvalues are real and positive. Suppose the pdf of \; is given by
P, (u) where u € R is positive, that is u € [0, co]. Considering that only
first n moments are used, the pdf of each eigenvalue must satisfy the
following constraints:

/OO Py, (u)du =1 (81)
0

and / u"py; (u)du = p; ), r=1,2,3,---,n. (82)
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Maximum entropy probability density function
@ Using Shannon’s measure of entropy
S== [ o @npy, (e (83)
0

we construct the Lagrangian
== [ twmp, a0 - 1| [ o w1
0 0
> { / u"px, (u)du — uﬂ . (84)
r=1 0

where p,.,r =0,1,2,--- ,n are Lagrange multipliers.

@ The function py, (u) which maximizes £ can be obtained using the
calculus of variations. Using the Euler-Lagrange equation the solution is
given by

px; (u )—exp{ PO—Z/% }=exp{—po}exp{—zpiui}, u = 0.
i=1 (85)

S. Adhikari D2: Uncertainty quantification in Structural Dynamics January 2020, CSU, Changsha 39




Maximum entropy probability density function

@ The Lagrange multipliers can be obtained from the constraint equations
(81) and (82) as

eXp{po}=/ exp{ Zm }

and exp{po}uy):/ urexp{—Zpiui}du, for »r=0,1,2,---n
0 i=1

@ Closed-form expressions for p,. are in general not possible for all n. If we
take n = 2, then the resulting pdf can be expressed as the truncated
Gaussian density function

~\2
1 (U - )\j)
P, (u) = — expl ————F—5"—,, u>0. (86)
\/%O'j [} ()\j/O’j)
where ¢; is given by
of = u? =%, (87)

@ The truncated Gaussian density function derived here ensures that the

eigenvalues becomina neaative is zero.
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Maximum entropy probability density function

@ We use an approximation analogous to Pearson’s three moment central
x? approximation to the distribution of a noncentral x? . The eigenvalues
are approximated as

Aj =y + X, (w) (88)
where Xﬁj (u) is a central x? density function with v; degrees-of-freedom.

9 The constants 7;, v;, and v; are obtained such that the first three
moments of \; are equal to that of the approximated x? pdf. The moment
generating function of the approximated x? pdf is given by

E {exp {—s (nj + vjx,%j) H =exp{—sn;}(1+ 257]4)7"3'/2 . (89)
@ Equating the first three moments we have

1
nj t v = M§- ), (90)
2
2 + 205y + vi2? + 20,2 = pl? (91)
and 77j3 + 377j21/j’yj + 377j1/j2A/j2 + anVj"/jg + I/jg"/j?) + 61/3-2%3 + 8Vj"/j3 =/
(92)
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Maximum entropy probability density function

@ This set of coupled non-linear equations can be solved exactly in
closed-form to obtain 7;, v;, and v;:

2 2
. P R O )
;=
(1) (1), ,(2) (3)
2p;0 =3y gy
(1) — 3@ 4
Vi = D) ) (94)
(2) (1)
Ay = ay
2\ 3
(15 =)
and v; =8 (95)

-
(2 V=3 p® 4 u’g)

D2: Uncertainty quantification in Structural Dynamics January 2020, CSU, Changsha 42



Maximum entropy probability density function

@ Moments of A;(x) obtained in equation (72), can be used directly in the
right-hand side of these equations. Alternatively, this approach can also
be used in conjunction with the perturbation methods by transforming the
cumulants obtained from equations (46) and (47) to moments.

@ Using the transformation in equation (88) the approximate probability
density function of \;(x) is given by

1 u—1n; (u—m;)
P (u) ~ —Dy2. ( j) = !
v j

vi/2—1

exp{—(u —1n;)/27;}
@) "L (03/2) - ©9

@ The two approximated pdf proposed here have simple forms but it should
be noted that they are not exhaustive. Given the moments/cumulants,
different probability density functions can be fitted using different
methods. The application of the approximate pdfs derived here is
illustrated in the next section.
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A two DOF system

@ A simple two-degree-of-freedom undamped system has been considered
to illustrate a possible application of the expressions developed so far.
The main purpose of this example is to understand how the proposed
methods compare with the existing methods. 1 shows the example,
together with the numerical values of the masses and spring stiffnesses.

> > 9

M m,

AN
I k3 k2

Figure: The undamped two degree-of-system system, m; = 1 kg, m2 = 1.5 kg,
k1 = 1000 N/m, k2 = 1100 N/m and k3 = 100 N/m.
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A two DOF system

@ The system matrices for the example are given by

_|mi O k1 + ks  —ks
M_{O mQ] and K_{ ks ket ksl (97)

9 It is assumed that only the stiffness parameters k; and k- are uncertain
so that k; = k;(1 + €;z;), i = 1,2 and k; denote the deterministic values of
the spring constants. Here x = {z,z,}” € R? is a vector of standard
Gaussian random variables, thatis u = 0 and X = 1.

@ The numerical values of the ‘strength parameters’ are considered as
€1 = €5 = 0.25. The strength parameters are selected so that the system
matrices are almost surely positive definite.
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A two DOF system

@ Noting that M is independent of x and K is a linear function of x, the
derivative of the system matrices with respect to the random vector x can

be obtained as

oK [k 0] 9K o 0
8—",31 =€ |:O O:| ’ a—xg = €2 |:O k2:| ’ (98)
oM 0’K

@ We calculate the raw moments and the probability density functions of
the two eigenvalues of the system. Recall that the eigenvalues obtained
from equation (1) are the square of the natural frequencies (\; = wj?).
Several methods are used to obtain the moments and the pdfs.
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Mean-centered first-order perturbation

@ This case arises when Dy, (u) in the Taylor series expansion (35) is
assumed to be a null matrix so that only the first-order terms are retained.

@ This is the simplest approximation, and as mentioned earlier, results in a
Gaussian distribution of the eigenvalues.

@ Recalling that for this problem p = 0 and X = I, the resulting statistics for
this special case can be obtained from equations (49) and (50) as

~

A=\ (100)
and Var[\;] =dj (0)d,, (0). (101)

@ The gradient vector d,, (0) can be obtained from equation (11) using the
system derivative matrices (98) and (99).
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Mean-centered second-order perturbation

@ In this case all the terms in equation (35) are retained. This
approximation results in a quadratic form in the Gaussian random
variables. The resulting statistics can be obtained from equations (46)
and (47) by substituting u = 0and X = 1.

@ The elements of the Hessian matrix D, (0) can be obtained from
equation (38) and using the system derivative matrices (98) and (99).
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Monte Carlo Simulation

@ The samples of two independent Gaussian random variables x; and x»
are generated and the eigenvalues are computed directly from equation
(1).

@ A total of 15000 samples are used to obtain the statistical moments and
pdf of both the eigenvalues.

@ The results obtained from the Monte Carlo simulation are assumed to be
the benchmark for the purpose of comparing the five analytical methods
described above.

@ The percentage error for an arbitrary k&th moment of an eigenvalue
obtained using any one of the five analytical methods is given by

‘{Mgr)}ah method — {145 Jucs
Errorii methoa = o) x 100. (102)
{Mj tmcs
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A two DOF system

20, T T r T
- Mean-centered 1st-order
- Mean-centered 2nd-order
16H |:|Optimal point 1st-order
-Optimal point 2nd-order
-Asymptotic Method

18R

14

12

10

Percentage error wrt MCS

1 2 3 4
k-th order moment: B\[;]

Figure: Percentage error for the first eigenvalue.
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A two DOF system

10,

I Vean—centered 1st-order
[ Mean—centered 2nd-order
st |:| Optimal point 1st-order J
- Optimal point 2nd—order
I ~symptotic Method i

Percentage error wrt MCS

1 2 3 4
k-th order moment: B\E]

Figure: Percentage error for the second eigenvalue.
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A two DOF system
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A two DOF system

o X 10
1 [—IMonte Carlo Simulation
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A three DOF system

mp

Figure: The three degree-of-freedom random system.

@ The main purpose of this example is to understand how the proposed
methods work when some of the system eigenvalues are closely spaced.
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A three DOF system

@ This is an interesting case because it is well known that closely spaced
eigenvalues are parameter sensitive. We will investigate how the
parameter uncertainty affects the eigenvalue distribution in such cases.
This study has particular relevance to the dynamics of nominally
symmetric rotating machines, for example, turbine blades with random
imperfections. The mass and stiffness matrices of the example system

are given by
mi1 O 0 k1 + ks + kg —ky —kg
M={[0 ms 0 | andK = —k4 ka+ ks + ko —ks
0 0 mg —kg —ks ks + ks + kg

(103)
It is assumed that all mass and stiffness constants are random.
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A three DOF system

@ The randomness in these parameters are assumed to be of the following

form:
m; = My (1+€mxi), 1=1,2,3 (104)
k‘i:Ei(l—i—Ekl‘iJ,_g), i=1,---,6. (105)
Here x = {x1,--- ,29}T € RY is the vector of random variables. It is

assumed that all random variables are Gaussian and uncorrelated with
zero mean and unit standard deviation, thatis p = 0and ¥ = 1.
Therefore, the mean values of m; and k; are given by 7; and k;. The
numerical values of both of the ‘strength parameters’ ¢,,, and ¢, are fixed
at 0.15.

@ In order to obtain statistics of the eigenvalues using the methods
developed in this paper the gradient vector and the Hessian matrix of the
eigenvalues are required. This in turn requires the derivative of the
system matrices with respect to the entries of x. For most practical
problems, which usually involve Finite Element modeling, these
derivatives need to be determined numerically.
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A three DOF system

9 The derivatives of M(x) and K(x) with respect to elements of x can be
obtained from equation (103) together with equations (104) and (105).
For the mass matrix we have

M [Pien 00 M [0 0 0 om 00 0
g—zooo,g—:omgemo,a——ooo
1 0 0 0 2o 0 o0 T30 0 maenm

(106

All other ‘g—y- are null matrices.
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A three DOF system

@ The derivatives of the stiffness matrix are

Terex 0 0 0 0 0 000

oK 16k oK T oM
o | 0 00 G =0 ke 0p, Hre =100 0
olo oo M oo oo o U o 0 Fe

ok [ Faee —haec O] g [0 00 om _ | "
37: “Tser  Fuen O], 37: 0 kjéek- —_k‘5€k, 87_ _O
7 0 0 0 8 0 —kser  ksex ? — k¢

(107)
oK

and all other 5> are null matrices.

@ Also note that all of the first-order derivative matrices are independent of
x. For this reason, all the higher order derivatives of the M(x) and K(x)
matrices are null matrices.
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A three DOF system

@ We calculate the moments and the probability density functions of the
three eigenvalues of the system. The following two sets of physically
meaningful parameter values are considered:

o Case 1: All eigenvalues are well separated
For this case m; = 1.0kgfori =1,2,3; k; = 1.0 N/mfor:=1,--- ;5 and

ke = 3.0 N/m.
o Case 2: Two eigenvalues are close
All parameter values are the same except ks = 1.275 N/m.

@ The moments of the eigenvalues for the above two cases are calculated

first.
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A three DOF system

© The moments are then used to obtain o; from equation (87) and the
constants in equations (93)—(95).

@ Using these constants the truncated Gaussian pdf and the x? pdf of the
eigenvalues are obtained from equations (86) and (96) respectively.
These results are compared with Monte Carlo simulation.

@ The samples of the nine independent Gaussian random variables
x40 =1,---,9 are generated and the eigenvalues are computed directly
from equation (1). A total of 15000 samples are used to obtain the
statistical moments and histograms of the pdf of the eigenvalues.

@ The results obtained from Monte Carlo simulation are assumed to be the
benchmark for the purpose of comparing the analytical methods.

@ For the purpose of determining the accuracy, we again calculate the
percentage error associated with an arbitrary »th moment using equation
(102).
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All eigenvalues are well separated

@ When all of the eigenvalues are well separated their derivatives with
respect to the system parameters generally behave well.

@ For the given parameter values the eigenvalues of the corresponding
deterministic system is given by

Xlzl, X2=4, and X3=8 (108)
)\1
)\2
)\3
LIPS

Eigenva\lues},\I (rad/sf
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All eigenvalues are well separated
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Figure: Percentage error for first four moments of the eigenvalues; Case 1.
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All eigenvalues are well separated
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Figure: Probability density function of the first eigenvalue; Case 1.
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All eigenvalues are well separated
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Figure: Probability density functions of the second and third eigenvalues; Case 1.
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Two eigenvalues are close

@ When some eigenvalues are closely spaced, their derivatives with
respect to the system parameters may not behave well

@ For the given parameter values the eigenvalues of the corresponding
deterministic system are calculated as

Xl =1, XQ =4, and Xg = 4.55. (109)
Clearly X, and A3 are close to each other.
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Two eigenvalues are close
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Figure: Percentage error for first four moments of the eigenvalues; Case 2.
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Two eigenvalues are close
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Figure: Probability density function of the first eigenvalue; Case 2.
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Two eigenvalues are close
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Figure: Probability density functions of the second and third eigenvalues; Case 2.
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