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Overview of the course

The course is dived into eight topics:

Introduction to probabilistic models & dynamic systems

Stochastic finite element formulation

Numerical methods for uncertainty propagation

Spectral function method

Parametric sensitivity of eigensolutions

Random eigenvalue problem in structural dynamics

Random matrix theory - formulation

Random matrix theory - application and validation
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Outline of this talk

1 Uncertainty propagation: Sampling methods

Monte Carlo Simulation

2 Non-Sampling methods

Perturbation based methods

Polynomial Chaos expansion
One dimensional function
Vector function

3 Spectral function method
Motivation

Projection in the modal space

Properties of the spectral functions
The Galerkin approach

Model Reduction

Computational method

4 Numerical illustrations

5 Summary
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Random number generator

Quasi-random number generators calculates a sequence of numbers that

appear to be random xi = g(xi−1, . . . , xi−k), and the sequence is
repeated after applying g a given number of times, called the period.

These random number generators are used to simulate uniformly
distributed random variables. The uniform univariate distribution U(0, 1)
has a probability density function given by

f(x) =

{
1 if 0 < x < 1

0 otherwise
(1)

and its mean and variance are respectively E[X ] = 1/2, Var[X ] = 1/12.

Generally, samples of random variables with pdfs different from the

uniform pdf are needed. A random variable X with continuous cumulative
density function PX can be related to a uniform random variable U(0, 1)
through the inverse CDF method

X = P−1
X (U) (2)
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Random number generator

For the case of a Gaussian random variable N(0, 1), samples can be

obtained from samples of two independent uniform random variables U
and V

X = (−2 lnU)1/2 cos(2πV ), Y = (−2 lnU)1/2 sin(2πV ) (3)

so that X and Y are independent random variables with standard normal
distribution.

Once the samples of the random variables are obtained, they are

introduced in the PDE studied and the deterministic systems are solved.

If MCS with N samples is used to obtain an estimation of the pdf of a
random variable u (e.g. a term of the response vector u), estimations of

the mean and standard deviation are given by

E[u] =

∫
up(u)du ≈ 1

N

N∑

i=1

ui (4)

σ =

∫
(u− E[u])2p(u)du ≈

√√√√ 1

N

N∑

i=1

(ui − E[u])2 (5)
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Perturbation based methods

One of the first methods used to study uncertainty propagation is the

perturbation method where terms are expanded with their Taylor series
expansion around the mean value of the random parameters αi,

i = 1, . . . ,M

Taylor series expansions of stiffness K, response u and load vector f are
truncated after the second order terms and introduced into Ku = f:

K = K0 +

N∑

i=1

KI
iαi +

1

2

N∑

i=1

N∑

j=1

KII
ij αiαj + o(‖α‖2) (6)

u = u0 +

N∑

i=1

uI
iαi +

1

2

N∑

i=1

N∑

j=1

uII
ij αiαj + o(‖α‖2) (7)

f = f0 +

N∑

i=1

f
I
iαi +

1

2

N∑

i=1

N∑

j=1

f
II
ij αiαj + o(‖α‖2) (8)

S. Adhikari (Swansea) D2: Uncertainty quantification in Structural Dynamics December 2019, CSU, Changsha 6



Perturbation based methods

The coefficients multiplying polynomials of the same order can be

identified

u0 = K−1
0 f0 (9)

uI
i = K−1

0 (fIi − KI
i u0) (10)

uII
ij = K−1

0 (fIIij − KI
i uI

j − KI
juI

i − KII
ij u0) (11)

where terms with subindexes 0, i and ij are respectively the matrix or

vector evaluated at α = 0, its first derivative (e.g. KI
i = ∂K

∂αi

∣∣∣
α=0

) and its

second derivative (e.g. KII
ij = ∂2K

∂αi∂αj

∣∣∣
α=0

)

The statistics of u are derived from the second order Taylor expansion of
u and the statistics of α

E[u] ≈ u0 +
1

2

M∑

i=1

M∑

j=1

uII
ij Cov[αi, αj ] (12)

Cov[u,u] ≈
M∑

i=1

M∑

j=1

uI
i .(u

I
j )

TCov[αi, αj ] (13)
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Polynomial Chaos expansion

If a function f(ζ) is a function of infinite number of variables {ζik} and
square integrable, it can be expanded in Homogeneous Chaos as

f(ζ) = ŷi0h0 +

∞∑

i1=1

ŷi1Γ1(ζi1)

+
∞∑

i1=1

i1∑

i2=1

ŷi1,i2Γ2(ζi1 , ζi2) +
∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

ŷi1i2i3Γ3(ζi1 , ζi2 , ζi3)

+

∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

i3∑

i4=1

ŷi1i2i3i4 Γ4(ζi1 , ζi2 , ζi3 , ζi4) + . . . ,

(14)

Here Γp(ζi1 , ζi2 , · · · ζim ) is m-dimensional homogeneous chaos of order p.

The polynomials are orthogonal with respect to the probability measure

of the underlying random variables
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Polynomial Chaos expansion

For Gaussian random variables, Hermite polynomials are used.

For Uniform random random variables, Legendre polynomials are used.

Truncating Eq. (14) up to finite number of terms, we can concisely write

f(ζ) =

P−1∑

j=0

yjΨj(ζ) (15)

where the constant yj and functions Ψj(•) are effectively constants ŷk
and functions Γk(•) for corresponding indices.

Equation (15) can be viewed as the projection in the basis functions

Ψj(ζ) with corresponding ‘coordinates’ yj. The number of terms P in Eq.
(15) depends on the number of variables m and maximum order of

polynomials p as

P =

p∑

j=0

(m+ j − 1)!

j!(m− 1)!
=

(
m+ p

p

)
(16)
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Polynomial Chaos expansion

j p Construction of Ψj Ψj

0 p = 0 L0 1

1 p = 1 L1(ζ1) ζ1
2 L1(ζ2) ζ2
3 L2(ζ1) 3/2 ζ1

2 − 1/2
4 p = 2 L1(ζ1)L1(ζ2) ζ1ζ2
5 L2(ζ2) 3/2 ζ2

2 − 1/2

6 L3(ζ1) 5/2 ζ1
3 − 3/2 ζ1

7 p = 3 L2(ζ1)L1(ζ2)
(
3/2 ζ1

2 − 1/2
)
ζ2

8 L1(ζ1)L2(ζ2) ζ1
(
3/2 ζ2

2 − 1/2
)

9 L3(ζ2) 5/2 ζ2
3 − 3/2 ζ2

10 L4(ζ1)
35
8 ζ1

4 − 15
4 ζ1

2 + 3/8

11 L3(ζ1)L1(ζ2)
(
5/2 ζ1

3 − 3/2 ζ1
)
ζ2

12 p = 4 L2(ζ1)L2(ζ2)
(
3/2 ζ1

2 − 1/2
) (

3/2 ζ2
2 − 1/2

)

13 L1(ζ1)L3(ζ2) ζ1
(
5/2 ζ2

3 − 3/2 ζ2
)

14 L4(ζ2)
35
8 ζ2

4 − 15
4 ζ2

2 + 3/8
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Polynomial Chaos expansion

A least-square error minimization approach can be used to obtain the

constants yj in Eq. (15). We define the inner product norm in [−1, 1]m as

< •, • >=
1

Vm

∫ 1

−1

∫ 1

−1

· · ·
∫ 1

−1︸ ︷︷ ︸
m−fold

(•)(•)dζ1dζ2 · · · dζm (17)

Here the volume

Vm = 2m (18)

is used for normalization so that for two constants a and b we have

< a, b >= ab. The error corresponding to Eq. (15) can be expressed as

ε = f(ζ)−
P−1∑

j=0

yjΨj(ζ) (19)

Using the inner product norm in (17), the norm of the error can be

obtained as
χ2 = 〈ε, ε〉 (20)
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Polynomial Chaos expansion

Differentiating this with respect to yk, it can be shown that (Galerkin
approach) the optimal values of yk can be obtained my making the basis

functions orthogonal to the error, that is,

ε⊥Ψk or 〈Ψk, ε〉 = 0 ∀ k = 0, 2, . . . , P − 1 (21)

Substituting the expression of error from Eq. (19) into this equation we

obtain
P−1∑

j=0

yj 〈Ψk(ζ),Ψj(ζ)〉 = 〈Ψk(ζ), f(ζ)〉 (22)

Using the orthogonality property of the basis function we have
〈Ψk(ζ),Ψj(ζ)〉 = ckδjk.

Therefore, the constants yk can be obtained as

yk =
〈Ψk(ζ), f(ζ)〉
〈Ψk(ζ),Ψk(ζ)〉

, ∀ k = 0, 2, . . . , P − 1 (23)

The integration appearing in the numerator and denominator can be

obtained using any standard procedure for multidimensional integrals. In
particular, the denominator can be calculated explicitly. The values of

〈Ψj(ζ),Ψj(ζ)〉 cab be obtained analytically.
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Polynomial Chaos expansion

Table: Values of 〈Ψj(ζ),Ψj(ζ)〉 for two variables (m = 2) with polynomial order 4

(p = 4).

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
〈Ψj(ζ),Ψj(ζ)〉 1 1/3 1/3 1/5 1/9 1/5 1/7 1/15 1/15 1/7 1/9 1/21 1/25 1/21 1/9

Substituting the values of yk from (23) into the expansion (15) we have

f̂(ζ) =

P−1∑

j=0

[ 〈Ψj(ζ), f(ζ)〉
〈Ψj(ζ),Ψj(ζ)〉

]
Ψj(ζ) (24)

Here f̂(ζ) is an approximation to the original function f(ζ) for polynomial
order upto p. The accuracy of this approximation can improve indefinitely

by considering higher-order polynomials. If the evaluation of the original

function f(ζ) is expensive, the surrogate model f̂(ζ) can be used instead
of the original function.
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Polynomial Chaos expansion: Example 1

To illustrate the application of the Galerkin projection approach, we

consider two problems involving bounded variables. We consider the
function

f̂1 (x) =
89

40
−

√
2

1080
(x1 + x2 − 20)3 +

33

140
(x1 − x2) ; 4 ≤ x1, x2 ≤ 16 (25)

As the first step, we transform the variables in [−1, 1]:

x1 = 6ζ1 + 10 and x2 = 6ζ2 + 10 (26)

Substituting these into Eq. (25) one obtains the function in the

transformed variables as

f1 (ζ) =
89

40
− 1

5

√
2 (ζ1 + ζ2)

3
+

99

70
ζ1 −

99

70
ζ2 (27)

Using Eq. (23) the nonzero values of yj can be obtained as

y1 =
89

40
, y2 = − 8

25

√
2 +

99

70
, y3 = − 8

25

√
2− 99

70
, y7 = − 2

25

√
2,

y8 = −2/5
√
2, y9 = −2/5

√
2 and y10 =

2

25

√
2

(28)
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Polynomial Chaos expansion
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(b) Fitted function using Legendre polynomials

Figure: The original function and the fitted function corresponding to Eq. (25).
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Polynomial Chaos expansion: Example 2

Consider the ‘Camelback’ function

f1 (x) = (4−2.1x2
1+x4

1/3)x
2
1+x1x2+(−4+4x2

2)x
2
2;−3 ≤ x1 ≤ 3;−2 ≤ x2 ≤ 2

(29)

Transform the variables in [−1, 1]:

x1 = 3ζ1 and x2 = 2ζ2 (30)

Substituting these into Eq. (29) one obtains the function in the
transformed variables as

f1 (ζ) = 9

(
4− 189

10
ζ1

2 + 27ζ1
4

)
ζ1

2 + 6ζ1ζ2 + 4
(
−4 + 16ζ2

2
)
ζ2

2 (31)

Using Eq. (23), carrying out the 2-dimensional integration analytically, the

nonzero values of yj can be obtained as

y1 =
21169

1050
, y4 =

1488

35
, y5 = 6, y6 =

544

21
, y11 =

70956

1925
, y15 =

512

35
(32)
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Polynomial Chaos expansion
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Vector valued Polynomial Chaos

The main equation which need to be solved can be expressed as

(
A0 +

M∑

i=1

ξi(θ)Ai

)
u(ξ) = f (33)

where A0 and Ai represent the deterministic and stochastic parts of the
system matrices respectively. These can be real or complex matrices.

We project the solution vector u(ξ) ∈ R
n in the basis of orthogonal

polynomials as

u(ξ) =
P−1∑

j=0

ujΨj(ξ) (34)

The aim is to obtain the coefficient vectors uj ∈ R
n using a Galerkin type

of error minimisation approach.
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Vector valued Polynomial Chaos

Substituting expansion of u(ξ) in the governing equation (33), the error
vector can be obtained as

ε =

(
M∑

i=0

Aiξi

)


P−1∑

j=1

ujΨj(ξ)


− f ∈ R

n (35)

where ξ0 = 1 is used to simplify the first summation expression.

The expression (34) is viewed as a projection where Ψj(ξ) are the
orthogonal basis functions and uj are the unknown ‘coordinates’ to be

determined.
We wish to obtain the vectors uj using the Galerkin approach so that the

error is made orthogonal to the basis functions, that is, mathematically

ε⊥Ψk(ξ) or < Ψk(ξ), ε >= 0 ∀ k = 0, 2, . . . , P − 1 (36)

Imposing this condition and using the expression of ε from Eq. (35) one

has
〈
Ψk(ξ),

(
M∑

i=0

Aiξi

)


P−1∑

j=1

ujΨj(ξ)


 − f

〉
= 0 ∀ k = 0, 2, . . . , P − 1

(37)
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Vector valued Polynomial Chaos

Interchanging the summation operations, this can be simplified to

P−1∑

j=1

M∑

i=0

Ai 〈ξiΨj(ξ)Ψk(ξ)〉uj − 〈Ψk(ξ)f〉 = 0 ∀ k = 0, 2, . . . , P − 1 (38)

Introducing the notations

cijk = 〈ξiΨj(ξ)Ψk(ξ)〉 ∈ R (39)

and fk = 〈Ψk(ξ)f〉 ∈ R
n (40)

one can express Eq. (38) as

P−1∑

j=1

M∑

i=0

cijkAiuj = fk ∀ k = 0, 2, . . . , P − 1 (41)

Since the forcing is assumed to be deterministic,
fk = 〈Ψk(ξ)f〉 = 〈Ψk(ξ)〉 f. Using the definition of the orthogonal functions

it can be easily shown that 〈Ψ1(ξ)〉 = 1 and 〈Ψk(ξ)〉 = 0 for any other

values of k.

The constants cijk can be obtained in closed-form by performing the

necessary integrals. In turns our that many of the cijk becomes 0.
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Vector valued Polynomial Chaos

Table: Values of c1jk and c2jk defined in Eq. (39) for two dimensional Legendre

polynomial based homogeneous chaos basis up to 4th order

j k c1jk j k c2jk
0 1 1/3 0 2 1/3

1 0 1/3 1 4 1/9
1 3 2/15 2 0 1/3

2 4 1/9 2 5 2/15
3 1 2/15 3 7 1/15

3 6 3/35 4 1 1/9

4 2 1/9 4 8 2/45
4 7 2/45 5 2 2/15

5 8 1/15 5 9 3/35

6 3 3/35 6 11 1/21
6 10 4/63 7 3 1/15

7 4 2/45 7 12 2/75

7 11 1/35 8 4 2/45
8 5 1/15 8 13 1/35

8 12 2/75 9 5 3/35
9 13 1/21 9 14 4/63

10 6 4/63 11 6 1/21
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Vector valued Polynomial Chaos

Once the values of cijk and fk are obtained, further defining

Ajk =

M∑

i=0

cijkAi ∈ R
n×n (42)

one can rewrite Eq. (41) as

P−1∑

j=1

Ajkuj = fk, ∀ k = 0, 2, . . . , P − 1 (43)

For all values ok k, this equation can be expressed in a matrix form as



A0,0 A0,1 · · · A0,P−1

A1,0 A1,1 · · · A1,P−1

...
...

...

AP−1,0 AP−1,1 · · · AP−1,P−1








u0

u1

...

uP−1





=





f0
f1
...

fP−1





(44)

or in a compact notation

KU = F (45)

where K ∈ R
nP×nP , U ,F ∈ R

nP . Once all uj for j = 0, 2, . . . , P − 1 are
obtained, the solution vector can be obtained from (34).

S. Adhikari (Swansea) D2: Uncertainty quantification in Structural Dynamics December 2019, CSU, Changsha 22



Vector valued Polynomial Chaos

The main computational challenge posed by the method proposed here
is the solution of the set of linear equations in (44), which of size nP . The

value of the number of terms P depends on the number of random

variables M and the order of the chaos expansion r as given by Eq. (16).
Some values of P are shown for different number of random variables

and order of chaos expansions.

M 2 3 5 10 20 50 100

1st order (r = 1) 3 4 6 11 21 51 101
2nd order (r = 2) 6 10 21 66 231 1326 5151

3rd order (r = 3) 10 20 56 286 1771 23426 176851

4th order (r = 4) 15 35 126 1001 10626 316251 4598126

It can be seen that P increase significantly with the increase in M and r.
The value of n depends on the finite element discretisation and can be

large for complex problems. Therefore for practical problems nP can be

very large.
The solution of Eq. (44) can be a formidable task. The computational

complexity of the matrix inversion problem scales in cubically with the

dimension of the matrix in the worse case. Therefore, the computational
time for solving Eq. (44) is in O(P 3n3).
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Some observations of the PC solution

The basis is a function of the pdf of the random variables only. For

example, Hermite polynomials for Gaussian pdf, Legender’s polynomials
for uniform pdf.

The physics of the underlying problem (static, dynamic, heat conduction,

transients....) cannot be incorporated in the basis.

For an n-dimensional output vector, the number of terms in the projection

can be more than n (depends on the number of random variables). This
implies that many of the vectors uk are linearly dependent.

The physical interpretation of the coefficient vectors uk is not immediately
obvious.

The functional form of the response is a pure polynomial in random

variables.

S. Adhikari (Swansea) D2: Uncertainty quantification in Structural Dynamics December 2019, CSU, Changsha 24



Possibilities of solution types

As an example, consider the frequency domain response vector of the
stochastic system u(ω, θ) governed by

[
−ω2M(ξ(θ)) + iωC(ξ(θ)) + K(ξ(θ))

]
u(ω, θ) = f(ω). (46)

Some possibilities are

u(ω, θ) =

P1∑

k=1

Hk(ξ(θ))uk(ω)

or =

P2∑

k=1

Γk(ω, ξ(θ))φk

or =

P3∑

k=1

ak(ω)Hk(ξ(θ))φk

or =

P4∑

k=1

ak(ω)Hk(ξ(θ))Uk(ξ(θ)) . . . etc.

(47)
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Deterministic classical modal analysis?

For a deterministic system, the response vector u(ω) can be expressed

as

u(ω) =

P∑

k=1

Γk(ω)uk

where Γk(ω) =
φT

k f

−ω2 + 2iζkωkω + ω2
k

uk = φk and P ≤ n (number of dominantmodes)

(48)

Can we extend this idea to stochastic systems?
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Projection in the modal space

There exist a finite set of complex frequency dependent functions Γk(ω, ξ(θ))
and a complete basis φk ∈ R

n for k = 1, 2, . . . , n such that the solution of the

discretized stochastic finite element equation (46) can be expressed by the

series

û(ω, θ) =

n∑

k=1

Γk(ω, ξ(θ))φk (49)

Outline of the derivation: In the first step a complete basis is generated with
the eigenvectors φk ∈ R

n of the generalized eigenvalue problem

K0φk = λ0kM0φk; k = 1, 2, . . . n (50)
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Projection in the modal space

We define the matrix of eigenvalues and eigenvectors

λ0 = diag [λ01 , λ02 , . . . , λ0n ] ∈ R
n×n;Φ = [φ1,φ2, . . . ,φn] ∈ R

n×n (51)

Eigenvalues are ordered in the ascending order: λ01 < λ02 < . . . < λ0n .

We use the orthogonality property of the modal matrix Φ as

Φ
TK0Φ = λ0, and Φ

TM0Φ = I (52)

Using these we have

Φ
TA0Φ = Φ

T
(
[−ω2 + iωζ1]M0 + [iωζ2 + 1]K0

)
Φ

=
(
−ω2 + iωζ1

)
I + (iωζ2 + 1)λ0 (53)

This gives Φ
TA0Φ = Λ0 and A0 = Φ

−T
Λ0Φ

−1, where

Λ0 =
(
−ω2 + iωζ1

)
I + (iωζ2 + 1)λ0 and I is the identity matrix.
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Projection in the modal space

Hence, Λ0 can also be written as

Λ0 = diag [λ01 , λ02 , . . . , λ0n ] ∈ C
n×n (54)

where λ0j =
(
−ω2 + iωζ1

)
+ (iωζ2 + 1)λj and λj is as defined in

Eqn. (51). We also introduce the transformations

Ãi = Φ
TAiΦ ∈ C

n×n; i = 0, 1, 2, . . . ,M. (55)

Note that Ã0 = Λ0 is a diagonal matrix and

Ai = Φ
−T ÃiΦ

−1 ∈ C
n×n; i = 1, 2, . . . ,M. (56)
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Projection in the modal space

Suppose the solution of Eq. (46) is given by

û(ω, θ) =

[
A0(ω) +

M∑

i=1

ξi(θ)Ai(ω)

]−1

f(ω) (57)

Using Eqs. (51)–(56) and the mass and stiffness orthogonality of Φ one has

û(ω, θ) =

[
Φ

−T
Λ0(ω)Φ

−1 +

M∑

i=1

ξi(θ)Φ
−T Ãi(ω)Φ

−1

]−1

f(ω)

⇒ û(ω, θ) = Φ

[
Λ0(ω) +

M∑

i=1

ξi(θ)Ãi(ω)

]−1

︸ ︷︷ ︸
Ψ (ω,ξ(θ))

Φ
−T f(ω)

(58)

where ξ(θ) = {ξ1(θ), ξ2(θ), . . . , ξM (θ)}T .
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Projection in the modal space

Now we separate the diagonal and off-diagonal terms of the Ãi matrices as

Ãi = Λi +∆i, i = 1, 2, . . . ,M (59)

Here the diagonal matrix

Λi = diag
[
Ã
]
= diag [λi1 , λi2 , . . . , λin ] ∈ R

n×n (60)

and ∆i = Ãi −Λi is an off-diagonal only matrix.

Ψ (ω, ξ(θ)) =



Λ0(ω) +

M∑

i=1

ξi(θ)Λi(ω)

︸ ︷︷ ︸
Λ(ω,ξ(θ))

+

M∑

i=1

ξi(θ)∆i(ω)

︸ ︷︷ ︸
∆(ω,ξ(θ))




−1

(61)

where Λ (ω, ξ(θ)) ∈ R
n×n is a diagonal matrix and ∆ (ω, ξ(θ)) is an

off-diagonal only matrix.
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Projection in the modal space

We rewrite Eq. (61) as

Ψ (ω, ξ(θ)) =
[
Λ (ω, ξ(θ))

[
In +Λ

−1 (ω, ξ(θ))∆ (ω, ξ(θ))
]]−1

(62)

The above expression can be represented using a Neumann type of matrix
series as

Ψ (ω, ξ(θ)) =

∞∑

s=0

(−1)s
[
Λ

−1 (ω, ξ(θ))∆ (ω, ξ(θ))
]s

Λ
−1 (ω, ξ(θ)) (63)
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Projection in the modal space

Taking an arbitrary r-th element of û(ω, θ), Eq. (58) can be rearranged to have

ûr(ω, θ) =
n∑

k=1

Φrk




n∑

j=1

Ψkj (ω, ξ(θ))
(
φT

j f(ω)
)

 (64)

Defining

Γk (ω, ξ(θ)) =

n∑

j=1

Ψkj (ω, ξ(θ))
(
φT

j f(ω)
)

(65)

and collecting all the elements in Eq. (64) for r = 1, 2, . . . , n one has

û(ω, θ) =

n∑

k=1

Γk (ω, ξ(θ))φk (66)

S. Adhikari (Swansea) D2: Uncertainty quantification in Structural Dynamics December 2019, CSU, Changsha 33



Spectral functions

Definition

The functions Γk (ω, ξ(θ)) , k = 1, 2, . . . n are the frequency-adaptive spectral

functions as they are expressed in terms of the spectral properties of the

coefficient matrices at each frequency of the governing discretized equation.

Each of the spectral functions Γk (ω, ξ(θ)) contain infinite number of terms
and they are highly nonlinear functions of the random variables ξi(θ).

For computational purposes, it is necessary to truncate the series after

certain number of terms.

Different order of spectral functions can be obtained by using truncation

in the expression of Γk (ω, ξ(θ))
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First-order and second order spectral functions

Definition

The different order of spectral functions Γ
(1)
k (ω, ξ(θ)), k = 1, 2, . . . , n are

obtained by retaining as many terms in the series expansion in Eqn. (63).

Retaining one and two terms in (63) we have

Ψ
(1) (ω, ξ(θ)) = Λ

−1 (ω, ξ(θ)) (67)

Ψ
(2) (ω, ξ(θ)) = Λ

−1 (ω, ξ(θ)) −Λ
−1 (ω, ξ(θ))∆ (ω, ξ(θ))Λ−1 (ω, ξ(θ)) (68)

which are the first and second order spectral functions respectively.

From these we find Γ
(1)
k (ω, ξ(θ)) =

∑n
j=1 Ψ

(1)
kj (ω, ξ(θ))

(
φT

j f(ω)
)

are

non-Gaussian random variables even if ξi(θ) are Gaussian random

variables.
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Nature of the spectral functions
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(a) Spectral functions for σa = 0.1.
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(b) Spectral functions for σa = 0.2.

The amplitude of first seven spectral functions of order 4 for a particular

random sample under applied force. The spectral functions are obtained for

two different standard deviation levels of the underlying random field:
σa = {0.10, 0.20}.

S. Adhikari (Swansea) D2: Uncertainty quantification in Structural Dynamics December 2019, CSU, Changsha 36



Summary of the basis functions (frequency-adaptive spectral functions)

The basis functions are:

1 not polynomials in ξi(θ) but ratio of polynomials.

2 independent of the nature of the random variables (i.e. applicable to
Gaussian, non-Gaussian or even mixed random variables).

3 not general but specific to a problem as it utilizes the eigenvalues and

eigenvectors of the system matrices.

4 such that truncation error depends on the off-diagonal terms of the matrix

∆ (ω, ξ(θ)).

5 showing ‘peaks’ when ω is near to the system natural frequencies

Next we use these frequency-adaptive spectral functions as trial functions
within a Galerkin error minimization scheme.
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The Galerkin approach

One can obtain constants ck ∈ C such that the error in the following

representation

û(ω, θ) =
n∑

k=1

ck(ω)Γ̂k(ω, ξ(θ))φk (69)

can be minimised in the least-square sense. It can be shown that the vector
c = {c1, c2, . . . , cn}T satisfies the n× n complex algebraic equations

S(ω) c(ω) = b(ω) with

Sjk =

M∑

i=0

ÃijkDijk; ∀ j, k = 1, 2, . . . , n; Ãijk = φT
j Aiφk, (70)

Dijk = E
[
ξi(θ)Γ̂k(ω, ξ(θ))

]
, bj = E

[
φT

j f(ω)
]
. (71)
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The Galerkin approach

The error vector can be obtained as

ε(ω, θ) =

(
M∑

i=0

Ai(ω)ξi(θ)

)(
n∑

k=1

ckΓ̂k(ω, ξ(θ))φk

)
− f(ω) ∈ C

N×N (72)

The solution is viewed as a projection where φk ∈ R
n are the basis

functions and ck are the unknown constants to be determined. This is

done for each frequency step.

The coefficients ck are evaluated using the Galerkin approach so that the

error is made orthogonal to the basis functions, that is, mathematically

ε(ω, θ)⊥φj ⇛
〈
φj , ε(ω, θ)

〉
= 0 ∀ j = 1, 2, . . . , n (73)
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The Galerkin approach

Imposing the orthogonality condition and using the expression of the

error one has

E

[
φT

j

(
M∑

i=0

Aiξi(θ)

)(
n∑

k=1

ckΓ̂k(ξ(θ))φk

)
− φT

j f

]
= 0, ∀j (74)

Interchanging the E [•] and summation operations, this can be simplified

to
n∑

k=1

(
M∑

i=0

(
φT

j Aiφk

)
E
[
ξi(θ)Γ̂k(ξ(θ))

])
ckE

[
φT

j f
]

(75)

or
n∑

k=1

(
M∑

i=0

ÃijkDijk

)
ck = bj (76)
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Model Reduction by reduced number of basis

Suppose the eigenvalues of A0 are arranged in an increasing order such
that

λ01 < λ02 < . . . < λ0n (77)

From the expression of the spectral functions observe that the

eigenvalues ( λ0k = ω2
0k

) appear in the denominator:

Γ
(1)
k (ω, ξ(θ)) =

φ
T
k f(ω)

Λ0k(ω) +
∑M

i=1 ξi(θ)Λik (ω)
(78)

where Λ0k(ω) = −ω2 + iω(ζ1 + ζ2ω
2
0k) + ω2

0k

The series can be truncated based on the magnitude of the eigenvalues

relative to the frequency of excitation. Hence for the frequency domain

analysis all the eigenvalues that cover almost twice the frequency range
under consideration can be chosen.
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Computational method

The mean vector can be obtained as

ū = E [û(θ)] =

p∑

k=1

ckE
[
Γ̂k(ξ(θ))

]
φk (79)

The covariance of the solution vector can be expressed as

Σu = E
[
(û(θ)− ū) (û(θ) − ū)

T
]
=

p∑

k=1

p∑

j=1

ckcjΣΓkj
φkφ

T
j (80)

where the elements of the covariance matrix of the spectral functions are
given by

ΣΓkj
= E

[(
Γ̂k(ξ(θ))− E

[
Γ̂k(ξ(θ))

])(
Γ̂j(ξ(θ)) − E

[
Γ̂j(ξ(θ))

])]
(81)
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Summary of the computational method

1 Solve the generalized eigenvalue problem associated with the mean

mass and stiffness matrices to generate the orthonormal basis vectors:

K0Φ = M0Φλ0

2 Select a number of samples, say Nsamp. Generate the samples of basic

random variables ξi(θ), i = 1, 2, . . . ,M .

3 Calculate the spectral basis functions (for example, first-order):

Γk (ω, ξ(θ)) =
φT

k
f(ω)

Λ0k
(ω)+

∑
M
i=1

ξi(θ)Λik
(ω)

, for k = 1, · · · p, p < n

4 Obtain the coefficient vector: c(ω) = S
−1(ω)b(ω) ∈ R

n, where

b(ω) = f̃(ω)⊙ Γ(ω), S(ω) = Λ0(ω)⊙ D0(ω) +
∑M

i=1 Ãi(ω)⊙ Di(ω) and

Di(ω) = E
[
Γ(ω, θ)ξi(θ)Γ

T (ω, θ)
]
, ∀ i = 0, 1, 2, . . . ,M

5 Obtain the samples of the response from the spectral series:

û(ω, θ) =
∑p

k=1 ck(ω)Γk(ξ(ω, θ))φk
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The Euler-Bernoulli beam example

An Euler-Bernoulli cantilever beam with stochastic bending modulus for a
specified value of the correlation length and for different degrees of

variability of the random field.

F

(c) Euler-Bernoulli beam

0 5 10 15 20
0

1000

2000

3000

4000

5000

6000

N
at

ur
al

 F
re

qu
en

cy
 (

H
z)

Mode number

(d) Natural frequency dis-
tribution.

0 5 10 15 20 25 30 35 40
10

−4

10
−3

10
−2

10
−1

10
0

R
at

io
 o

f E
ig

en
va

lu
es

, λ 1 / 
λ j

Eigenvalue number: j

(e) Eigenvalue ratio of KL de-
composition

Length : 1.0 m, Cross-section : 39 × 5.93 mm2, Young’s Modulus: 2 ×
1011 Pa.

Load: Unit impulse at t = 0 on the free end of the beam.
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Problem details

The bending modulus of the cantilever beam is taken to be a

homogeneous stationary Gaussian random field of the form

EI(x, θ) = EI0(1 + a(x, θ)) (82)

where x is the coordinate along the length of the beam, EI0 is the

estimate of the mean bending modulus, a(x, θ) is a zero mean stationary

random field.

The covariance kernel associated with this random field is

Ca(x1, x2) = σ2
ae

−(|x1−x2|)/µa (83)

where µa is the correlation length and σa is the standard deviation.

A correlation length of µa = L/5 is considered in the present numerical

study.
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Problem details

The random field is assumed to be Gaussian. The results are compared with

the polynomial chaos expansion.

The number of degrees of freedom of the system is n = 200.

The K.L. expansion is truncated at a finite number of terms such that 90%
variability is retained.

direct MCS have been performed with 10,000 random samples and for

three different values of standard deviation of the random field,
σa = 0.05, 0.1, 0.2.

Constant modal damping is taken with 1% damping factor for all modes.

Time domain response of the free end of the beam is sought under the

action of a unit impulse at t = 0

Upto 4th order spectral functions have been considered in the present
problem. Comparison have been made with 4th order Polynomial chaos

results.
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Mean of the response

(f) Mean, σa = 0.05. (g) Mean, σa = 0.1. (h) Mean, σa = 0.2.

Time domain response of the deflection of the tip of the cantilever for

three values of standard deviation σa of the underlying random field.

Spectral functions approach approximates the solution accurately.

For long time-integration, the discrepancy of the 4th order PC results
increases.
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Standard deviation of the response

(i) Standard deviation of de-
flection, σa = 0.05.

(j) Standard deviation of de-
flection, σa = 0.1.

(k) Standard deviation of de-
flection, σa = 0.2.

The standard deviation of the tip deflection of the beam.

Since the standard deviation comprises of higher order products of the

Hermite polynomials associated with the PC expansion, the higher order

moments are less accurately replicated and tend to deviate more
significantly.
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Frequency domain response: mean
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(l) Beam deflection for σa = 0.1.
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(m) Beam deflection for σa = 0.2.

The frequency domain response of the deflection of the tip of the
Euler-Bernoulli beam under unit amplitude harmonic point load at the free

end. The response is obtained with 10, 000 sample MCS and for

σa = {0.10, 0.20}.
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Frequency domain response: standard deviation
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(n) Standard deviation of the response for
σa = 0.1.
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(o) Standard deviation of the response for
σa = 0.2.

The standard deviation of the tip deflection of the Euler-Bernoulli beam under

unit amplitude harmonic point load at the free end. The response is obtained

with 10, 000 sample MCS and for σa = {0.10, 0.20}.
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Experimental investigations

Figure: A cantilever plate with randomly attached oscillators - Probabilistic Engineering Mechanics, 24[4]

(2009), pp. 473-492
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Measured frequency response function
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Summary

The mean response of a damped stochastic system is more damped

than the underlying baseline system

For small damping, ξe ≈ 31/4
√
ǫ√

π

√
ξ

Care must be taken to apply random modal analysis to stochastic

multiple degrees of freedom systems

Conventional response surface based methods fails to capture the
physics of damped dynamic systems

Proposed spectral function approach uses the undamped modal basis
and can capture the statistical trend of the dynamic response of

stochastic damped MDOF systems
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Summary

The solution is projected into the modal basis and the associated

stochastic coefficient functions are obtained at each frequency step (or
time step).

The coefficient functions, called as the spectral functions, are expressed
in terms of the spectral properties (natural frequencies and mode

shapes) of the system matrices.

The proposed method takes advantage of the fact that for a given

maximum frequency only a small number of modes are necessary to

represent the dynamic response. This modal reduction leads to a
significantly smaller basis.
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Assimilation with experimental measurements

In the frequency domain, the response can be simplified as

u(ω, θ) ≈
nr∑

k=1

φT
k f(ω)

−ω2 + 2iωζkω0k + ω2
0k

+
∑M

i=1 ξi(θ)Λik(ω)
φk

Some parts can be obtained from experiments while other parts can come

from stochastic modelling.
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