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Overview of the course

The course is dived into eight topics:

Introduction to probabilistic models & dynamic systems

Stochastic finite element formulation

Numerical methods for uncertainty propagation

Spectral function method

Parametric sensitivity of eigensolutions

Random eigenvalue problem in structural dynamics

Random matrix theory - formulation

Random matrix theory - application and validation
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Outline of this talk

1 Introduction

2 Linear dynamic systems

Undamped systems

Proportionally damped systems

3 Random variables

4 Random fields

5 Stochastic single degrees of freedom system

6 Stochastic finite element formulation
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Few general questions

How does system uncertainty impact the dynamic response? Does it

matter?

What is the underlying physics?

How can we model uncertainty in dynamic systems? Do we ‘know’ the

uncertainties?

How can we efficiently quantify uncertainty in the dynamic response for

large multi degrees of freedom systems?

What about using ‘black box’ type response surface methods?

Can we use modal analysis for stochastic systems? Does stochastic
systems has natural frequencies and mode shapes?
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Mathematical models for dynamic systems

Mathematical Models of Dynamic Systems
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A general overview of computational mechanics
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Ensembles of structural dynamical systems

Many structural dynamic systems are manufactured in a production line (nom-
inally identical systems). On the other hand, some models are complex!
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Complex structural dynamical systems

Complex aerospace system can have millions of degrees of freedom and

there can be ‘errors’ and/or ‘lack of knowledge’ in its numerical (Finite
Element) model
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Model quality

The quality of a model of a dynamic system depends on the following three
factors:

Fidelity to (experimental) data:
The results obtained from a numerical or mathematical model undergoing

a given excitation force should be close to the results obtained from the

vibration testing of the same structure undergoing the same excitation.

Robustness with respect to (random) errors:

Errors in estimating the system parameters, boundary conditions and
dynamic loads are unavoidable in practice. The output of the model

should not be very sensitive to such errors.

Predictive capability
In general it is not possible to experimentally validate a model over the

entire domain of its scope of application. The model should predict the
response well beyond its validation domain.
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Sources of uncertainty

Different sources of uncertainties in the modeling and simulation of dynamic

systems may be attributed, but not limited, to the following factors:

Mathematical models: equations (linear, non-linear), geometry, damping

model (viscous, non-viscous, fractional derivative), boundary

conditions/initial conditions, input forces;

Model parameters: Young’s modulus, mass density, Poisson’s ratio,

damping model parameters (damping coefficient, relaxation modulus,
fractional derivative order)

Numerical algorithms: weak formulations, discretisation of displacement

fields (in finite element method), discretisation of stochastic fields (in
stochastic finite element method), approximate solution algorithms,

truncation and roundoff errors, tolerances in the optimization and iterative
methods, artificial intelligent (AI) method (choice of neural networks)

Measurements: noise, resolution (number of sensors and actuators),

experimental hardware, excitation method (nature of shakers and
hammers), excitation and measurement point, data processing

(amplification, number of data points, FFT), calibration
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Problem-types in structural mechanics

Input System Output Problem name Main techniques

Known (deterministic) Known (deterministic) Unknown Analysis (forward problem) FEM/BEM/Finite differ-

ence

Known (deterministic) Incorrect (deterministic) Known (deterministic) Updating/calibration Modal updating

Known (deterministic) Unknown Known (deterministic) System identification Kalman filter

Assumed (deterministic) Unknown (deterministic) Prescribed Design Design optimisation

Unknown Partially Known Known Structural Health Monitor-

ing (SHM)

SHM methods

Known (deterministic) Known (deterministic) Prescribed Control Modal control

Known (random) Known (deterministic) Unknown Random vibration Random vibration meth-

ods
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Problem-types in structural mechanics

Input System Output Problem name Main techniques

Known (deterministic) Known (random) Unknown
Stochastic analysis (for-

ward problem)

SFEM/SEA/RMT

Known (random) Incorrect (random) Known (random) Probabilistic updat-

ing/calibration

Bayesian calibration

Assumed (ran-

dom/deterministic)

Unknown (random) Prescribed (random) Probabilistic design RBOD

Known (ran-

dom/deterministic)

Partially known (random) Partially known (random) Joint state and parameter

estimation

Particle Kalman Fil-

ter/Ensemble Kalman
Filter

Known (ran-

dom/deterministic)

Known (random) Known from experiment

and model (random)

Model validation Validation methods

Known (ran-

dom/deterministic)

Known (random) Known from different

computations (random)

Model verification verification methods
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Equation of motion

The equations of motion of an undamped non-gyroscopic system with N
degrees of freedom can be given by

Mq̈(t) + Kq(t) = f (t) (1)

where M ∈ R
N×N is the mass matrix, K ∈ R

N×N is the stiffness matrix,
q(t) ∈ R

N is the vector of generalized coordinates and f(t) ∈ R
N is the

forcing vector.

Equation (1) represents a set of coupled second-order
ordinary-differential equations. The solution of this equation also requires

the knowledge of the initial conditions in terms of displacements and
velocities of all the coordinates. The initial conditions can be specified as

q(0) = q0 ∈ R
N and q̇(0) = q̇0 ∈ R

N . (2)
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Modal analysis

The natural frequencies (ωj) and the mode shapes (xj) are intrinsic

characteristic of a system and can be obtained by solving the associated

matrix eigenvalue problem

Kxj = ω2
jMxj , ∀ j = 1, · · · , N. (3)

The eigensolutions satisfy the orthogonality condition

xT
l Mxj = δlj (4)

and xT
l Kxj = ω2

j δlj , ∀ l, j = 1, · · · , N (5)

Using the orthogonality relationships in (4) and (5), the equations of

motion in the modal coordinates may be obtained as

ÿ(t) +Ω2y(t) = f̃(t)

or ÿj(t) + ω2
j yj(t) = f̃j(t) ∀ j = 1, · · · , N

(6)

where f̃(t) = XT
f(t) is the forcing function in modal coordinates.
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Dynamic response

Taking the Laplace transform of (1) and considering the initial conditions
in (2) one has

s2Mq̄− sMq0 − Mq̇0 + Kq̄ = f̄(s) (7)

or
[
s2M + K

]
q̄ = f̄(s) + Mq̇0 + sMq0 = p̄(s) (say). (8)

Using the mode orthogonality the response in the frequency domain

q̄(iω) =

N∑

j=1

xT
j f̄ (iω) + xT

j Mq̇0 + iωxT
j Mq0

ω2
j − ω2

xj . (9)

This expression shows that the dynamic response of the system is a
linear combination of the mode shapes.
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Equation of motion

The equations of motion can expressed as

Mq̈(t) + Cq̇(t) + Kq(t) = f(t). (10)

Theorem

Viscously damped system (10) possesses classical normal modes if and

only if CM−1K = KM−1C.

With proportional damping assumption, the damping matrix C is

simultaneously diagonalizable with M and K. This implies that the
damping matrix in the modal coordinate

C
′ = XTCX (11)

is a diagonal matrix. The damping ratios ζj are defined from the diagonal
elements of the modal damping matrix as

C′
jj = 2ζjωj ∀j = 1, · · · , N. (12)
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Dynamic response

The equations of motion in the modal coordinate can be decoupled as

ÿj(t) + 2ζjωj ẏj(t) + ω2
j yj(t) = f̃j(t) ∀ j = 1, · · · , N. (13)

Taking the Laplace transform of (10) and considering the initial conditions

in (2) one has

s2Mq̄− sMq0 − Mq̇0 + sCq̄− Cq0 + Kq̄ = f̄ (s) (14)

or
[
s2M + sC + K

]
q̄ = f̄ (s) + Mq̇0 + Cq0 + sMq0. (15)

The transfer function matrix or the receptance matrix can be obtained as

H(iω) = X
[
−ω2I + 2iωζΩ+Ω2

]−1
XT =

N∑

j=1

xjx
T
j

−ω2 + 2iωζjωj + ω2
j

. (16)
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Dynamic response

The dynamic response in the frequency domain can be conveniently

represented as

q̄(iω) =
N∑

j=1

xT
j f̄ (iω) + xT

j Mq̇0 + xT
j Cq0 + iωxT

j Mq0

−ω2 + 2iωζjωj + ω2
j

xj . (17)

Therefore, like undamped systems, the dynamic response of

proportionally damped system can also be expressed as a linear
combination of the undamped mode shapes.
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Dynamic response

In the time-domain, taking the inverse Laplace transform we have

q(t) = L−1 [q̄(s)] =

N∑

j=1

aj(t)xj (18)

where the time dependent constants are given by

aj(t) =

∫ t

0

1

ωdj

xT
j f(τ)e−ζjωj(t−τ) sin

(
ωdj

(t− τ)
)
dτ+e−ζjωjtBj cos

(
ωdj

t+ θj
)

(19)
where

Bj =

√
(
xT
j Mq0

)2
+

1

ω2
dj

(
ζjωjx

T
j Mq0 − xT

j Mq̇0 − xT
j Cq0

)2

(20)

and tan θj =
1

ωdj

(
ζjωj −

xT
j Mq̇0 + xT

j Cq0

xT
j Mq0

)
(21)
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Definition of a random variable

A real random variable Y (θ), θ ∈ Θ is a set of function defined on Θ such
that for every real number y there exist a probability P (θ : Y (ω) ≤ y)

Probability Distribution Function: Consider the event Y ≤ y. We define

F (y) = P (Y ≤ y), y ∈ R

F (y) is called Probability Distribution Function of Y . F (y) is a

monotonically increasing function y with F (−∞) = 0 and F (∞) = 1.

Probability Density Function: The probability structure of a random

variable can be described by the derivative of the probability distribution

function p(y), called the Probability Density Function. Thus

p(y) =
∂F (y)

∂y

This is normalised such that
∫ ∞

−∞

p(y)dy = 1
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Definition of a random field/process

A random field H(x, θ) is defined as a set function of two arguments

θ ∈ Θ and x ∈ X , where Θ is the sample space of the family of random
variables H(x, •) and X is the indexing set of parameter X .

Since a random field H(x, θ) reduces to a set of random variables at fixed
instances of x = x1, x2, · · ·xn, · · · , its probability structure may be defined

by a hierarchy of joint probability density function

p(h1, x1), p(h1, x1;h2, x2), · · · , p(h1, x1;h2, x2; · · · , hn, xn; · · · ) (22)

Stationary random field: A random field is said to be stationary if its

probability structure is invariant under arbitrary translations of the

indexing parameter. Thus H(x, θ) is stationary if for all x1, x2, · · · , xn and
an arbitrary constant τ if for all n

p(h1, x1;h2, x2; · · · , hn, xn) = p(h1, x1+ τ ;h2, x2+ τ ; · · · , hn, xn+ τ) (23)

S. Adhikari (Swansea) D1: Uncertainty quantification in Structural Dynamics December 2019, CSU, Changsha 24



Moments of a random field

The mean of a random field is given by

E [H(x, θ)] =

∫
H(x, θ)p(h1, x1)dh1

The autocorrelation is given by

CHH(x1, x2) =

∫
H(x, θ)p(h1, x1;h2, x2)dh1dh2
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Stochastic SDOF systems

m

k

��

u(t)

f(t)

fd(t)

Consider a normalised single degrees of freedom system (SDOF):

ü(t) + 2ζωn u̇(t) + ω2
n u(t) = f(t)/m (24)

Here ωn =
√
k/m is the natural frequency and ξ = c/2

√
km is the damping

ratio.

We are interested in understanding the motion when the natural

frequency of the system is perturbed in a stochastic manner.

Stochastic perturbation can represent statistical scatter of measured
values or a lack of knowledge regarding the natural frequency.
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Frequency variability
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(b) Pdf: σa = 0.2

Figure: We assume that the mean of r is 1 and the standard deviation is σa.

Suppose the natural frequency is expressed as ω2
n = ω2

n0
r, where ωn0

is

deterministic frequency and r is a random variable with a given
probability distribution function.

Several probability distribution function can be used.

We use uniform, normal and lognormal distribution
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Frequency samples
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Figure: 1000 sample realisations of the frequencies for the three distributions
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Response in the time domain
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Figure: Response due to initial velocity v0 with 5% damping
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Frequency response function
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Figure: Normalised frequency response function |u/ust|
2, where ust = f/k
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Key observations

The mean response is more damped compared to deterministic
response.

The higher the randomness, the higher the “effective damping”.

The qualitative features are almost independent of the distribution the

random natural frequency.

We often use averaging to obtain more reliable experimental results - is it

always true?

Assuming uniform random variable, we aim to explain some of these

observations.
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Equivalent damping

Assume that the random natural frequencies are ω2
n = ω2

n0
(1 + ǫx), where

x has zero mean and unit standard deviation.

The normalised harmonic response in the frequency domain

u(iω)

f/k
=

k/m

[−ω2 + ω2
n0
(1 + ǫx)] + 2iξωωn0

√
1 + ǫx

(25)

Considering ωn0
=
√
k/m and frequency ratio r = ω/ωn0

we have

u

f/k
=

1

[(1 + ǫx)− r2] + 2iξr
√
1 + ǫx

(26)
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Equivalent damping

The squared-amplitude of the normalised dynamic response at ω = ωn0

(that is r = 1) can be obtained as

Û =

( |u|
f/k

)2

=
1

ǫ2x2 + 4ξ2(1 + ǫx)
(27)

Since x is zero mean unit standard deviation uniform random variable, its
pdf is given by px(x) = 1/2

√
3,−

√
3 ≤ x ≤

√
3

The mean is therefore

E
[
Û
]
=

∫
1

ǫ2x2 + 4ξ2(1 + ǫx)
px(x)dx

=
1

4
√
3ǫξ
√
1− ξ2

tan−1

( √
3ǫ

2ξ
√
1− ξ2

− ξ√
1− ξ2

)

+
1

4
√
3ǫξ
√
1− ξ2

tan−1

( √
3ǫ

2ξ
√
1− ξ2

+
ξ√

1− ξ2

)
(28)
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Equivalent damping

Note that

1

2

{
tan−1(a+ δ) + tan−1(a− δ)

}
= tan−1(a) +O(δ2) (29)

Neglecting terms of the order O(ξ2) we have

E
[
Û
]
≈ 1

2
√
3ǫξ
√
1− ξ2

tan−1

( √
3ǫ

2ξ
√
1− ξ2

)
=

tan−1(
√
3ǫ/2ξ)

2
√
3ǫξ

(30)
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Equivalent damping

For small damping, the maximum deterministic amplitude at ω = ωn0
is

1/4ξ2e where ξe is the equivalent damping for the mean response

Therefore, the equivalent damping for the mean response is given by

(2ξe)
2 =

2
√
3ǫξ

tan−1(
√
3ǫ/2ξ)

(31)

For small damping, taking the limit we can obtain

ξe ≈
31/4

√
ǫ√

π

√
ξ (32)

The equivalent damping factor of the mean system is proportional to the

square root of the damping factor of the underlying baseline system
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Equivalent frequency response function
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Figure: Normalised frequency response function with equivalent damping (ξe = 0.05 in

the ensembles). For the two cases ξe = 0.0643 and ξe = 0.0819 respectively.
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Can we extend the ideas based on stochastic SDOF systems to stochastic

MDOF systems?
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Stochastic modal analysis

Stochastic modal analysis to obtain the dynamic response needs further
thoughts

Consider the following 3DOF example:

m1

m2

m3
k4 k5k1 k3

k2

k6

Figure: A 3DOF system with parametric uncertainty in mi and ki
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Statistical overlap
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Figure: Scatter of the eigenvalues due to parametric uncertainties
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Stochastic PDEs

We consider a stochastic partial differential equation (PDE)

ρ(r, θ)
∂2U(r, t, θ)

∂t2
+ Lα

∂U(r, t, θ)

∂t
+ LβU(r, t, θ) = p(r, t) (33)

The stochastic operator Lβ can be

Lβ ≡ ∂
∂xAE(x, θ) ∂

∂x axial deformation of rods

Lβ ≡ ∂2

∂x2EI(x, θ) ∂2

∂x2 bending deformation of beams

Lα denotes the stochastic damping, which is mostly proportional in nature.

Here α, β : Rd ×Θ → R are stationary square integrable random fields, which

can be viewed as a set of random variables indexed by r ∈ R
d. Based on the

physical problem the random field a(r, θ) can be used to model different

physical quantities (e.g., AE(x, θ), EI(x, θ)).
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Discretisation of random fields

The random process a(r, θ) can be expressed in a generalized Fourier

type of series known as the Karhunen-Loève expansion

a(r, θ) = a0(r) +

∞∑

i=1

√
νiξi(θ)ϕi(r) (34)

Here a0(r) is the mean function, ξi(θ) are uncorrelated standard
Gaussian random variables, νi and ϕi(r) are eigenvalues and

eigenfunctions satisfying the integral equation

∫

D

Ca(r1, r2)ϕj(r1)dr1 = νjϕj(r2), ∀ j = 1, 2, · · · (35)
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Exponential autocorrelation function

The autocorrelation function:

C(x1, x2) = e−|x1−x2|/b (36)

The underlying random process H(x, θ) can be expanded using the
Karhunen-Loève (KL) expansion in the interval −a ≤ x ≤ a as

H(x, θ) =
∞∑

j=1

ξj(θ)
√

λjϕj(x) (37)

Using the notation c = 1/b, the corresponding eigenvalues and eigenfunctions

for odd j and even j are given by

λj =
2c

ω2
j + c2

, ϕj(x) =
cos(ωjx)√

a+
sin(2ωja)

2ωj

, where tan(ωja) =
c

ωj
,

(38)

λj =
2c

ωj
2 + c2

, ϕj(x) =
sin(ωjx)√

a− sin(2ωja)

2ωj

, where tan(ωja) =
ωj

−c
.

(39)
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KL expansion
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b=L/2,  N=10

b=L/3,  N=13

b=L/4,  N=16

b=L/5,  N=19

b=L/10,  N=34

The eigenvalues of the Karhunen-Loève expansion for different correlation
lengths, b, and the number of terms, N , required to capture 90% of the infinite

series. An exponential correlation function with unit domain (i.e., a = 1/2) is

assumed for the numerical calculations. The values of N are obtained such
that λN/λ1 = 0.1 for all correlation lengths. Only eigenvalues greater than λN

are plotted.
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Example: A beam with random properties

The equation of motion of an undamped Euler-Bernoulli beam of length L with

random bending stiffness and mass distribution:

∂2

∂x2

[
EI(x, θ)

∂2Y (x, t)

∂x2

]
+ ρA(x, θ)

∂2Y (x, t)

∂t2
= p(x, t). (40)

Y (x, t): transverse flexural displacement, EI(x): flexural rigidity, ρA(x): mass

per unit length, and p(x, t): applied forcing. Consider

EI(x, θ) = EI0 (1 + ǫ1F1(x, θ)) (41)

and ρA(x, θ) = ρA0 (1 + ǫ2F2(x, θ)) (42)

The subscript 0 indicates the mean values, 0 < ǫi << 1 (i=1,2) are

deterministic constants and the random fields Fi(x, θ) are taken to have zero

mean, unit standard deviation and covariance Rij(ξ).
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Random beam element
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Random beam element in the local coordinate.
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Realisations of the random field
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baseline value

perturbed values

Some random realizations of the bending rigidity EI of the beam for

correlation length b = L/3 and strength parameter ǫ1 = 0.2 (mean 2.0× 105).
Thirteen terms have been used in the KL expansion.

S. Adhikari (Swansea) D1: Uncertainty quantification in Structural Dynamics December 2019, CSU, Changsha 46



Example: A beam with random properties

We express the shape functions for the finite element analysis of
Euler-Bernoulli beams as

N(x) = Γ s(x) (43)

where

Γ =




1 0
−3

ℓe
2

2

ℓe
3

0 1
−2

ℓe
2

1

ℓe
2

0 0
3

ℓe
2

−2

ℓe
3

0 0
−1

ℓe
2

1

ℓe
2




and s(x) =
[
1, x, x2, x3

]T
. (44)

The element stiffness matrix:

Ke(θ) =

∫ ℓe

0

N
′′

(x)EI(x, θ)N
′′T

(x)dx =

∫ ℓe

0

EI0 (1 + ǫ1F1(x, θ))N
′′

(x)N
′′T

(x)dx.

(45)
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Example: A beam with random properties

Expanding the random field F1(x, θ) in KL expansion

Ke(θ) = Ke0 +∆Ke(θ) (46)

where the deterministic and random parts are

Ke0 = EI0

∫ ℓe

0

N
′′

(x)N
′′T

(x) dx and ∆Ke(θ) = ǫ1

NK∑

j=1

ξKj(θ)
√

λKjKej .

(47)

The constant NK is the number of terms retained in the Karhunen-Loève
expansion and ξKj(θ) are uncorrelated Gaussian random variables with zero

mean and unit standard deviation. The constant matrices Kej can be
expressed as

Kej = EI0

∫ ℓe

0

ϕKj(xe + x)N
′′

(x)N
′′T

(x) dx (48)
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Example: A beam with random properties

The mass matrix can be obtained as

Me(θ) = Me0 +∆Me(θ) (49)

The deterministic and random parts is given by

Me0 = ρA0

∫ ℓe

0

N(x)NT (x) dx and ∆Me(θ) = ǫ2

NM∑

j=1

ξMj(θ)
√

λMjMej . (50)

The constant NM is the number of terms retained in Karhunen-Loève

expansion and the constant matrices Mej can be expressed as

Mej = ρA0

∫ ℓe

0

ϕMj(xe + x)N(x)NT (x) dx. (51)

Both Kej and Mej can be obtained in closed-form.
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Example: A beam with random properties

These element matrices can be assembled to form the global random
stiffness and mass matrices of the form

K(θ) = K0 +∆K(θ) and M(θ) = M0 +∆M(θ). (52)

Here the deterministic parts K0 and M0 are the usual global stiffness and
mass matrices obtained form the conventional finite element method. The

random parts can be expressed as

∆K(θ) = ǫ1

NK∑

j=1

ξKj(θ)
√

λKjKj and ∆M(θ) = ǫ2

NM∑

j=1

ξMj(θ)
√
λMjMj (53)

The element matrices Kej and Mej can be assembled into the global matrices

Kj and Mj . The total number of random variables depend on the number of

terms used for the truncation of the infinite series. This in turn depends on the
respective correlation lengths of the underlying random fields.
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Stochastic equation of motion

The equation for motion for stochastic linear MDOF dynamic systems:

M(θ)ü(θ, t) + C(θ)u̇(θ, t) + K(θ)u(θ, t) = f(t) (54)

M(θ) = M0 +
∑p

i=1 µi(θi)Mi ∈ R
n×n is the random mass matrix,

K(θ) = K0 +
∑p

i=1 νi(θi)Ki ∈ R
n×n is the random stiffness matrix,

C(θ) ∈ R
n×n as the random damping matrix and f(t) is the forcing vector

The mass and stiffness matrices have been expressed in terms of their

deterministic components (M0 and K0) and the corresponding random
contributions (Mi and Ki). These can be obtained from discretising

stochastic fields with a finite number of random variables (µi(θi) and
νi(θi)) and their corresponding spatial basis functions.

Proportional damping model is considered for which

C(θ) = ζ1M(θ) + ζ2K(θ), where ζ1 and ζ2 are scalars.
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Frequency domain representation

For the harmonic analysis of the structural system, taking the Fourier

transform [
−ω2M(θ) + iωC(θ) + K(θ)

]
ũ(ω, θ) = f̃(ω) (55)

where ũ(ω, θ) is the complex frequency domain system response

amplitude, f̃(ω) is the amplitude of the harmonic force.

For convenience we group the random variables associated with the

mass and stiffness matrices as

ξi(θ) = µi(θ) and ξj+p1
(θ) = νj(θ) for i = 1, 2, . . . , p1

and j = 1, 2, . . . , p2
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Frequency domain representation

Using M = p1 + p2 which we have

(
A0(ω) +

M∑

i=1

ξi(θ)Ai(ω)

)
ũ(ω, θ) = f̃ (ω) (56)

where A0 and Ai ∈ C
n×n represent the complex deterministic and

stochastic parts respectively of the mass, the stiffness and the damping
matrices ensemble.

For the case of proportional damping the matrices A0 and Ai can be

written as

A0(ω) =
[
−ω2 + iωζ1

]
M0 + [iωζ2 + 1]K0, (57)

Ai(ω) =
[
−ω2 + iωζ1

]
Mi for i = 1, 2, . . . , p1 (58)

and Aj+p1
(ω) = [iωζ2 + 1]Kj for j = 1, 2, . . . , p2 .
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Time domain representation

If the time steps are fixed to ∆t, then the equation of motion can be written as

M(θ)üt+∆t(θ) + C(θ)u̇t+∆t(θ) + K(θ)ut+∆t(θ) = pt+∆t. (59)

Following the Newmark method based on constant average acceleration

scheme, the above equations can be represented as

[a0M(θ) + a1C(θ) + K(θ)]ut+∆t(θ) = p
eqv
t+∆t(θ) (60)

and, p
eqv
t+∆t(θ) = pt+∆t + f(ut(θ), u̇t(θ), üt(θ),M(θ),C(θ)) (61)

where p
eqv
t+∆t(θ) is the equivalent force at time t+∆t which consists of

contributions of the system response at the previous time step.

S. Adhikari (Swansea) D1: Uncertainty quantification in Structural Dynamics December 2019, CSU, Changsha 54



Newmark’s method

The expressions for the velocities u̇t+∆t(θ) and accelerations üt+∆t(θ) at

each time step is a linear combination of the values of the system response at
previous time steps (Newmark method) as

üt+∆t(θ) = a0 [ut+∆t(θ) − ut(θ)]− a2u̇t(θ) − a3üt(θ) (62)

and, u̇t+∆t(θ) = u̇t(θ) + a6üt(θ) + a7üt+∆t(θ) (63)

where the integration constants ai, i = 1, 2, . . . , 7 are independent of system

properties and depends only on the chosen time step and some constants:

a0 =
1

α∆t2
; a1 =

δ

α∆t
; a2 =

1

α∆t
; a3 =

1

2α
− 1; (64)

a4 =
δ

α
− 1; a5 =

∆t

2

(
δ

α
− 2

)
; a6 = ∆t(1 − δ); a7 = δ∆t (65)
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Newmark’s method

Following this development, the linear structural system in (60) can be
expressed as [

A0 +

M∑

i=1

ξi(θ)Ai

]

︸ ︷︷ ︸
A(θ)

ut+∆t(θ) = p
eqv
t+∆t(θ). (66)

where A0 and Ai represent the deterministic and stochastic parts of the
system matrices respectively. For the case of proportional damping, the

matrices A0 and Ai can be written similar to the case of frequency domain as

A0 = [a0 + a1ζ1]M0 + [a1ζ2 + 1]K0 (67)

and, Ai = [a0 + a1ζ1]Mi for i = 1, 2, . . . , p1 (68)

= [a1ζ2 + 1]Ki for i = p1 + 1, p1 + 2, . . . , p1 + p2 .
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General mathematical representation

Whether time-domain or frequency domain methods were used, in

general the main equation which need to be solved can be expressed as

(
A0 +

M∑

i=1

ξi(θ)Ai

)
u(θ) = f(θ) (69)

where A0 and Ai represent the deterministic and stochastic parts of the

system matrices respectively. These can be real or complex matrices.

Generic response surface based methods have been used in literature -

for example the Polynomial Chaos Method
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