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Chapter 1

Dynamic stiffness method using the

weighted integral approach

1.1 Model Uncertainty: Why and How a Model Turns

Uncertain?

Uncertainties are unavoidable in the description of real-life engineering systems. There are

several sources of uncertainties, both in the mathematical models and in the experimental

results. Uncertainties can be broadly divided into following three categories. The first

type of uncertainty is due to the inherent variability in the system parameters, for example,

different cars manufactured from a single production line are not exactly the same. This type

of uncertainty is often referred to as aleatoric uncertainty. If enough samples are present, it

is possible to characterize the variability using well established statistical methods and the

probably density functions of the parameters can be obtained. The second type is uncertainty

due to lack of knowledge regarding a system. This type of uncertainty is often referred to as

epistemic uncertainty and generally arise in the modelling of complex systems, for example

the problem of predicting cabin noise in helicopters. Due its very nature, it is difficult to

quantify or model this type uncertainties. Unlike aleatoric uncertainties, it is recognized that

probabilistic models are not quite suitable for epistemic uncertainties. Several possibilistic

approaches based on interval algebra, convex sets, Fuzzy sets and generalized Dempster-

Schafer theory have been proposed to characterize this type of uncertainties. The third

type of uncertainty is similar to the first type except that the corresponding variability

characterization is not available, in which case work can be directed to gain better knowledge.

This type uncertainty often termed as prejudicial uncertainty, may consist of systematic

and/or random errors, bias or other prejudices. An example of this type of uncertainty

is the use of viscous damping model in spite of knowing that the true damping model is

not viscous. The total uncertainty of a system is the combination of these three types of

uncertainties. Different sources of uncertainties in the modeling and simulation of dynamic

systems may be attributed, but not limited, to the following factors:

1
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• Mathematical models

– Equations (linear, non-linear)

– Geometry

– Damping model (viscous, non-viscous, fractional derivative)

– Boundary conditions/Initial conditions

– Input forces

– Deterministic chaos

• Model parameters

– Young’s modulus

– Mass density

– Poisson’s ratio

– Damping model parameters (damping coefficient, relaxation modulus, fractional

derivative order)

• Numerical algorithms

– Weak formulations

– Discretisation of displacement fields (in finite element method)

– Discretisation of stochastic fields (in stochastic finite element method)

– Approximate solution algorithms

– Truncation and roundoff errors

– Tolerances in the optimization and iterative methods

– Artificial intelligent (AI) method (choice of neural networks)

• Surrogate models

– Choice of model

– Approximation error

– Interpolation error

– Extrapolation error

• Measurements

– Noise

– Resolution (number of sensors and actuators)
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– Experimental hardware

– Excitation method (nature of shakers and hammers)

– Excitation and measurement point

– Data processing (amplification, number of data points, FFT)

– Calibration

It is beyond the scope of this note to discuss the quantification and propagation methods

of the uncertainties arising from the above sources. We will focus our attention to the

modeling and propagation of parametric uncertainties only. Moreover, only probabilistic

models of uncertainty will be considered. In what follows next, basic understanding of the

probability theory (see Papoulis and Pillai, 2002, for details) will be assumed.

1.2 Parametric Uncertainty in Structural Dynamics

The governing equation of motion of a linear structural system with stochastic parameter

uncertainties, subjected to external excitations is most often a set of linear differential equa-

tion with random coefficients. The problem can be stated as finding the solution of the

equation

L(Ω, r, t)u(Ω, r, t) = f(Ω, r, t) (1.1)

with prescribed boundary conditions and initial conditions. In the above equation L is a

linear stochastic differential operator, u is the random system response to be determined, f

is the dynamic excitation which can be random, r is the special coordinate vector, t is the

time and Ω is the sample space denoting the stochastic nature of the problem. Equation

(1.1) with L as a deterministic operator and f as a random forcing function, has been studied

extensively within the scope of random vibration theory (Nigam, 1983). Here our interest is

when the operator L itself is random. There are mainly two methods to model parametric

uncertainty using the probabilistic approach: (a) uncertainty modeling using random vari-

ables, and (b) uncertainty modeling using stochastic processes. Since we often encounter

distributed systems (such as beams, plates shells) during the modeling of real-life systems,

stochastic process models should be used for a realistic representation of the uncertainties

in the system properties. This in turn will result the operator L as a function of stochastic

processes. Exact solutions of such stochastic differential equations, even for a simple system

such as a standard Euler-Bernoulli beam, are very difficult to obtain. The problem becomes

even more intractable when one has to reckon with a real-life engineering dynamics prob-

lems, where a set of stochastic boundary value problems defined on irregular spatial domain

arises. This has motivated the engineers to seek approximate numerical methods for the

solution of governing stochastic differential equations. The methods for solving structural

dynamic problems with statistical uncertainties can be broadly grouped under Stochastic
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Finite Element Method (SFEM) and Statistical Energy Analysis (SEA). SEA was devel-

oped during 1960s (Lyon and Dejong, 1995) to analyze high frequency vibration problems

where non-parametric uncertainties plays a key role. The stochastic finite element method

is ideally suitable for low-frequency vibration problems where parametric uncertainties plays

a key role. Here the stochastic finite element method is explained by applying it to an

Euler-Bernoulli beam with stochastic parameter distributions.

1.3 Uncertainty Propagation Using Stochastic Finite

Element Method

Stochastic finite element method (SFEM) is a generalization of the deterministic finite el-

ement method (FEM) to incorporate the random field models for the elastic, mass and

damping properties (see the monographs by Ghanem and Spanos, 1991, Kleiber and Hien,

1992). Application of the stochastic finite element method to linear structural dynamics

problems typically consists of the following steps:

1. Selection of appropriate probabilistic models for parameter uncertainties and boundary

conditions (such as Gaussian/non-Gaussian models).

2. Discretization of random fields, i. e., replacement of the element property random

fields by an equivalent finite set of random variables.

3. Formulation of the system equations of motion using stochastic generalization of stan-

dard methods such as variational method, energy method, virtual work method or

weighted residual method. As a result of this process, the elements of M,C and K

will be random variables.

4. At this point one can take two routes. The first, and the most common approach, is to

solve the free vibration problem, which in this case turns out to be a random matrix

eigenvalue problem. The aim is to obtain the joint statistics of the mode shapes and

natural frequencies. Once they are obtained, the next step is the characterization of

response variability for the forced vibration problem.

5. The second route to solve the problem is using the dynamic stiffness method. The

main challenge here is to invert the global dynamic stiffness matrix, which in general

is a random complex symmetric matrix.

Extensive research works have been done in all of the above mentioned areas during the last

few decades. In this section we will discuss the stochastic dynamic stiffness matrix method.

The random eigenvalue problems will be discussed in the next chapter.
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Figure 1.1: Random beam element in the local coordinate.

1.4 Stochastic Dynamic Stiffness Matrix Method

We will develop a finite element based formulation to obtain the dynamic stiffness matrix

of a general beam element having randomly inhomogeneous mass density, flexural and axial

rigidities and elastic foundation modulus. The beam element considered in this study is

shown in Figure 1.1. The governing field equation of motion, assuming linear behavior and

the validity of the Euler-Bernoulli hypotheses, is given by

∂2

∂x2

[
EI(x)

∂2Y (x, t)

∂x2
+ c1

∂3Y (x, t)

∂x2∂t

]
+m(x)

∂2Y (x, t)

∂t2
+ c2

∂Y (x, t)

∂t
= 0 (1.2)

Here Y (x, t) is the transverse flexural displacement, EI(x) is the flexural rigidity, m(x) is

the mass per unit length, c1 is the strain rate dependent viscous damping coefficient and c2

is the velocity dependent viscous damping coefficient. The quantities EI(x) and m(x), in

this study, are modeled as meansquare bounded, homogeneous random fields and are taken

to have the following form

m(x) = m0 [1 + ǫ1f1(x)] , and EI(x) = EI0 [1 + ǫ2f2(x)] . (1.3)

The subscript 0 indicates the mean values, ǫ1 and ǫ2 are deterministic constants which are

usually small compared to the unity. The random fields f1(x) and f2(x) are taken to have zero

mean, unit standard deviation with covariance Rij(ξ) =< fi(x)fj(x) > (i, j = 1, 2); where

< • > denotes the mathematical expectation operator. Since the linear system behavior is

being assumed, in steady state, the solution to the field equation can be expressed as

Y (x, t) = y(x) exp [iωt] . (1.4)

Consequently, the equation governing y(x) has the form

d2

dx2

[
EI(x)

d2y

dx2 + iωc1
d2y

dx2

]
+
[
−m(x)ω2 + c2iω

]
y = 0 (1.5)

An exact solution to this type of equation is in general not possible due to the presence

of the random fields. The deterministic finite element method will be extended to obtain

approximate solutions.
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Instead of obtaining the standard mass and stiffness matrices, the problem will be solved

using dynamic stiffness method. The dynamic stiffness method is an useful alternative to the

more popular mode superposition method of vibration analysis. A vast amount of literature

is available on the development of dynamic stiffness method in deterministic context, see,

for example Paz (1980), Doyle (1989), Ferguson and Pilkey (1993a,b). Some of the notable

features of the method are

• the mass distribution of the element is treated in an exact manner in deriving the

element dynamics stiffness matrix;

• the dynamic stiffness matrix of one dimensional structural elements taking into account

the effects of flexure, torsion, axial motion, shear deformation effects and damping are

exactly determinable, which, in turn, enables the exact vibration analysis of skeletal

structures by an inversion of the global dynamic stiffness matrix;

• the method does not employ eigenfunction expansions and, consequently, a major

step of the traditional finite element analysis, namely, the determination of natural

frequencies and mode shapes, is eliminated which automatically avoids the errors due

to series truncation; this makes the method attractive for situations in which a large

number of modes participate in vibration;

• the method is essentially a frequency domain approach suitable for steady state har-

monic or stationary random excitation problems; generalization to other type of prob-

lems through the use of Laplace transforms is also possible;

• the static stiffness matrix and consistent mass matrix appear as the first two terms in

the Taylor expansion of the dynamic stiffness matrix in the frequency parameter.

The dynamic stiffness coefficients are, by definition, frequency dependent. When system

properties are modeled as random fields, these coefficients become random variables for

a fixed value of the driving frequency. As the driving frequency is varied, these stiffness

coefficients become random processes evolving in the frequency parameter. Furthermore,

the presence of damping in the system makes these random processes complex in nature.

The solution procedure is based on the application of finite element method which uses

frequency dependent shape functions. This offers a powerful means to discretize the system

property random fields and relaxes the dependence of finite element mesh size with respect to

the frequency of excitation. The formulation of the dynamic stiffness matrix can be achieved

using following steps.

Step 1 Derivation of the shape functions:

Obtain the shape functions using the deterministic undamped field equation. That is,

solve the equation
d4y

dx4
− b4y = 0 where b4 =

m0ω
2

EI0
(1.6)
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under a set of ‘binary’ boundary conditions. The shape functions {N(x, ω)} can be shown

to be given by

{N(x, ω)} = [Γ(ω)]{s(x, ω)}, (1.7)

where

[Γ(ω)] =




1
2
cS+Cs
cC−1

−1
2
1+sS−cC

cC−1
−1

2
cS+Cs
cC−1

1
2
cC+sS−1

cC−1
1
2
cC+sS−1
b(cC−1)

1
2
−Cs+cS
b(cC−1)

−1
2
1+sS−cC
b(cC−1)

−1
2
−Cs+cS
b(cC−1)

−1
2

S+s
cC−1

1
2

C−c
cC−1

1
2

S+s
cC−1

−1
2

C−c
cC−1

1
2

C−c
b(cC−1)

−1
2

S−s
b(cC−1)

−1
2

C−c
b(cC−1)

−1
2

S−s
b(cC−1)


 (1.8)

and

{s(x, ω)} = [sin bx, cos bx, sinh bx, cosh bx]T (1.9)

is the array of basis functions. Here C = cosh bl, c = cos bl, S = sinh bl and s = sin bl.
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Figure 1.2: Shape functions for element number 2 of the portal frame in

Plots of the first two shape functions, for a typical beam element to be considered later in

numerical illustrations, are shown in Figure 1.2. From equation (1.7) It can be derived that,

for the static case (that is when ω = 0), the shape functions are cubic polynomials in x and

they agree with the well known beam shape functions. This feature is also observable from

Figure 1.2. With increasing value of ω, the shape functions adapt themselves and herein lies

their major advantage.

Step 2 Derivation of the Element Equation of Motion:

The displacement field within the element is expressed in the form

Y (x, t) =

4∑

j=1

dj(t)Nj(x, ω) (1.10)
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Here dj(t), j = 1, · · · , 4 are the generalized coordinates representing the nodal displacements.

Defining the Lagrangian L(t) = T (t) − V (t), the governing equations for the generalized

coordinates dj(t) can be obtained from

d

dt

[
∂L

∂ḋj

]
−

∂L

∂dj
= 0; j = 1, · · · , 4. (1.11)

Step 3 Undamped Element Stiffness Matrix:

Since the motion is harmonic at frequency ω, it follows that dj(t) = Aj exp [iωt]. Conse-

quently, the undamped dynamic stiffness matrix Du can be shown to be given by

Du(ω) =
[
−ω2Iij(ω) + Jij(ω)

]
(4×4)

(1.12)

with

Iij(ω) =

∫ L

0

m(x)Ni(x, ω)Nj(x, ω)dx;

Jij(ω) =

∫ L

0

[
EI(x)

d2

dx2
Ni(x, ω)

d2

dx2
Nj(x, ω)

]
dx.

(1.13)

Substituting the expression of m(x) and EI(x) from equation (1.3) in equations (1.13) and

after separating the random and deterministic parts, the undamped element dynamic stiffness

matrix can be written as

Du(ω) = D̄u(ω) +

10∑

l=1

[
αl(ω)

]
Xl(ω) (1.14)

In the above expression D̄u(ω) is the deterministic undamped element stiffness matrix which

can be shown to be given by

D̄u(ω) =




EI ( c S+C s ) b3

−1+cC
−EI s b2 S

−1+c C

EI (S+s ) b3

−1+cC
−EI b2 (C−c )

−1+c C

−EI s b2 S
−1+c C

EI (−C s+c S ) b
−1+c C

EI b2 (C−c )
−1+cC

−EI (S−s ) b
−1+c C

EI (S+s ) b3

−1+cC

EI b2 (C−c )
−1+c C

−EI ( c S+C s ) b3

−1+cC
EI s b2 S
−1+c C

−EI b2 (C−c )
−1+c C

−EI (S−s ) b
−1+c C

EI s b2 S
−1+cC

EI (−C s+c S ) b
−1+c C


 (1.15)

Furthermore, Xl, l = 1, · · · , 10 are random in nature and are given by

X1 = W11; X2 = W12; X3 = W13; X4 = W14; X5 = W22;

X6 = W23; X7 = W24; X8 = W33; X9 = W34; X10 = W44

(1.16)

with

Wkr =

∫ L

o

[
{−m0ω

2ǫ1f1(x)}sk(x)sr(x) + EI0ǫ2f2(x)
d2sk(x)

dx2

d2sr(x)

dx2

]
dx. (1.17)

Also,
[
αl(ω)

]
, l = 1, · · · , 10 are 4 × 4 symmetric matrices of deterministic functions of ω.

It may be noted that Xl(ω), l = 1, · · · , 10, are random processes evolving in the frequency
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parameter ω. For a fixed value of driving frequency ω, these quantities are random variables.

The random processes Xl(ω) are known as the dynamic weighted integrals, since they arise

as ‘weighted integrals’ of the random fields f1(x) and f2(x). The ransom variables Xl are

linear functions of the random fields f1(x) and f2(x) and, therefore, if f1(x) and f2(x) are

modeled as jointly Gaussian random fields, it follows that Xl are also jointly Gaussian.

Furthermore, since the dynamic stiffness coefficients are linear function of Xl, it follows

that these coefficients in turn are also Gaussian distributed. Explicit expressions of the

elements of
[
αl(ω)

]
, l = 1, · · · , 10 and Xl(ω), l = 1, · · · , 10 are given in Appendix B. In

addition, MAPLE V based symbolic code, used to generate these expressions are is given in

Appendix C .

Step 4 Damped Element Stiffness Matrix:

To allow for the effect of damping terms present in the field equation (1.2) the following

steps are adopted:

(a) determine the damped dynamic stiffness matrix D1(ω) for the deterministic ho-

mogeneous beam element, that is, Du(ω) given by equation (1.14) with ǫ1 = ǫ2 = 0

and

b4 =
m0ω

2 − iωc2
EI0 + iωc1

; (1.18)

(b) determine undamped dynamic stiffness matrix D2(ω) for the deterministic homo-

geneous beam element given again by equation (1.14) with ǫ1 = ǫ2 = 0 and b = m0ω
2

EI0
.

(c) compute the contribution to the dynamic stiffness Dd(ω) from damping terms using

Dd(ω) = D1(ω)−D2(ω) and

(d) finally, the damped stochastic dynamic stiffness matrix is obtained as

D(ω) = Du(ω) +Dd(ω) (1.19)

Now substituting D(ω) in place of Du(ω) in equation (12) the complete element dynamic

stiffness matrix for an element ‘e’ can be expressed as

De(ω) = D̄
e
(ω) +

10∑

l=1

[
αl(ω)

]e
Xe

l (1.20)

Here D̄
e
(ω) represents the damped deterministic element dynamics stiffness matrix of ele-

ment ‘e’.

Step 5 Element Stiffness Matrix in the Global Coordinates:

The element stiffness matrices in the global coordinates can be written as

De
G(ω) = TeTDe(ω)Te (1.21)
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where Te denotes the transformation matrix for the element concerned. Now substituting ex-

pression of De(ω) from equation (1.20) into above equation and separating the deterministic

and random parts, De
G(ω) can be cast in the form

De
G(ω) = D̄

e

G(ω) +∆De
G(ω) (1.22)

Here D̄
e

G(ω) = TeT D̄
e
(ω)Te is the deterministic part of the element stiffness matrix in the

global co-ordinates and ∆De
G(ω) is the corresponding random part. In the further analysis,

the covariance matrix associated with elements of ∆De
G(ω) would be needed. Also required

is the information on the cross covariance between ∆De
G(ω) associated with two distinct

elements eu and ev. This covariance matrix is expressed as follows:

< ∆Deu
Gpq

(ω)∆Dev
Grs

(ω) >=

10∑

i=1

10∑

j=1

4∑

k=1

4∑

l=1

4∑

m=1

4∑

n=1

T eu
kpT

eu
lq T

ev
mrT

ev
ns

[
αi
kl

]eu [
αj
mn

]ev
Cov(Xeu

i , Xev
j ) (1.23)

where p, q, r, s = 1, · · · , 4 and eu, ev runs over the number of element in the structure. The

term Cov(Xeu
i , Xev

j ) represents the statistics of the dynamic weighted integrals between two

beam elements and is defined in the following section.

Step 6 Statistics of the Dynamic Weighted Integrals :

The covariance of the dynamic weighted integrals can be obtained by using equation

(1.16) for two different elements of the structure, and can be expressed as

Cov(Xeu
i , Xev

j ) = < W eu
kr W

ev
pq > = In11 + In12 + In22 (1.24)

where

In11 = meu
0 mev

0 ω4ǫeu1 ǫev1

∫ Lu

0

∫ Lv

0

{
seuk (x1)s

eu
r (x1)s

ev
p (x2)s

ev
q (x2)R

euev
11 (x1, x2)

}
dx1dx2

(1.25)

In12 = −ω2ǫeu1 ǫev2

∫ Lu

0

∫ Lv

0

{meu
0 EIev0 seuk (x1)s

eu
r (x1)

d2sevp (x2)

dx2
2

d2sevq (x2)

dx2
2

+mev
0 EIeu0

d2seuk (x1)

dx2
1

d2seur (x1)

dx2
1

sevp (x2)s
ev
q (x2)}R

euev
12 (x1, x2)dx1dx2 (1.26)

In22 = EIeu0 EIev0 ǫeu2 ǫev2

×

∫ Lu

0

∫ Lv

0

{
d2seuk (x1)

dx2
1

d2seur (x1)

dx2
1

d2sevp (x2)

dx2
2

d2sevq (x2)

dx2
2

Reuev
22 (x1, x2)

}
dx1dx2 (1.27)

In the above equations, i, j = 1, · · · , 10; the relationship between i, j and k, r, p, q is according

to equation (14), Lu, Lv are lengths of the elements eu and ev respectively and (•)eu represents

the properties (•) corresponding to the element eu. The expression Reuev
lm (x1, x2), (l, m = 1, 2)

appearing in the above equations denotes the covariance function of the random processes

fl(x1) and fm(x2) between the elements eu and ev, that is R
euev
lm (x1, x2) =< f eu

l (x1)f
ev
m (x2) >.

The random variability in the dynamic stiffness coefficients of the beam element gets char-

acterized completely in terms of the dynamic weighted integrals.
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1.4.1 Global Dynamic Stiffness Matrix

After having obtained the element dynamic stiffness matrices in the global coordinate system,

these matrices can be assembled to derive the the global dynamic stiffness matrix. The rules

for assembling the element stiffness matrices are identical to those used in the traditional

deterministic finite element analysis. This leads to the expression

KG(ω) =

ne∑

e=1

De
G(ω) (1.28)

where KG(ω) is the global dynamic stiffness matrix, ne is the number of elements and De
G(ω)

is the element dynamic stiffness matrix in the global coordinate system. The summation

here implies the addition of appropriate element stiffness matrices at appropriate locations

within the global stiffness matrix. The reduced global stiffness matrix K(ω) can be obtained

by deleting the rows and columns of KG(ω) corresponding to the fixed degrees of freedom.

The equation of equilibrium is given by

K(ω)Z(ω) = F (1.29)

where Z(ω) is the amplitude of the nodal harmonic displacement vector to be determined

and F is the amplitude of nodal harmonic force vector and ω is the driving frequency. The

reduced global dynamic stiffness matrix can be written as

K(ω) = K0(ω) +∆K(ω) (1.30)

where K0(ω) is the deterministic part and ∆K(ω) is the stochastic part. The deterministic

part of the matrix is observed to be complex valued and symmetric in nature while the

stochastic part is real valued and symmetric. The latter feature arises because (a) the

element damping terms are deterministic, and (b) the shape functions are independent of

any damping terms. The deterministic part is further represented by

K0(ω) =
[
K0

R(ω) + iK0
I(ω)

]
(1.31)

where K0
R(ω) and K0

I(ω) are respectively, the real and imaginary parts of K0(ω). When

element property random fields arise as Gaussian fields, the elements of stochastic part

of the dynamic element stiffness matrix also become Gaussian distributed. Furthermore,

since the global dynamic stiffness matrix is obtained by linear superpositioning of element

stiffness matrices, it follows that elements of ∆K(ω) are also Gaussian distributed. Thus,

the complete description of K(ω) is given by its mean K0(ω) and the covariance matrix of

the weighted integrals associated with the ne number of finite elements.

1.4.2 Inversion of the Global Dynamic Stiffness Matrix

The problem of determination of Z(ω) requires the inversion of the global dynamic stiffness

matrix. Although for a fixed value of ω the elements of K(ω) are complex valued Gaussian
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random variables, upon inversion, the elements of K−1(ω) and consequently Z(ω) will in

general be non-Gaussian. Since Z(ω) is complex valued, it can be described either in terms

of its real and imaginary parts, or alternatively, by its amplitude and phase vectors. In the

latter case a further nonlinear transformation of real and imaginary parts of Z(ω) is implied.

Three alternative strategies to find the inverse of K(ω) will be presented. The first two

approaches are analytical in nature while the last employs simulation techniques.

Random Eigenfunction Expansion Method

The equation of equilibrium (1.29) represents a set of linear random algebraic equations

in Z(ω). We seek an approximate solution to this equation of the form

Ẑ = [Φ]{a} (1.32)

where Φ represents a set of random basis vectors with known joint statistics and a is a

vector of unknown complex valued deterministic constants. These unknown constants are

determined by adopting a Galerkin type of error minimization scheme which leads to the

expressions for the unknown a in terms of the statistics of elements of Φ. In principle any

set of basis functions can be chosen to represent the unknown Z(ω): in this study, these

functions are taken to be the eigenvectors of the real part of the reduced global dynamic

stiffness matrix. That is, the basis vectors are taken to be the eigenvectors of the matrix

KR(ω) = K0
R(ω) + ∆K(ω). It may be noted that this matrix is symmetric, real valued,

positive definite and its elements form a set of Gaussian random variables. The statistics of

the eigenvectors of this matrix can be determined by solving the random eigenvalue problem

given by [
K0

R(ω) + ∆K(ω)
]
φ = λφ (1.33)

This type of random eigenvalue problems typically arise in the determination of natural

frequencies and buckling loads of randomly parametered structures and has attracted the

attention of many researches in the past. We borrow these results and adopt them to derive

a suitable set of basis eigenvectors. The random eigensolutions that are being used in this

study do not have any direct physical meaning. The details of the perturbation method used

to solve the random eigenvalue problem will be discussed later.

To determine the unknown constant a, we begin by substituting Ẑ in equation (1.29) and

define the error vector {ξ} as

{ξ}(n×1) = K(ω)[Φ]{a} − F =
[
Kr(ω) + iK0

I(ω)
]
[Φ]{a} − F (1.34)

Adopting the Galerkin weighted residual method, we impose the conditions

〈
φj , ξ

〉
= 0; for j = 1, · · · , n (1.35)

where φj is the jth column of the matrix Φ which plays the role of the weighting function.

This equation can be recast in a matrix form as
〈
[Φ]T {ξ}

〉
= 0 (1.36)
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Substituting {ξ} from equation (1.34) into the above equation we obtain

[
< ΦTKr(ω)Φ > +i < ΦTK0

I(ω)Φ >
]
{a} =< ΦTF >

which leads to [[
λ̄
]
+ i < ΦTK0

I(ω)Φ >
]
{a} =< ΦT > F (1.37)

The above equation can further be written concisely as

G{a} = P (1.38)

where

G =
[
λ̄
]
+ i < ΦTK0

I(ω)Φ > and P =< ΦT > F. (1.39)

Here
[
λ̄
]
is a diagonal matrix containing the mean eigenvalues. The matrix G in the above

equation can be written in the index form as

Gij = δijλ̄i + iw̄ij

where δij is the Kronecker delta function and w̄ij is given by

w̄ij =< wij >=
n∑

r=1

n∑

s=1

< φriφsj > K0
Irs (1.40)

The term < φriφsj > in the above equation represents the correlation between rth element

of ith eigenvector and sth element of jth eigenvector. This term is given by

< φriφsj >=

n∑

l=1

n∑

m=1

CrlCsm

×

[
(1− δli)(1− δmj)

1

µliµmj

n∑

p=1

n∑

q=1

n∑

t=1

n∑

k=1

CplCqiCtmCkj < ∆Kpq(ω)∆Ktk(ω) >

]
(1.41)

Here µij = µi−µj and µi denotes the eigenvalues of the real deterministic matrix K0
R(ω), Cij

are the component of C which is the matrix containing the unity normalized eigenvectors of

K0
R(ω). The quantity < ∆Kpq(ω)∆Ktk(ω) > denotes the correlations between the stiffness

coefficients which in turn are expressible in terms of the statistics of the weighted integrals.

Thus, having determined the matrix G, the unknown constants a can now be determined

using equation (1.38) which further leads to

Z(ω) = [Φ]{a} (1.42)

Using the first-order perturbation it can be shown that the elements of [Φ], that is, φj , j =

1, · · · , n, are Gaussian distributed. From equation (1.42) it follows that the solution vector

Z(ω), for a fixed value of ω, is also a vector of Gaussian random variables. This feature

facilitates the evaluation of the statistics of the amplitude and phase vectors associate with
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Z(ω). To achieve this, we separate Z(ω) and a into their respective real and imaginary parts

and write

zi = zRi + izI i where zRi =
n∑

j=1

φija
R
j , and zI i =

n∑

j=1

φija
I
j (1.43)

with

< zRi >=

n∑

j=1

Cija
R
j; < zI i >=

n∑

j=1

Cija
I
j

< zRi
2
>=

n∑

j=1

n∑

k=1

< φijφik > aRja
R
k; < zI i

2
>=

n∑

j=1

n∑

k=1

< φijφik > aI ja
I
k

< zRiz
I
i >=

n∑

j=1

n∑

k=1

< φijφik > aRja
I
k (1.44)

In the above expressions (•)R and (•)I are respectively the real and imaginary part of (•).

The second order statistics of zRi and zI i are dependent upon joint statistics of the basis

random vectors. Subsequently the moments of amplitude and phase of the elements of Z(ω)

are given by

< |zi| >=

∫ ∞

−∞

∫ ∞

−∞

√
zRi

2 + zI i
2pzRizI i

(
zRi, z

I
i

)
dzRidz

I
i

< |zi|
2 >=

∫ ∞

−∞

∫ ∞

−∞

(
zRi

2
+ zI i

2
)
pzRizIi

(
zRi, z

I
i

)
dzRidz

I
i (1.45)

< arg(zi) >=

∫ ∞

−∞

∫ ∞

−∞

{tan−1

(
zIi
zRi

)
}pzRizI i

(
zRi, z

I
i

)
dzRidz

I
i

< (arg(zi))
2 >=

∫ ∞

−∞

∫ ∞

−∞

{tan−1

(
zIi
zRi

)
}2pzRizI i

(
zRi, z

I
i

)
dzRidz

I
i (1.46)

In the above equations pzRizI i

(
zRi, z

I
i

)
is the two dimensional joint probability density func-

tion of zRi and zI i. This is completely characterized by the mean, standard deviation and

correlation coefficient of zRi and zI i which can be obtained from equations (1.44).

Complex Neumann Expansion Method

Shinozuka and Yamazaki (1988) have applied the Neumann expansion method to the

inversion of static stiffness matrix in stochastic finite element applications. We begin by

writing the equilibrium equation in the following form:

[
K0

R(ω) + iK0
I(ω) +∆K(ω)

]
Z(ω) = F (1.47)

Let Z0(ω) denote the solution in absence of system randomness. This is given by the solution

of the equation

K0(ω)Z0(ω) = F (1.48)
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where K0(ω) =
[
K0

R(ω) + iK0
I(ω)

]
is the deterministic damped dynamic stiffness matrix.

According to the Neumann expansion

Z(ω) =
[
K0(ω) +∆K(ω)

]−1
F =

[
I−R+R2 −R3 + · · ·

]
Z0(ω) (1.49)

with

R = K0−1
(ω)∆K(ω) =

[
K0

R(ω) + iK0
I(ω)

]−1
∆K(ω) (1.50)

and I is the unit matrix. Here R is complex valued and is random in nature. Since the

elements of ∆K(ω) are Gaussian distributed, it follows that elements of real and imaginary

parts of R are also Gaussian distributed. If only the first-order terms are retained in the

series expansion (1.49), the response vector Z(ω) will have Gaussian distributed elements.

Thus, retaining only the linear terms in R, the response vector Z(ω) is given by

Z(ω) = [I− R]Z0(ω) or zi = zoi −
n∑

j=1

Rijz
o
j (1.51)

For notational convenience writing Q = K−1
0 (ω) equation (1.50) can be rewritten as

R = Q∆K(ω) or Rij =

n∑

l=1

Qil∆K lj (1.52)

Substituting Rij from equation (1.52) into equation (1.51), the elements of the solution vector

can be obtained as

zi = z0i −
n∑

j=1

n∑

l=1

Qilzj∆Klj (1.53)

These elements are complex quantities with real and imaginary parts being Gaussian dis-

tributed. Denoting by zRi and zI i the real and imaginary parts of zi respectively, we get

zRi = z0
R

i −
n∑

j1=1

n∑

l1=1

(
QR

il1
z0

R

j1 −QI
il1
z0

I

j1

)
∆Kl1j1 (1.54)

zI i = z0
I

i −
n∑

j2=1

n∑

l2=1

(
QI

il2
z0

R

j2 +QR
il2
z0

I

j2

)
∆Kl2j2 (1.55)

These expressions are further simplified to get

zRi = z0
R

i − UR
i; zI i = z0

I

i − U I
i (1.56)

with

< zRi >= z0
R

i, < zI i >= z0
I

i, (1.57)

Var(zRi) =< UR
i
2
>=
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n∑

j1=1

n∑

l1=1

n∑

j2=1

n∑

l2=1

(
QR

il1
z0

R

j1 −QI
il1
z0

I

j1

)(
QR

il2
z0

R

j2 −QI
il2
z0

I

j2

)
< ∆Kl1j1∆Kl2j2 >,

(1.58)

Var(zI i) =< U I
i
2
>=

n∑

j1=1

n∑

l1=1

n∑

j2=1

n∑

l2=1

(
QI

il1
z0

R

j1 +QR
il1
z0

I

j1

)(
QI

il2
z0

R

j2 +QR
il2
z0

I

j2

)
< ∆Kl1j1∆Kl2j2 >,

(1.59)

and

Cov(zRiz
I
i) =< UR

iU
I
i >=

n∑

j1=1

n∑

l1=1

n∑

j2=1

n∑

l2=1

(
QR

il1
z0

R

j1 −QI
il1
z0

I

j1

)(
QI

il2
z0

R

j2 +QR
il2
z0

I

j2

)
< ∆Kl1j1∆Kl2j2 > .

(1.60)

As has been noted already, zRi and zI i, for a fixed value of ω, are Gaussian distributed

random variables. Thus, using the above expressions, the joint probability density function

of zRi and zI i can be derived. Consequently, the moments of amplitude and phase of zi can

be evaluated using equations (1.45,1.46).

Combined Analytical and Simulation Method

The analytical methods presented in the preceding two sections introduce approximations

at the stage of inverting the random dynamic stiffness matrix. These approximations are

in addition to those involved in discretizing the random fields to formulate the element

stiffness matrices and in handling damping properties. The approximations associated with

inverting the matrix can be avoided if one adopts Monte Carlo simulation strategy to invert

the reduced global stiffness matrix. This would require

A. digital simulation of samples of ∆K(ω); as has been already noted, for a fixed ω the

elements of ∆K(ω) are a set of Gaussian distributed random variables and these can

be easily simulated;

B. simulation of samples of Z(ω) by numerically inverting K(ω), and

C. statistical processing of samples of Z(ω) to arrive at the required statistics of amplitude

and phase of Z(ω).

This method treats the inversion of the stiffness matrix in an exact manner while the other

steps in the solution continue to be approximate in nature. The source of approximation
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here is associated with the discretization of the random fields, treatment of damping and

also with the use of limited number of samples for estimating the response statistics. An

advantage of this method over the other two methods presented so far is that it leads to

non-Gaussian estimates for elements of Z(ω).

1.4.3 Full Scale Digital Simulations

Given the approximate nature of the methods presented in the previous section, it is essential

that their performance be verified by comparing the results obtained using these methods

with those from more exact procedures. Such procedures can be formulated by combining

the Monte Carlo simulation procedures with traditional normal mode expansion based finite

element procedures, transfer matrix techniques or direct dynamic stiffness matrix approach.

In this study we resort to the last mentioned approach. This consists of the following steps:

1. discretize the given structure into as many elements as is the number of beams: thus,

a three leg portal frame gets discretized into three elements;

2. digital simulation of samples of EI(x) and m(x) for all the elements considered;

3. derivation of sample dynamic stiffness matrix for each of the elements; this requires the

harmonic response analysis of inhomogeneous beam elements; the procedure described

by Sarkar and Manohar (1996), Manohar and Adhikari (1998a) has been used for

this purpose; this is based on converting the governing boundary value problems into

a set of equivalent initial value problems and integrating these resulting equations

numerically using Runge-Kutta algorithm; this leads to solutions which are ‘exact’

within the framework of accuracy of Runge-Kutta algorithms;

4. formulation of sample global stiffness matrix and its numerical inversion leading to

sample solution vectors;

5. statistical processing of the ensemble of response vectors to obtain the desire statistics

In this approach, the three major steps of the response analysis, namely, the discretization of

random fields, the treatment of damping terms and the inversion of random stiffness matrix,

are all handled in an exact manner with the only source of approximation being the finite

size of samples used to estimate the response statistics. In terms of computational effort

needed, this method obviously is more demanding than the three methods discussed in the

previous section.

1.4.4 Numerical Results And Discussions

To illustrate the relative performance of the different formulations, the harmonic response

analysis of a three leg portal frame shown in Figure 1.3 is considered. The flexural rigidity
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Figure 1.3: Finite element model for dynamic stiffness analysis of portal frame; EI0,=10.0,
L=1.0, m0=0.2, ǫ1=0.05, ǫ2=0.05, c1 = 0, c2=1.0 (same for all the three elements.

and mass density for each element are taken to be independent, homogeneous, Gaussian

random fields. It is assumed that ǫ1 = ǫ2 = 0.05, and the autocovariance of the processes

f1(x) and f2(x) for all the three beam elements are taken to be of the form

Rii(ξ) = cosλiξ; i = 1, 2 (1.61)

with λi = 10π per unit length. The particular choice of autocovariance function and its

parameters in this example is made only for purpose of illustrations and the theoretical re-

sults developed are expected to be valid for other forms of these functions also. It is also

assumed that the random properties of distinct elements are mutually uncorrelated. It may

be recalled that the harmonic displacement amplitudes for damped structural systems are

complex valued. When the structural element is random, the displacement amplitudes can

be interpreted as complex valued random processes evolving in the frequency parameter ω.

Let us focus our attention on evaluating the mean and standard deviation of the amplitude

and phase of the side sway as a function of the driving frequency ω. The results of theoret-

ical analysis are compared with a 500 samples full scale Monte Carlo simulation in figures

1.4-1.8. The algorithm used in the simulation work to simulate samples of the dynamic ele-

ment stiffness matrix is as outlined by Sarkar and Manohar (1996), Manohar and Adhikari

(1998a). The simulation work does not involve discretization of the random fields, it treats

the damping terms appearing in equation (1.5) exactly and inverts the random complex

matrix in an exact way. Therefore, the simulation results serve to evaluate several aspects

of the approximate analytical procedures.

The theoretical predictions generally compare well with the simulations results over the

entire frequency range considered. This supports the approximations made in the treatment

of system randomness and damping in deriving the element dynamic stiffness matrix and

also in inverting the random global dynamic stiffness matrix to calculate the displacement

amplitudes. At resonance points, the theory and simulations compare better than at the

anti-resonance points. The numerical results on response statistics indicate that the ampli-
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Figure 1.4: Statistics of amplitude of side sway using Eigenfunction expansion method
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Figure 1.5: Statistics of amplitude of side sway using Neumann expansion method

tude and phase processes evolve in a nonstationary manner in ω. The mean results are found

to closely follow the deterministic results. However, in high frequency ranges the response

variability increases, which gets characterized by relatively higher values of standard devia-

tion, especially near the resonant frequency points, where the standard deviation sometimes

becomes comparable to the mean value. This is significant, since, the standard deviations

of the beam property random fields are only 5% of the corresponding mean values, which

would mean that the system dynamics magnifies the structural uncertainties considerably

in the high frequency ranges. This fact emphasizes the relevance of considering systems

uncertainties, especially in higher driving frequency ranges.
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Figure 1.6: Statistics of amplitude of side sway using Combined Analytical-Simulation
method
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Figure 1.7: Mean of phase of side sway

1.5 Conclusions

The origins, quantification and propagation of uncertainties in structural dynamic models

have been discussed in lecture 2. The differences between aleatoric and epistemic uncer-

tainties have been pointed out and their potential sources were listed. Probabilistic model

of uncertainty and their propagation methods using stochastic finite element method have

been discussed. As an example harmonic vibration analysis of framed structures consisting

of Euler-Bernoulli beam elements with stochastically inhomogeneous properties has been
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Figure 1.8: Standard deviation of phase of side sway

considered. The element property random fields were discretized using frequency dependent

shape functions. This results in a complex random linear algebraic as the governing equation

of motion after diiscretisation. Two analytical procedures and one combined analytical and

simulation method are discussed for inverting this matrix and their performance is compared

with the results of a more exact, but computationally intensive, full scale simulation scheme.

These comparisons are demonstrated to be reasonably good over a wide range of driving fre-

quency. The methods discussed herein are particularly advantageous if operating frequency

range lies in higher system natural frequency ranges and also when several structural modes

contribute to the response.

The approached presented here bypass the need to solve the random eigenvalue problem.

However, this method is limited to one dimensional elements with simple boundary condi-

tions for which suitable frequency-dependent shape functions can be obtained. For more

general class of problems, solution using the random eigensolutions is desirable. This topic

is considered in the next section.



Chapter 2

Dynamic stiffness method using the

Karhunen-Loève expansion

Uncertainties in complex dynamical systems play an important role in the prediction of

dynamic response in the mid and high frequency ranges. For distributed parameter systems,

parametric uncertainties can be represented by random fields leading to stochastic partial

differential equations. Over the past two decades, the spectral stochastic finite element

method has been developed to discretise the random fields and solve such problems. On the

other hand, for deterministic distributed parameter linear dynamical systems, spectral finite

element method has been developed to efficiently solve the problem in the frequency domain.

In spite of the fact that both approaches use spectral decomposition (one for the random

fields and while the other for the dynamic displacement fields), there has been very little

overlap between them in literature. In this chapter these two spectral techniques have been

unified with the aim that the unified approach would outperform any of the spectral methods

considered on its own. Considering exponential autocorrelation function for the random

fields, frequency dependent stochastic element stiffness and mass matrices are derived for

axial and bending vibration of rods. Closed-form exact expressions are derived using the

Karhunen-Loève expansion. Numerical examples are given to illustrate the unified spectral

approach.

2.1 Introduction

Spectral methods are widely used in various branches of science and engineering. Due to

their general nature, the meaning of spectral methods can be very different depending on

the applications and the disciplines. In spite of these differences, the unifying factor between

the spectral methods in different disciplines is that generally they are very powerful tools

for the analytical and experimental treatments of wide ranging physical problems. In the

context of the stochastic finite element method (see for example Shinozuka and Yamazaki,

1988, Ghanem and Spanos, 1991, Kleiber and Hien, 1992, Matthies et al., 1997, Manohar and

Adhikari, 1998a,b, Adhikari and Manohar, 1999, 2000, Haldar and Mahadevan, 2000, Sudret

22
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and Der-Kiureghian, 2000, Elishakoff and Ren, 2003), spectral methods have been used

extensively to analytically represent the random fields describing parametric uncertainties of

physical systems. In particular, we refer to the recent chapter by Nouy (2009). In the context

of structural dynamics, spectral methods have been used in random vibration problems (see

for example Nigam, 1983, Lin, 1967, Bolotin, 1984) and for the discretisation of displacement

fields in the frequency domain (Doyle, 1989, Gopalakrishnan et al., 2007). In spite of the fact

that both approaches use spectral decomposition (one for the random fields and while the

other for the dynamic displacement fields), there has been very little overlap between them

in literature. In this chapter these two spectral techniques have been unified with the aim

that the unified approach would perform better than any of the spectral methods considered

on its own.

In this chapter we focus our attention to structural dynamical systems with parametric

uncertainties. Uncertainties should be taken into account for credible prediction of numerical

codes. In the parametric approach, the uncertainties associated with the system parameters,

such as Young’s modulus, mass density, Poisson’s ratio, damping coefficient and geometric

parameters are quantified using statistical methods and propagated, for example, using the

stochastic finite element method. The effect of uncertainty is significant in the higher fre-

quency ranges. In the higher frequency ranges, as the wavelengths become smaller, very fine

(static) mesh size is required to capture the dynamical behaviour. As a result, the determin-

istic analysis itself can pose significant computational challenges. One way to address this

problem is to use a spectral approach in the frequency domain. The main idea here is that

the displacements within an element are expressed in terms of frequency dependent shape

functions. The shape functions adapt themselves with increasing frequency and consequently

displacements can be obtained accurately without fine remeshing. The spectral approach

has the potential to be an efficient method for mid and high frequency vibration problems

provided the random fields describing parametric uncertainties can be taken into account

efficiently. Here the spectral decomposition of the random files is used in conjunction with

the spectral decomposition of the displacements field. It is expected that simultaneous use of

these two types of spectral decomposition will result in an efficient approach for distributed

dynamical systems with parametric uncertainties.

The outline of the chapter is as follows. Spectral finite element method in the frequency

domain is briefly discussed in section 2.2. The essential background of spectral representation

of stochastic fields is given in section 2.3. The general derivation of the element mass,

stiffness and damping matrices using the doubly spectral stochastic finite element method

is given in section 2.4. In section 2.5 this general theory is applied to axially vibrating rods

with uncertain properties. The method is further applied to bending vibration of Euler-

Bernoulli beams with random properties in section 2.6. Finally, some conclusions are drawn

in section 2.7 based on the study undertaken in the chapter.
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2.2 Spectral finite element method in the frequency

domain

Spectral methods for deterministic dynamical systems have been in use for more than three

decades (see for example the book by Paz (1980)). This approach, or approaches very

similar to this, is known by various names such as the dynamic stiffness method (Banerjee

and Williams, 1985, Banerjee, 1989, Banerjee and Williams, 1992, Banerjee and Fisher,

1992, Ferguson and Pilkey, 1993a,b, Banerjee and Williams, 1995, Banerjee, 1997), spectral

finite element method (Doyle, 1989, Gopalakrishnan et al., 2007) and dynamic finite element

method (Hashemi et al., 1999, Hashemi and Richard, 2000). Some of the notable features of

the method are

1. the mass distribution of the element is treated in an exact manner in deriving the

element dynamic stiffness matrix;

2. the dynamic stiffness matrix of one dimensional structural elements taking into account

the effects of flexure, torsion, axial motion, shear deformation effects and damping are

exactly determinable, which, in turn, enables the exact vibration analysis of skeletal

structures by an inversion of the global dynamic stiffness matrix;

3. the method does not employ eigenfunction expansions and, consequently, a major

step of the traditional finite element analysis, namely, the determination of natural

frequencies and mode shapes, is eliminated which automatically avoids the errors due

to series truncation; this makes the method attractive for situations in which a large

number of modes participate in vibration;

4. since the modal expansion is not employed, ad hoc assumptions concerning damping

matrix being proportional to mass and/or stiffness are not necessary;

5. the method is essentially a frequency domain approach suitable for steady state har-

monic or stationary random excitation problems; generalization to other type of prob-

lems such as aeroelastic problems and dynamics of laminate composite materials through

the use of Laplace and Fourier transforms is also available (Gopalakrishnan et al., 2007);

6. the static stiffness matrix and the consistent mass matrix appear as the first two terms

in the Taylor expansion of the dynamic stiffness matrix in the frequency parameter.

2.3 Spectral finite element method for stochastic field

problem

Problems of structural dynamics in which the uncertainty in specifying stiffness and mass

of the structure is modeled within the framework of random fields can be treated using the



2.3. Spectral finite element method for stochastic field problem 25

stochastic finite element method (Ghanem and Spanos, 1991, Sudret and Der-Kiureghian,

2000, ?, Nouy, 2009). The application of the stochastic finite element method to linear

structural dynamics problems typically consists of the following key steps:

1. Selection of appropriate probabilistic models for parameter uncertainties and boundary

conditions.

2. Replacement of the element property random fields by an equivalent set of a finite

number of random variables. This step, known as the ‘discretisation of random fields’

is a major step in the analysis.

3. Formulation of the system equations of motion of the form D(ω)u = f where D(ω)

is the random dynamic stiffness matrix u is the vector of random nodal displacement

and f is the vector of applied forces. In general D(ω) is a random symmetric complex

matrix.

4. Solution of the set of complex random algebraic equation to obtain the statistics of the

response vectors. Alternatively the response statistics can be obtained by solving the

underlying random eigenvalue problem (see for example, Scheidt and Purkert (1983),

Adhikari and Friswell (2007), Benaroya (1992), Adhikari (2007) and references therein).

We consider (Θ,F, P ) be a probability space with θ ∈ Θ denoting a sampling point in

the sampling space Θ, F is the complete σ-algebra over the subsets of Θ and P is the

probability measure. Suppose the spatial coordinate vector r ∈ R
d where d ∈ I ≤ 3 is

the spatial dimension of the problem. Consider H :
(
R

d ×Θ
)

→ R is a random field

with a covariance function CH :
(
R

d × R
d
)
→ R defined in a space D ∈ R

d. Since the

covariance function is finite, symmetric and positive definite it can be represented by a

spectral decomposition. Using this spectral decomposition, the random process H(r, θ) can

be expressed in a generalized Fourier type of series as

H(r, θ) = H0(r) +
∞∑

j=1

√
λjξj(θ)ϕj(r) (2.1)

where ξj(θ) are uncorrelated random variables, λj and ϕj(r) are eigenvalues and eigenfunc-

tions satisfying the integral equation

∫

D

CH(r1, r2)ϕj(r1)dr1 = λjϕj(r2), ∀ j = 1, 2, · · · (2.2)

The spectral decomposition in Eq. (2.1) is known as the Karhunen-Loève expansion. The

series in (2.1) can be ordered in a decreasing series so that it can be truncated using a finite

number of terms with a desired accuracy. We refer the books by Ghanem and Spanos (1991),

Papoulis and Pillai (2002) and references therein for further discussions on Karhunen-Loève

expansion.
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In this chapter one dimensional systems are considered. Moreover, Gaussian random

fields with exponentially decaying autocorrelation function are considered. The autocorre-

lation function can be expressed as

C(x1, x2) = e−c|x1−x2| (2.3)

Here the quantity 1/c is proportional to the correlation length and it plays an important role

in the description of a random field. If the correlation length is very small, then the random

process becomes close to a delta-correlated process, often know as the white noise. If the

correlation length is very large compared to domain under consideration, the the random

process effectively becomes a random variable. The underlying random process H(x, θ) can

be expanded using the Karhunen-Loève expansion (Ghanem and Spanos, 1991, Papoulis and

Pillai, 2002) in the interval −l ≤ x ≤ l as

H(x, θ) =
∞∑

j=1

ξj(θ)
√

λjϕj(x) (2.4)

Since H(x, θ) is assumed to be a Gaussian random variable, without any loss of generality

we assumed the mean in zero in Eq. (2.4). The eigenvalues and eigenfunctions for odd j are

given by

λj =
2c

α2
j + c2

, ϕj(x) =
cos(αjx)√
l +

sin(2αjl)

2αj

, where tan(αjl) =
c

αj

, (2.5)

and for even j are given by

λj =
2c

αj
2 + c2

, ϕj(x) =
sin(αjx)√
l −

sin(2αjl)

2αj

, where tan(αjl) =
αj

−c
. (2.6)

These eigenvalues and eigenfunctions will be used to obtain the element mass, stiffness and

damping matrices. For all practical purposes, the infinite series in Eq. (2.4) needs to be

truncated using a finite numbers of terms. The number of terms could be selected based on

the ‘amount of information’ to be retained. This in turn can be related to the number of

eigenvalues retained, since the eigenvalues, λj, in Eq. (2.4) are arranged in decreasing order.

For example, if 90% of the information is to be retained, then one can choose the number

of terms, M , such that λM/λ1 = 0.1. The value of M mainly depends on the correlation

length of the underlying random field. One needs more terms when the correlation length

is small. Intuitively this means that more independent variables are needed for fields with

smaller correlation lengths and vice versa.
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Figure 2.1: The domain and the boundary surface of the differential operator describing
the stochastic dynamical system.

2.4 General derivation of doubly spectral element ma-

trices

A linear damped distributed parameter dynamical system in which the displacement variable

U(r, t), where r ∈ R
d is the spatial position vector, d ≤ 3 is the dimension of the model and

t is time, specified in some domain D as shown in Figure 2.1, is governed by a linear partial

differential equation (Meirovitch, 1997):

ρ(r, θ)
∂2U(r, t)

∂t2
+ L1(θ)

∂U(r, t)

∂t
+ L2(θ)U(r, t) = p(r, t); r ∈ D, t ∈ T (2.7)

with linear boundary-initial conditions of the form

M1j
∂U(r, t)

∂t
= 0; M2jU(r, t) = 0; r ∈ ∂D, t = t0, j = 1, 2, · · · (2.8)

specified on some boundary surface ∂D. In the above equation T ∈ R is the domain of the

time variable t, ρ(r, θ) is the random mass distribution of the system, p(r, t) is the distributed

time-varying forcing function, L1 is the random spatial self-adjoint damping operator, L2 is

the random spatial self-adjoint stiffness operator and M1j and M2j are some linear operators

defined on the boundary surface ∂D. When parametric uncertainties are considered, the

mass density ρ(r, θ) :
(
R

d ×Θ
)
→ R as well as the damping and stiffness operators involve

random processes. Frequency dependent random element stiffness matrices were derived

by various authors using the dynamic weighted integral approach (Manohar and Adhikari,

1998a,b, Adhikari and Manohar, 2000, Gupta and Manohar, 2002), the energy operator

approach (Ghanem and Sarkar, 2003), sub-structure approach (Sarkar and Ghanem, 2003)

and a series expansion approach (Ostoja-Starzewski and Woods, 2003). In the context of

uncertainty modeling using Fuzzy approach, Nunes et al. (2006) have combined Fuzzy sets

with the spectral approach. Moens and Vandepitte (2005), De Gersem et al. (2005), Giannini

and Hanss (2008), Moens and Vandepitte (2007) have used used Fuzzy parametric approach

for uncertainty quantification in the dynamic response.
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Xiu and Karniadakis (2002, 2003), Wan and Karniadakis (2006) have proposed gener-

alized polynomial chaos approach which can be used for spectral decomposition of random

displacement fields. The method proposed here is motivated by the energy operator ap-

proach proposed by Sarkar and Ghanem (2002), Ghanem and Sarkar (2003) for the proba-

bilistic case and the spectral approach proposed by Nunes et al. (2006) for Fuzzy uncertain

variables. While numerical methods were used in these studies, in this chapter exact closed-

from analytical expressions will be derived for the element matrices. Suppose the underlying

homogeneous system corresponding to system (2.7) without any forcing (see for example

Meirovitch, 1997) is given by

ρ0
∂2U(r, t)

∂t2
+ L10

∂U(r, t)

∂t
+ L20U(r, t) = 0; r ∈ D (2.9)

together with suitable homogeneous boundary and initial conditions. Equation (2.9) is a

deterministic equation. Taking the Fourier transform of Eq. (2.9) and considering zero

initial conditions one has

− ω2ρ0u(r, ω) + iωL10 {u(r, ω)}+ L20 {u(r, ω)} = 0 (2.10)

where ω ∈ [0,Ω] is the frequency and Ω ∈ R denotes the maximum frequency.

Like the classical finite element method, suppose that frequency-dependent displacement

within an element is interpolated from the nodal displacements as

ue(r, ω) = NT (r, ω)ûe(ω) (2.11)

Here ûe(ω) ∈ C
n is the nodal displacement vector and N(r, ω) ∈ C

n, the vector of frequency-

dependent shape functions and n is the number of the nodal degrees-of-freedom. Suppose

the sj(r, ω) ∈ C, j = 1, 2, · · ·m are the basis functions which exactly satisfy Eq. (2.10).

Here m is the order of the ordinary differential Eq. (2.10). It can be shown that the shape

function vector can be expressed as

N(r, ω) = Γ(ω)s(r, ω) (2.12)

where the vector s(r, ω) = {sj(r, ω)}
T , ∀ j = 1, 2, · · ·m and the complex matrix Γ(ω) ∈ C

n×m

depends on the boundary conditions. The derivation of Γ(ω) for axial vibration of rods and

bending vibration of beams are given in the next two sections.

Extending the weak-form of finite element approach to the complex domain, the frequency

dependent n× n complex random stiffness, mass and damping matrices can be obtained as

Ke(ω, θ) =

∫

De

ks(r, θ)L2 {N(r, ω)}L2

{
NT (r, ω)

}
dr (2.13)

Me(ω, θ) =

∫

De

ρ(r, θ)N(r, ω)NT (r, ω)dr and (2.14)

Ce(ω, θ) =

∫

De

c(r, θ)L1 {N(r, ω)}L1

{
NT (r, ω)

}
dr (2.15)
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Where, (•)T denotes matrix transpose, ks(r, θ) :
(
R

d ×Θ
)
→ R is the random distributed

stiffness parameter, L2{•} is the strain energy operator, c(r, θ) :
(
R

d ×Θ
)
→ R is the

random distributed damping parameter and L1{•} is the energy dissipation operator. The

derivation of the element matrices follows a method similar to the conventional spectral

stochastic stochastic finite element method (see for example Ghanem and Spanos (1991)).

The main difference is that the real shape functions need to be replaced by equivalent complex

shape functions given by Eq. (2.12). We refer to the chapters by Manohar and Adhikari

(1998a), Adhikari and Manohar (1999) for further details including the derivation of the

complex element matrices using energy pronciples. In the above equations De ∈ D is the

domain of an element such that D =
⋃
. . .

⋃
De and De

⋂
De′ = ∅, ∀e, e′. The random fields

ks(r, θ), ρ(r, θ) and c(r, θ) are expanded using the Karhunen-Loève expansion (2.1). Using

finite number of terms, each of the complex element matrices can be expanded in a spectral

series as

Ke(ω, θ) = K0e(ω) +

MK∑

j=1

ξKj
(θ)Kje(ω) (2.16)

Me(ω, θ) = M0e(ω) +

MM∑

j=1

ξMj
(θ)Mje(ω) (2.17)

and Ce(ω, θ) = C0e(ω) +

MC∑

j=1

ξCj
(θ)Cje(ω) (2.18)

Here the complex deterministic symmetric matrices, for example in the case of the stiffness

matrix, can be obtained as

K0e(ω) =

∫

De

ks0(r)L2 {N(r, ω)}L2

{
NT (r, ω)

}
dr and (2.19)

Kje(ω) =
√
λKj

∫

De

ϕKj
(r)L2 {N(r, ω)}L2

{
NT (r, ω)

}
dr (2.20)

∀j = 1, 2, · · · ,MK

The equivalent terms corresponding to the mass and damping matrices can also be obtained

in a similar manner. Substituting the shape function from Eq. (2.12), into equations (2.19)

and (2.20) one obtains

K0e(ω) = Γ(ω)K̃0e(ω)Γ
T (ω) and (2.21)

Kje(ω) =
√

λKj
Γ(ω)K̃je(ω)Γ

T (ω); ∀j = 1, 2, · · · ,MK (2.22)

where

K̃0e(ω) =

∫

De

ks0(r)L2 {s(r, ω)}L2

{
sT (r, ω)

}
dr ∈ C

mm and (2.23)

K̃je(ω) =

∫

De

ϕKj
(r)L2 {s(r, ω)}L2

{
sT (r, ω)

}
dr ∈ C

mm (2.24)
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∀j = 1, 2, · · · ,MK

The expressions of the eigenfunctions given in the previous section are valid within the

specific domains defined before. One needs to change the coordinate in order to use them

in Eq. (2.24). Once the element stiffness, mass and damping matrices are obtained in

this manner, the global matrices can be calculated by summing the element matrices with

suitable coordinate transformations as in the standard finite element method. A closed-form

expression of the eigenfunctions appearing in Eq. (2.24) are available for only few specific

correlation functions and with simple boundaries only. For such cases, as will be seen later in

the chapter, the integral in Eq. (2.24) may be obtained in closed-form. However, in general

the integral equation governing the eigenfunctions in (2.2) has to be solved numerically.

For such general cases the element matrices should be obtained using numerical integration

techniques.

Due to the use of spectral element in the frequency domain, only one finite element is

required per physical ‘element’ of a built-up system. For this reason, the dimension of the

global assembled matrices become small even when high-frequency vibration is considered.

However, the deterministic system, the element matrices are not exact as the Karhunen-

Loève expansion (2.1) needs to be truncated after a finite number of terms. The global

spectral matrix can be expressed as

D(ω, θ) = −ω2M(ω, θ) + iωC(ω, θ) +K(ω, θ) ∈ C
N×N (2.25)

where N is the dynamic degrees of freedom. Following the proposed DSSFEM approach, in

general the matrix D(ω, θ) can be expressed as

D(ω, θ) = D0(ω) +
∑

j

ξj(θ)Dj(ω) (2.26)

In this equation D : (Ω×Θ) → C
N×N is a complex random symmetric matrix and it needs

to be inverted for every ω to obtain the dynamic response. Here Ω denotes the space of

frequency. Unlike the inversion of real symmetric random matrices or complex Hermitian

matrices, relatively less literature is available on complex symmetric matrices. Adhikari and

Manohar (1999) and more recently Ghanem and Das (2009) have considered complex ran-

dom matrices arising in structural dynamics. In principle analytical approaches such as the

perturbation based methods (Kleiber and Hien, 1992) and projections methods (Ghanem

and Spanos, 1991) can be applied for the inversion of D(ω, θ). In practice, however, difficul-

ties may arise due to the fact that D(ω, θ) becomes close to singular when ω approaches to

a system natural frequency. This can be a major problem particularly when the damping

of the system is low. Reliable and computationally efficient methods for the derivation of

dynamic response using the proposed DSSFEM approach is an outstanding problem and is

currently a limitation of this approach. It is beyond the scope of this chapter to address this

issue in details. Here direct Monte Carlo simulation is used to obtain the response statistics

in the numerical examples to be followed.
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2.5 DSSFEM for damped rods in axial vibration

2.5.1 The equation of motion

The equation of motion of a damped stochastically inhomogeneous rod under axial vibration

is given by

∂

∂x

[
AE(x)

∂U(x, t)

∂x
+ c1

∂2U(x, t)

∂x∂t

]
= m(x)

∂2U(x, t)

∂t2
+ c2

∂U(x, t)

∂t
(2.27)

Here U(x, t) is the axial displacement, c1 is the strain rate dependent viscous damping

coefficient and c2 is the velocity dependent viscous damping coefficient. These quantities

are assumed to be deterministic constants. The axial rigidity AE(x) and the mass per unit

length m(x) are assumed to be random fields of the following form

AE(x, θ) = AE0 [1 + ǫAEHAE(x, θ)] (2.28)

m(x) = m0(1 + ǫmHm(x, θ)) (2.29)

It is assumed that HAE(x, θ) and Hm(x, θ) are homogeneous Gaussian random fields with

zero mean and exponentially decaying autocorrelation function of the form given by Eq.

(2.3). The ‘strength parameters’ ǫAE and ǫm effectively quantify the amount of uncertainty

in the axial rigidity and mass per unit length of the rod. The constants AE0 and m0 are

respectively the mass per unit length and axial rigidity of the underlying baseline model.

The equation of motion of the baseline model is given by

AE0
∂2U(x, t)

∂x2
+ c1

∂3U(x, t)

∂x2∂t
= m0

∂2U(x, t)

∂t2
+ c2

∂U(x, t)

∂t
(2.30)

With the spectral expansion of the axial displacement U(x, t) in the frequency-wavenumber

space, one has

U(x, t) = u(x)eiωt = ekxeiωt (2.31)

and k is the wavenumber for the baseline model in Eq. (2.30). Substituting U(x, t) from

Eq. (2.31) in Eq. (2.30) and simplifying we have

k2 + a2 = 0 or k = ±ia (2.32)

where

a2 =
m0ω

2 − iωc2
AE0 + iωc1

(2.33)

An element for the damped axially vibrating rod is shown in Figure 2.2. In view of

the solutions in Eq. (2.32), the complex displacement field within the element can be

expressed by linear combination of the basic functions e−iax and eiax so that in our notations

s(x, ω) =
{
e−iax, eiax

}T
. We have expressed the KL expansion in terms of trigonometric

functions in Eqs. (2.5) and (2.6). Therefore, it is more convenient to express s(x, ω) in
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dof 1,x=0 dof 2,x=L

1,c 2cAE(x), m(x),

Figure 2.2: An element for the axially vibrating rod with damping. The axial rigidity AE(x)
and mass per unit length m(x) are assumed to be random fields. The strain rate dependent
viscous damping coefficient c1 and the velocity dependent viscous damping coefficient c2 are
assumed to be deterministic. The element has two degrees of freedom and the displacement
field within the element is complex and frequency dependent.

terms of trigonometric functions. Considering e±iax = cos(ax)± i sin(ax), the vector s(x, ω)

can be alternatively expressed as

s(x, ω) =

{
sin(ax)
cos(ax)

}
∈ C

2 (2.34)

Considering unit axial displacement boundary condition as u(x = 0) = 1 and u(x = L) = 1,

after some elementary algebra, the shape function vector can be expressed in the form of

Eq. (2.12) as

N(x, ω) = Γ(ω)s(x, ω), where Γ(ω) =

[
− cot(aL) 1
cosec(aL) 0

]
∈ C

2×2 (2.35)

Now we need to substitute s(x, ω) in Eq. (2.23) and (2.24) to obtain the deterministic and

random part of the element matrices. In this chapter damping is assumed to be deterministic.

Therefore, only the stiffness and mass matrices of the system will be derived.

2.5.2 Derivation of the element stiffness and mass matrices

For the axial vibration, the stiffness operator is given by L2(•) = ∂(•)
∂x

. Because constant

nominal values are assumed, we have ks0(r) = AE0. Using these, from Eq. (2.23) one obtains

K̃0e(ω) = AE0

∫ L

x=0

{
∂s(x, ω)

∂x

}{
∂s(x, ω)

∂x

}T

dx (2.36)

=
AE0a

2

[
cs+ aL −1 + c2

−1 + c2 aL− cs

]
(2.37)

where

c = cos(aL) and s = sin(aL) (2.38)

The deterministic part of the stiffness matrix can be obtained from Eq. (2.21) using the

Γ(ω) matrix defined in Eq. (2.35). The term M̃0e(ω) can be obtained in a similar way as

M̃0e(ω) = m0

∫ L

x=0

s(x, ω)sT (x, ω)dx (2.39)
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=
m0

2a

[
aL− cs 1− c2

1− c2 cs+ aL

]
(2.40)

The deterministic mass matrix can be obtained from the above equation as M0e(ω) =

Γ(ω)M̃0e(ω)Γ
T (ω).

To obtain the matrices associated with the random components, note that for each j there

will be two different matrices corresponding to the two eigenfunctions defined in equations

(2.5) and (2.6). Following Eq. (2.16), we can express the element stiffness matrix as

Ke(ω, θ) = K0e(ω) + ∆Ke(ω, θ) (2.41)

where ∆Ke(ω, θ) is the random part of the matrix. Following Eq. (2.22), this matrix can be

conveniently expressed as

∆Ke(ω, θ) = Γ(ω)∆̃Ke(ω, θ)Γ
T (ω) (2.42)

The matrix ∆̃Ke(ω) can be expanded utilizing the Karhunen-Loève expansion as

∆̃Ke(ω, θ) =

MK∑

j=1

ξKj
(θ)

√
λKj

K̃je(ω) (2.43)

where
√
λKj

are the eigenvalues corresponding to the random field HAE(x, θ). The matrices

K̃je(ω) can be obtained using the integrals of Eq. (2.24). Using the expression of the

eigenfunction for the odd values of j as in Eq. (2.5) one has

K̃je(ω) =

∫ L

0

ǫAEAE0 cos(αj(−L/2 + x))√
L/2 +

sin(αjL)

2αj

{
∂s(x, ω)

∂x

}{
∂s(x, ω)

∂x

}T

dx (2.44)

=
ǫAEAE0√

(L/2 + cαsα/αj)

a2

αj

(
4a2 − α2

j

)×
[
2αjacαj

cs+ (−αj
2 + 4a2 − αj

2c2) sαj
(−2αja+ 2αjac

2) cαj
+ αj

2sαj
cs

(−2αja+ 2αjac
2) cαj

+ αj
2sαj

cs −2αjacαj
cs+ (4a2 − αj

2 + αj
2c2) sαj

]

(2.45)

In the above expression

cαj
= cos (αjL/ 2) and sαj

= sin (αjL/ 2) (2.46)

and the eigenvalues αj should be obtained by solving the transcendental Eq. (2.5) with l =

L/2. In Eq. (2.44) the KL eigenfunction is shifted to take account of the fact that Eq. (2.5)

is defined for −L/2 ≤ x ≤ L/2 while the element shape functions are defined over 0 ≤ x ≤ L.

In Eq. (2.44) we have used the identity sin(αjL) = 2 cos (αjL/ 2) sin (αjL/ 2) = 2cαsα. In a

similar manner, using the expression of the eigenfunction for the even values of j as in Eq.

(2.6) one has

K̃je(ω) =

∫ L

0

ǫAEAE0 sin(αj(−L/2 + x))√
L/2−

sin(αjL)

2αj

{
∂s(x, ω)

∂x

}{
∂s(x, ω)

∂x

}T

dx (2.47)
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=
ǫAEAE0√

(L/2− cαsα/αj)

a2

αj

(
4a2 − α2

j

)×
[
(−αj

2 + αj
2c2) cαj

+ 2αjasαj
cs −αj

2cαj
cs+ 2αjasαj

c2

−αj
2cαj

cs+ 2αjasαj
c2 (αj

2 − αj
2c2) cαj

− 2αjasαj
cs

]
(2.48)

The mass matrix can also be represented as equations (2.41)–(2.43). The eigenvalues and

eigenfunctions corresponding to the random field Hm(x, θ) needs to be used to obtain the

elements of M̃je(ω). Using the expression of the eigenfunction for the odd values of j as in

Eq. (2.5) one has

M̃je(ω) =

∫ L

0

ǫmm0 cos(αj(−L/2 + x))√
L/2 +

sin(αjL)

2αj

s(x, ω)sT (x, ω) dx (2.49)

=
ǫmm0√

(L/2 + cαsα/αj)

1

αj

(
4a2 − α2

j

)×
[
−2αjacαj

cs+ (4a2 − αj
2 + αj

2c2) sαj
(2αja− 2αjac

2) cαj
− αj

2sαj
cs

(2αja− 2αjac
2) cαj

− αj
2sαj

cs 2αjacαj
cs+ (−αj

2 + 4a2 − αj
2c2) sαj

]

(2.50)

In the above expression the eigenvalues αj should be obtained by solving the transcendental

Eq. (2.5). In a similar manner, using the expression of the eigenfunction for the even values

of j as in Eq. (2.6) one has

M̃je(ω) =

∫ L

0

ǫmm0 sin(αj(−L/2 + x))√
L/2−

sin(αjL)

2αj

s(x, ω)sT (x, ω) dx (2.51)

=
ǫmm0√

(L/2− cαsα/αj)

1

αj

(
4a2 − α2

j

)×
[
(αj

2 − αj
2c2) cαj

− 2αjasαj
cs αj

2cαj
cs− 2αjasαj

c2

αj
2cαj

cs− 2αjasαj
c2 (−αj

2 + αj
2c2) cαj

+ 2αjasαj
cs

]
(2.52)

Equations (2.44)–(2.51) completely define the random parts of the element stiffness and mass

matrices. The exact closed-form expression of the elements of the above four matrices further

reduces the computational cost in deriving these matrices.

2.5.3 Numerical Illustrations

We consider a numerical example to illustrate the application of the expressions derived

in the previous subsection. The mean material properties are considered ρ0 = 2700kg/m3

and E0 = 69GPa, values corresponding to aluminium. Length and cross section of the

rod are respectively L = 30m and A0 = 1cm2. Using these we have AE0 = 6.9 × 106

and m0 = ρ0A0 = 0.27. A clamped-free boundary condition is considered. The standard

deviations of both the random fields are assumed to be 10% of the mean values of the random

fields, that is, ǫAE = 0.1AE0 and ǫm = 0.1m0. The damping coefficients are assumed to be

c1 = 1.5×10−5AE0 and c2 = 11.15m0. The correlation length of the random fields describing



2.5. DSSFEM for damped rods in axial vibration 35

AE(x) and m(x) is assumed to be L/5. We consider the response at the free end of the rod

due to unit harmonic force at that end. The response is calculated upto 500Hz covering the

first six vibration modes of the system. The response of the deterministic system, the mean

and the standard deviation of the absolute value of the response are shown in Figure 2.3.

These results are obtained using Monte Carlo simulation with 4000 samples. In total 36 terms
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Figure 2.3: The amplitude of the frequency response function at the free end of the damped
axially vibrating rod with random properties.

are used for the KL expansion. With this number of terms, the last eigenvalue of the KL

expansion becomes less than 5% of the first eigenvalue. The element matrices associated with

36 random variables are obtained using the closed-form expression derived in the previous

section. The phase of the frequency response function at the free end of the rod is shown

in Figure 2.4. The phase does not change sign because we are considering the driving point

response. In both Figs. 2.3 and 2.4 the mean curve is different from the deterministic curve.

This difference is larger at higher frequencies. At lower frequencies, the standard deviation

is biased by the mean. But as frequency increases, the standard deviation curve flattens.

These results are obtained using a single spectral element although six modes of vibration

exist within the frequency range considered.
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Figure 2.4: The phase of the frequency response function at the free end of the damped
axially vibrating rod with random properties.

2.6 DSSFEM for damped beams in bending vibration

2.6.1 The equation of motion

The equation of motion of a damped stochastically inhomogeneous Euler-Bernoulli beam

under bending vibration is given by

∂2

∂x2

[
EI(x)

∂2Y (x, t)

∂x2
+ c3

∂3Y (x, t)

∂x2∂t

]
+m(x)

∂2Y (x, t)

∂t2
+ c4

∂Y (x, t)

∂t
= 0 (2.53)

Here Y (x, t) is the transverse flexural displacement, c3 is the strain rate dependent viscous

damping coefficient and c4 is the velocity dependent viscous damping coefficient. These

quantities are assumed to be deterministic constants. The mass per unit length m(x) is

assumed to be a random field of the form given by (2.29) and the bending rigidity EI(x) is

assumed to be

EI(x, θ) = EI0 [1 + ǫEIHEI(x, θ)] (2.54)

Like the case of the axially vibrating rod, we consider that HEI(x, θ) is a homogeneous

Gaussian random fields with zero mean and exponentially decaying autocorrelation function

of the form given by Eq. (2.3). The ‘strength parameter’ ǫEI quantify the amount of
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uncertainty in the bending rigidity of the beam. The constant EI0 is the bending rigidity of

the underlying baseline model. The equation of motion of the baseline model is given by

EI0
∂4Y (x, t)

∂x4
+ c3

∂5Y (x, t)

∂x2∂t
+m0

∂2Y (x, t)

∂t2
+ c4

∂Y (x, t)

∂t
= 0 (2.55)

Using the spectral representation of the transverse displacement Y (x, t) one has

Y (x, t) = y(x)eiωt = ekxeiωt (2.56)

where k is the wavenumber for the baseline model in Eq. (2.55). Substituting Y (x, t) from

Eq. (2.56) in Eq. (2.55) we have

k4 − b4 = 0 or k = ±ib, ±b (2.57)

where

b4 =
m0ω

2 − iωc4
EI0 + iωc3

(2.58)

An element for the damped beam under bending vibration is shown in Figure 2.5.

The degrees-of-freedom for each nodal point include a vertical and a rotational degrees-of-

freedom. In view of the solutions in Eq. (2.57), the displacement field with the element can

x=0 x=L

3,c 4cEI(x), m(x),

1

2

3

4

Figure 2.5: An element for the damped beam under bending vibration. The bending
rigidity EI(x) and mass per unit length m(x) are assumed to be random fields. The strain
rate dependent viscous damping coefficient c3 and the velocity dependent viscous damping
coefficient c4 are assumed to be deterministic. The element has four degrees of freedom and
the displacement field within the element is complex and frequency dependent.

be expressed by linear combination of the basic functions e−bx, ebx, e−ibx and eibx so that in our

notations s(x, ω) =
{
e−bx, ebx, e−ibx, eibx

}T
. We have expressed the KL expansion in terms of

trigonometric functions in Eqs. (2.5) and (2.6). Therefore, like the previous section, we aim

to express s(x, ω) in terms of trigonometric functions. Considering e±ibx = cos(bx)± i sin(bx)

and e±bx = cosh(bx)± i sinh(bx), the vector s(x, ω) can be alternatively expressed as

s(x, ω) =





sin(bx)
cos(bx)
sinh(bx)
cosh(bx)





∈ C
4 (2.59)
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The displacement field within the element can be expressed as

y(x) = s(x, ω)Tye (2.60)

where ye ∈ C
4 is the vector of constants to be determined from the boundary conditions.

The relationship between the shape functions and the boundary conditions can be rep-

resented as in Table 2.1, where boundary conditions in each column give rise to the corre-

sponding shape function. Writing Eq. (2.60) for the above four sets of boundary conditions,

N1(x, ω) N2(x, ω) N3(x, ω) N4(x, ω)
y(0) 1 0 0 0
dy

dx
(0) 0 1 0 0

y(L) 0 0 1 0
dy

dx
(L) 0 0 0 1

Table 2.1: The relationship between the boundary conditions and the shape functions for
the bending vibration of beams.

one obtains

[R]
[
y1
e,y

2
e,y

3
e,y

4
e

]
= I (2.61)

where

R =




s1(0) s2(0) s3(0) s4(0)
ds1
dx

(0)
ds2
dx

(0)
ds3
dx

(0)
ds4
dx

(0)

s1(L) s2(L) s3(L) s4(L)
ds1
dx

(L)
ds2
dx

(L)
ds3
dx

(L)
ds4
dx

(L)




(2.62)

and yk
e is the vector of constants giving rise to the kth shape function. In view of the

boundary conditions represented in Table 2.1 and equation (2.61), the shape functions for

bending vibration can be shown to be given by Eq. (2.12) where

Γ(ω) =
[
y1
e,y

2
e,y

3
e,y

4
e

]T
=

[
R−1

]T
=




1
2
cS+Cs
cC−1

−1
2
1+sS−cC

cC−1
−1

2
cS+Cs
cC−1

1
2
cC+sS−1

cC−1
1
2
cC+sS−1
b(cC−1)

1
2
−Cs+cS
b(cC−1)

−1
2
1+sS−cC
b(cC−1)

−1
2
−Cs+cS
b(cC−1)

−1
2

S+s
cC−1

1
2

C−c
cC−1

1
2

S+s
cC−1

−1
2

C−c
cC−1

1
2

C−c
b(cC−1)

−1
2

S−s
b(cC−1)

−1
2

C−c
b(cC−1)

−1
2

S−s
b(cC−1)




(2.63)

Here

C = cosh(bL), c = cos(bL), S = sinh(bL) and s = sin(bL) (2.64)

are frequency dependent quantities because b is a function of ω. We need to substitute

s(x, ω) in Eq. (2.23) and (2.24) to obtain the deterministic and random part of the element

matrices. Since damping is assumed to be deterministic, we will only derive the stiffness and

mass matrices of the system.
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2.6.2 Derivation of the element stiffness and mass matrices

For the bending vibration the stiffness operator can be given as L2(•) = ∂2(•)
∂x2 . Because

constant nominal values are assumed, we have ks0(r) = EI0. Using these, from Eq. (2.23)

one obtains

K̃0e(ω) = EI0

∫ L

x=0

{
∂2s(x, ω)

∂x2

}{
∂2s(x, ω)

∂x2

}T

dx (2.65)

=
EI0b

3

2




bL− cs 1− c2 cS − sC −1 + cC − sS
1− c2 cs+ bL 1− cC − sS −cS − sC

cS − sC 1− cC − sS CS − bL −1 + C2

−1 + cC − sS −cS − sC −1 + C2 CS + bL


 (2.66)

The deterministic part of the stiffness matrix can be obtained from Eq. (2.21) using the

Γ(ω) matrix defined in Eq. (2.63). The term M̃0e(ω) can be obtained in a similar way as

M̃0e(ω) = m0

∫ L

x=0

s(x, ω)sT (x, ω)dx (2.67)

=
m0

2b




bL− cs 1− c2 −cS + sC 1− cC + sS
1− c2 cs+ bL −1 + cC + sS cS + sC

−cS + sC −1 + cC + sS CS − bL −1 + C2

1− cC + sS cS + sC −1 + C2 CS + bL


 (2.68)

The deterministic mass matrix can be obtained from the above equation as M0e(ω) =

Γ(ω)M̃0e(ω)Γ
T (ω).

To obtain the matrices associated with the random components, note that for each j there

will be two different matrices corresponding to the two eigenfunctions defined in equations

(2.5) and (2.6). Like the axial vibration of rods, the element stiffness matrix can be expressed

as Eq. (2.42) where The matrix ∆̃Ke(ω) can be expanded utilizing the Karhunen-Loève

expansion as Eq. (2.43).

The matrices K̃je(ω) can be obtained using the integrals of the form Eq. (2.24). Using

the expression of the eigenfunction for the odd values of j as in Eq. (2.5) one has

K̃je(ω) =

∫ L

0

ǫEIEI0 cos(αj(−L/2 + x))√
L/2 +

sin(αjL)

2αj

{
∂2s(x, ω)

∂x2

}{
∂2s(x, ω)

∂x2

}T

dx (2.69)

=
ǫEIEI0√

(L/2 + cαsα/αj)
K̂j

where cα, sα are defined in Eq. (2.46) and K̂j ∈ C
4×4 is a symmetric matrix obtained in

Appendix A. In a similar manner, using the expression of the eigenfunction for the even

values of j as in Eq. (2.6) one has

K̃je(ω) =

∫ L

0

ǫEIEI0 sin(αj(−L/2 + x))√
L/2−

sin(αjL)

2αj

{
∂2s(x, ω)

∂x2

}{
∂2s(x, ω)

∂x2

}T

dx (2.70)
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=
ǫEIEI0√

(L/2− cαsα/αj)
K̂j

The mass matrix can also be represented as above. The eigenvalues and eigenfunctions

corresponding to the random field Hm(x, θ) needs to be used to obtain the elements of

M̃je(ω). Using the expression of the eigenfunction for the odd values of j as in Eq. (2.5)

one has

M̃je(ω) =

∫ L

0

ǫmm0 cos(αj(−L/2 + x))√
L/2 +

sin(αjL)

2αj

s(x, ω)sT (x, ω) dx (2.71)

=
ǫmm0√

(L/2 + cαsα/αj)
M̂j

In the above expression the eigenvalues αj should be obtained by solving the transcendental

Eq. (2.5). In a similar manner, using the expression of the eigenfunction for the even values

of j as in Eq. (2.6) one has

M̃je(ω) =

∫ L

0

ǫmm0 sin(αj(−L/2 + x))√
L/2 −

sin(2αja)

2αj

s(x, ω)sT (x, ω) dx (2.72)

=
ǫmm0√

(L/2− cαsα/αj)
M̂j

Equations (2.69)–(2.72) completely define the random parts of the element stiffness and

mass matrices. The definite integrals appearing in these expressions can be evaluated in

closed-form. This further reduces the computational cost in deriving the element matrices.

The exact closed-form expression of the elements of the above four matrices are given in

Appendix A.

2.6.3 Numerical Illustrations

A simple numerical example is considered to illustrate the application of the matrices

derived for the Euler-Bernoulli beam. The mean material properties are considered as

ρ0 = 7800kg/m3 and E0 = 210GPa, values corresponding to steel. The length of the beam is

L = 1.5m and the rectangular cross section has width 40.06mm and thickness 2.05mm. The

area moment of inertia of the cross-section I = 2.876× 10−11m4. A clamped-free boundary

condition is considered for this example. Using these values we have EI0 = 5.752Nm2 and

m0 = ρ0A0 = 0.6406kg/m. The standard deviations of both the random fields are assumed

to be 10% of their mean values, that is, ǫEI = 0.1EI0 and ǫm = 0.1m0. The damping co-

efficients are assumed to be c1 = 6.15 × 10−5EI0 and c2 = 0.09m0. The correlation length

of the random fields describing EI(x) and m(x) is assumed to be L/2. We consider the

displacement response at the free end of the beam due to an unit harmonic vertical force at

that end. The response is calculated upto 200Hz covering the first ten vibration modes of

the system. The response of the deterministic system, the mean and the standard deviation
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Figure 2.6: The amplitude of the displacement frequency response function at the free end
of the damped beam with random properties.

of the absolute value of the response are shown in Figure 2.6. These results are obtained

using Monte Carlo simulation with 4000 samples. In total 18 terms are used for the KL

expansion. With this number of terms, the last eigenvalue of the KL expansion becomes less

than 5% of the first eigenvalue. The element matrices associated with 18 random variables

are obtained using the closed-form expression derived the previous section. The phase of the

frequency response function at the free end of the beam is shown in Figure 2.7. The phase

do not change sign because we are considering the driving point response. In both Figs. 2.6

and 2.7 the mean curve is different from the deterministic curve. This difference is larger at

higher frequencies. At lower frequencies, the standard deviation is biased by the mean. But

as we approach the higher frequencies, the standard deviation curve flattens. These results

are obtained using a single spectral element although ten modes of vibration exist within

the frequency range considered.

2.7 Conclusions

The basic formulation for Doubly Spectral Stochastic Finite Element Method (DSSFEM) for

damped linear dynamical systems with distributed parametric uncertainty has been derived.

This new approach simultaneously utilizes the spectral representations in the frequency and
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Figure 2.7: The phase of the displacement frequency response function at the free end of
the damped beam with random properties.

random domains. The spatial displacement fields are discretized using frequency-adaptive

complex shape functions while the spatial random fields are discretized using the Karhunen-

Loève expansion. The frequency-adaptive shape functions are obtained from the spectral

analysis of the underlying deterministic system, while the Karhunen-Loève expansion is

obtained from the spectral decomposition of the autocorrelation function of the spatial ran-

dom field. In spite of the fact that these two spectral approaches existed for well over three

decades, there has not been much overlap between them in literature. In this chapter these

two spectral techniques have been unified with the aim that the unified approach would

outperform any of the spectral methods considered on its own. The resulting frequency

dependent random element matrices in general turn out to be complex symmetric matri-

ces. The main computational advantage of the proposed approach is that the fine spatial

discretisation will not be necessary for high and mid-frequency vibration analysis. This in

turn results in smaller size matrices to be inverted. The detailed derivations for rods in

axial vibration and beams in bending vibration are given. Closed-form expressions of the

element stiffness and mass matrices have been derived for the stochastic parametric fields

with exponential autocorrelation function. Numerical examples have been given to illustrate

the applicability of the proposed method.
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The calculation of dynamic response using the DSSFEM requires the inversion of a com-

plex random symmetric matrix for every frequency. A limitation of the proposed method

is that Monte Carlo simulation is necessary for this step. Although the matrix sizes are

smaller using the DSSFEM compared to conventional SFEM, this step still requires consid-

erable computational effort. Further research is necessary to develop analytical methods in

this direction. Further research is also necessary to extract eigenvalues from the complex

random matrices obtained using the proposed method.



Appendix A

Expression of spectral element

matrices associated with the KL

expansion for the bending vibration of

beam

This appendix gives the explicit expressions for the spectral stiffness and mass matrices

associated with the KL expansion for the bending vibration of beam. The elements of the

stiffness matrix associated with the odd values of j in Eq. (2.69) can be obtained as

K̂11 =
4b6sαj

−2b5αjcαj
cs+(−αj

2+αj
2c2)sαj

b4

−αj
3+4αjb2

K̂12 =
(2−2c2)cαj

b5−b4αjsαj
cs

−αj
2+4b2

K̂13 =
(2cS−2sC)cαj

b7+(2αj+2αjCc)sαj
b6+(−αj

2Cs−αj
2cS)cαj

b5−b4αj
3sαj

Ss

4b4+αj
4

K̂14 =
(−2Ss−2+2Cc)cαj

b7+2b6αjsαj
cS+(−αj

2Ss+αj
2−αj

2Cc)cαj
b5−b4αj

3Csαj
s

4b4+αj
4

K̂22 =
4b6sαj

+2b5αjcαj
cs+(−αj

2−αj
2c2)sαj

b4

−αj
3+4αjb2

K̂23 =
(2−2Ss−2Cc)cαj

b7−2b6αjCsαj
s+(−αj

2Cc+αj
2Ss+αj

2)cαj
b5−b4αj

3sαj
cS

4b4+αj
4

K̂24 =
(−2cS−2sC)cαj

b7−2b6αjsαj
Ss+(αj

2Cs−αj
2cS)cαj

b5+(−αj
3−αj

3Cc)sαj
b4

4b4+αj
4

K̂33 =
−4b6sαj

+2b5αjSCcαj
+(αj

2C2−αj
2)sαj

b4

4αjb2+αj
3

K̂34 =
(−2+2C2)cαj

b5+b4αjSCsαj

4b2+αj
2

K̂44 =
4b6sαj

+2b5αjSCcαj
+(αj

2C2+αj
2)sαj

b4

4αjb2+αj
3 .

The subscript j is omitted in K̂ for notational convenience. Because the matrix is sym-

metric, only the upper triangular part is shown. All the terms appearing in the above

expressions have been defined in the main body of the chapter. The elements of the stiffness

matrix associated with the even values of j in Eq. (2.70) can be obtained as

K̂11 =
−2b5sαj

cs+(αj−αjc
2)cαj

b4

−αj
2+4b2

K̂12 =
b4cαjcαj

s−2b5c2sαj

−αj
2+4b2

44



45

K̂13 =
(2cS−2sC)sαj

b7+(−2αjCc+2αj)cαj
b6+(−αj

2Cs−αj
2cS)sαj

b5+b4αj
3cαj

Ss

4b4+αj
4

K̂14 =
(2Cc−2Ss+2)sαj

b7−2b6αjcαj
cS+(−αj

2Cc−αj
2−αj

2Ss)sαj
b5+b4αj

3Ccαj
s

4b4+αj
4

K̂22 =
(−2sαj

αj cos(αjL)cs+2cαj
αj sin(αjL)cs)b5+((−αj

2+αj
2 cos(αjL)c

2)cαj
+sαj

αj
2 sin(αjL)c

2)b4
−αj

3+4αjb2

K̂23 =
(−2−2Cc−2Ss)sαj

b7+2b6αjCcαj
s+(−αj

2Cc−αj
2+αj

2Ss)sαj
b5+b4αj

3cαj
cS

4b4+αj
4

K̂24 =
(−2cS−2sC)sαj

b7+2b6αjcαj
Ss+(αj

2Cs−αj
2cS)sαj

b5+(−αj
3+αj

3Cc)cαj
b4

4b4+αj
4

K̂33 =
2b5SCsαj

+(αj−αjC
2)cαj

b4

4b2+αj
2

K̂34 =
2C2b5sαj

−Cb4αjScαj

4b2+αj
2

K̂44 =
2b5SCsαj

+(αj−αjC
2)cαj

b4

4b2+αj
2 .

The elements of the mass matrix associated with the odd values of j in Eq. (2.71) can

be obtained as

M̂11 =
−2b5sαj

cs+(αj−αjc
2)cαj

b4

−αj
2+4b2

M̂12 =
b4cαjcαj

s−2b5c2sαj

−αj
2+4b2

M̂13 =
(2cS−2sC)sαj

b7+(−2αjCc+2αj)cαj
b6+(−αj

2Cs−αj
2cS)sαj

b5+b4αj
3cαj

Ss

4b4+αj
4

M̂14 =
(2Cc−2Ss+2)sαj

b7−2b6αjcαj
cS+(−αj

2Cc−αj
2−αj

2Ss)sαj
b5+b4αj

3Ccαj
s

4b4+αj
4

M̂22 =
(−2sαj

αj cos(αjL)cs+2cαj
αj sin(αjL)cs)b5+((−αj

2+αj
2 cos(αjL)c

2)cαj
+sαj

αj
2 sin(αjL)c

2)b4
−αj

3+4αjb2

M̂23 =
(−2−2Cc−2Ss)sαj

b7+2b6αjCcαj
s+(−αj

2Cc−αj
2+αj

2Ss)sαj
b5+b4αj

3cαj
cS

4b4+αj
4

M̂24 =
(−2cS−2sC)sαj

b7+2b6αjcαj
Ss+(αj

2Cs−αj
2cS)sαj

b5+(−αj
3+αj

3Cc)cαj
b4

4b4+αj
4

M̂33 =
2b5SCsαj

+(αj−αjC
2)cαj

b4

4b2+αj
2

M̂34 =
2C2b5sαj

−Cb4αjScαj

4b2+αj
2

M̂44 =
2b5SCsαj

+(αj−αjC
2)cαj

b4

4b2+αj
2 .

The elements of the mass matrix associated with the even values of j in Eq. (2.72) can

be obtained as

M̂11 =
−2b5sαj

cs+(αj−αjc
2)cαj

b4

−αj
2+4b2

M̂12 =
b4cαjcαj

s−2b5c2sαj

−αj
2+4b2

M̂13 =
(2cS−2sC)sαj

b7+(−2αjCc+2αj)cαj
b6+(−αj

2Cs−αj
2cS)sαj

b5+b4αj
3cαj

Ss

4b4+αj
4

M̂14 =
(2Cc−2Ss+2)sαj

b7−2b6αjcαj
cS+(−αj

2Cc−αj
2−αj

2Ss)sαj
b5+b4αj

3Ccαj
s

4b4+αj
4

M̂22 =
(−2sαj

αj cos(αjL)cs+2cαj
αj sin(αjL)cs)b5+((−αj

2+αj
2 cos(αjL)c

2)cαj
+sαj

αj
2 sin(αjL)c

2)b4
−αj

3+4αjb2

M̂23 =
(−2−2Cc−2Ss)sαj

b7+2b6αjCcαj
s+(−αj

2Cc−αj
2+αj

2Ss)sαj
b5+b4αj

3cαj
cS

4b4+αj
4

M̂24 =
(−2cS−2sC)sαj

b7+2b6αjcαj
Ss+(αj

2Cs−αj
2cS)sαj

b5+(−αj
3+αj

3Cc)cαj
b4

4b4+αj
4

M̂33 =
2b5SCsαj

+(αj−αjC
2)cαj

b4

4b2+αj
2

M̂34 =
2C2b5sαj

−Cb4αjScαj

4b2+αj
2
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M̂44 =
2b5SCsαj

+(αj−αjC
2)cαj

b4

4b2+αj
2 .



Appendix B

Expressions for elements of matrices

αl(ω) and Xl

B.1 Expressions for elements of matrices
[
αl(ω)

]

The matrices
[
αl(ω)

]
can be written as

[
αl(ω)

]
=

[ [
βl(ω)

]
(4×4)

O(4×2)

O(2×4) O(2×2)

]

(6×6)

for l = 1..10

[
αl(ω)

]
=

[
O(4×4) O(4×2)

O(2×4)

[
θl(ω)

]
(2×2)

]

(6×6)

for l = 11..13 (B.1)

where O is the null matrix.

In the following expressions C = cosh bl, c = cos bl, S = sinh bl, s = sin bl and

b4 =
m0ω

2

EI0
(B.2)

β1
1,1 =

1
4

( c S+C s )2

(−1+cC )2
β1
1,2 =

1
4

( c S+C s ) (−1+cC+s S )
(−1+cC )2 b

β1
1,3 = − 1

4
( c S+C s ) (S+s )

(−1+c C )2

β1
1,4 = − 1

4
( c S+C s ) (−C+c )

(−1+cC )2 b
β1
2,2 =

1
4

(−1+c C+s S )2

b2 (−1+cC )2
β1
2,3 = − 1

4
(−1+c C+s S ) (S+s )

b (−1+cC )2

β1
2,4 = − 1

4
(−1+cC+s S ) (−C+c )

b2 (−1+c C )2
β1
3,3 =

1
4

(S+s )2

(−1+c C )2
β1
3,4 =

1
4

(S+s ) (−C+c )
(−1+cC )2 b

β1
4,4 =

1
4

(−C+c )2

b2 (−1+cC )2

β2
1,1 =

1
2

( c S+C s ) (−s S−1+cC )
(−1+cC )2

β2
1,2 =

1
4

c2 S2−C2 s2−s2 S2+1−2 cC+c2 C2

(−1+c C )2 b

β2
1,3 = − 1

4
c2 S−C2 s+2C s c−s S2−s2 S−S−s

(−1+cC )2

β2
1,4 = − 1

4
c S2−2 c S s+2C sS−C s2+C−c−cC2+c2 C

(−1+c C )2 b

β2
2,2 =

1
2

(−1+cC+s S ) (−C s+c S )
b2 (−1+cC )2

β2
2,3 = − 1

4
C−c−cC2+c2 C−2C sS+2 c S s−C s2+c S2

(−1+cC )2 b

β2
2,4 = − 1

4
−S+s−2C s c+sS2−s2 S+C2 s+c2 S

b2 (−1+cC )2
β2
3,3 =

1
2

(S+s ) (−C+c )
(−1+cC )2

β2
3,4 =

1
4

S2−s2+C2−2 cC+c2

(−1+c C )2 b
β2
4,4 =

1
2

(−C+c ) (S−s )
b2 (−1+cC )2
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β3
1,1 = − 1

2
( c S+C s )2

(−1+cC )2
β3
1,2 = − 1

2
( c S+C s ) s S
(−1+cC )2 b

β3
1,3 =

1
2

( c S+C s ) (S+s )
(−1+cC )2

β3
1,4 =

1
2

( c S+C s ) (−C+c )
(−1+c C )2 b

β3
2,2 =

1
2

(−s S−1+cC ) (−1+cC+s S )
b2 (−1+c C )2

β3
2,3 =

1
2

(S+s ) s S
(−1+cC )2 b

β3
2,4 =

1
2

(−C+c ) s S
b2 (−1+cC )2

β3
3,3 = − 1

2
(S+s )2

(−1+cC )2
β3
3,4 = − 1

2
(S+s ) (−C+c )
(−1+c C )2 b

β3
4,4 = − 1

2
(−C+c )2

b2 (−1+c C )2

β4
1,1 =

1
2

( c S+C s ) (−1+cC+s S )
(−1+cC )2

β4
1,2 = − 1

4
c2 S2−C2 s2−1+2 cC+2 s S−c2 C2−2 c S C s−s2 S2

(−1+cC )2 b

β4
1,3 =

1
4

−2 c S C+c2 S−C2 s+S+s−sS2−s2 S
(−1+c C )2

β4
1,4 = − 1

4
−c S2+2 c S s−2C sS+C s2+C−c−cC2+c2 C

(−1+cC )2 b

β4
2,2 = − 1

2
(−1+cC+s S ) (−C s+c S )

b2 (−1+cC )2
β4
2,3 =

1
4

C−c−cC2+c2 C−2C sS+2 c S s−C s2+c S2

(−1+cC )2 b

β4
2,4 =

1
4

−S+s−2C s c+s S2−s2 S+C2 s+c2 S
b2 (−1+cC )2

β4
3,3 = − 1

2
(S+s ) (−C+c )

(−1+cC )2

β4
3,4 = − 1

4
S2−s2+C2−2 c C+c2

(−1+cC )2 b
β4
4,4 = − 1

2
(−C+c ) (S−s )
b2 (−1+cC )2

β5
1,1 =

1
4

(−s S−1+cC )2

(−1+cC )2
β5
1,2 =

1
4

(−s S−1+cC ) (−C s+c S )
(−1+c C )2 b

β5
1,3 = − 1

4
(−s S−1+cC ) (−C+c )

(−1+c C )2

β5
1,4 = − 1

4
(−s S−1+cC ) (S−s )

(−1+cC )2 b
β5
2,2 =

1
4

(−C s+c S )2

b2 (−1+cC )2

β5
2,3 = − 1

4
(−C s+c S ) (−C+c )

(−1+cC )2 b
β5
2,4 = − 1

4
(−C s+c S ) (S−s )

b2 (−1+c C )2

β5
3,3 =

1
4

(−C+c )2

(−1+cC )2
β5
3,4 =

1
4

(−C+c ) (S−s )
(−1+cC )2 b

β5
4,4 =

1
4

(S−s )2

b2 (−1+cC )2

β6
1,1 = − 1

2
( c S+C s ) (−s S−1+cC )

(−1+cC )2

β6
1,2 = − 1

4
(−s2 S2−2 s S+2 c S C s−1+2 cC−c2 C2+c2 S2−C2 s2 )

(−1+cC )2 b

β6
1,3 =

1
4

c2 S−C2 s+2C s c−s S2−s2 S−S−s
(−1+cC )2

β6
1,4 =

1
4

c S2−2 c S s+2C sS−C s2+C−c−cC2+c2 C
(−1+cC )2 b

β6
2,2 =

1
2

(−s S−1+cC ) (−C s+c S )
b2 (−1+cC )2

β6
2,3 = − 1

4
2C sS+C s2−c S2−2 c S s+C−c−cC2+c2 C

(−1+cC )2 b

β6
2,4 =

1
4

C2 s−2 c S C+c2 S+s S2−s2 S+S−s
b2 (−1+c C )2

β6
3,3 = − 1

2
(S+s ) (−C+c )

(−1+cC )2

β6
3,4 = − 1

4
S2−s2+C2−2 c C+c2

(−1+cC )2 b
β6
4,4 = − 1

2
(−C+c ) (S−s )
b2 (−1+cC )2

β7
1,1 =

1
2

(−s S−1+cC ) (−1+cC+s S )
(−1+c C )2

β7
1,2 =

1
2

(−C s+c S ) s S
(−1+c C )2 b

β7
1,3 = − 1

2
(−C+c ) s S
(−1+c C )2

β7
1,4 = − 1

2
(S−s ) s S

(−1+cC )2 b

β7
2,2 = − 1

2
(−C s+c S )2

b2 (−1+c C )2
β7
2,3 =

1
2

(−C s+c S ) (−C+c )
(−1+c C )2 b

β7
2,4 =

1
2

(−C s+c S ) (S−s )
b2 (−1+cC )2

β7
3,3 = − 1

2
(−C+c )2

(−1+cC )2
β7
3,4 = − 1

2
(−C+c ) (S−s )
(−1+c C )2 b

β7
4,4 = − 1

2
(S−s )2

b2 (−1+c C )2

β8
1,1 =

1
4

( c S+C s )2

(−1+cC )2
β8
1,2 = − 1

4
( c S+C s ) (−s S−1+cC )

(−1+cC )2 b
β8
1,3 = − 1

4
( c S+C s ) (S+s )

(−1+c C )2

β8
1,4 = − 1

4
( c S+C s ) (−C+c )

(−1+cC )2 b
β8
2,2 =

1
4

(−s S−1+cC )2

b2 (−1+cC )2
β8
2,3 =

1
4

(−s S−1+cC ) (S+s )
(−1+cC )2 b

β8
2,4 =

1
4

(−s S−1+cC ) (−C+c )
b2 (−1+c C )2

β8
3,3 =

1
4

(S+s )2

(−1+c C )2
β8
3,4 =

1
4

(S+s ) (−C+c )
(−1+cC )2 b

β8
4,4 =

1
4

(−C+c )2

b2 (−1+cC )2
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β9
1,1 = − 1

2
( c S+C s ) (−1+cC+s S )

(−1+cC )2
β9
1,2 =

1
4

c2 S2−C2 s2−s2 S2+1−2 cC+c2 C2

(−1+c C )2 b

β9
1,3 = − 1

4
−2 c S C+c2 S−C2 s+S+s−sS2−s2 S

(−1+c C )2

β9
1,4 =

1
4

−c S2+2 c S s−2C sS+C s2+C−c−cC2+c2 C
(−1+cC )2 b

β9
2,2 = − 1

2
(−s S−1+cC ) (−C s+c S )

b2 (−1+c C )2

β9
2,3 =

1
4

2C sS+C s2−c S2−2 c S s+C−c−cC2+c2 C
(−1+cC )2 b

β9
2,4 = − 1

4
C2 s−2 c S C+c2 S+s S2−s2 S+S−s

b2 (−1+c C )2

β9
3,3 =

1
2

(S+s ) (−C+c )
(−1+cC )2

β9
3,4 =

1
4

S2−s2+C2−2 cC+c2

(−1+cC )2 b

β9
4,4 =

1
2

(−C+c ) (S−s )
b2 (−1+c C )2

β10
1,1 =

1
4

(−1+cC+s S )2

(−1+cC )2
β10
1,2 = − 1

4
(−1+c C+s S ) (−C s+cS )

(−1+c C )2 b
β10
1,3 =

1
4

(−1+cC+s S ) (−C+c )
(−1+c C )2

β10
1,4 =

1
4

(−1+cC+s S ) (S−s )
(−1+c C )2 b

β10
2,2 =

1
4

(−C s+c S )2

b2 (−1+cC )2
β10
2,3 = − 1

4
(−C s+c S ) (−C+c )

(−1+cC )2 b

β10
2,4 = − 1

4
(−C s+c S ) (S−s )

b2 (−1+cC )2
β10
3,3 =

1
4

(−C+c )2

(−1+cC )2
β10
3,4 =

1
4

(−C+c ) (S−s )
(−1+c C )2 b

β10
4,4 =

1
4

(S−s )2

b2 (−1+cC )2

Expressions for elements of θl(ω) are given by

θ111,1 = cot( a l )2 θ111,2 = −cot( a l ) csc( a l ) θ112,2 = csc( a l )2

θ121,1 = −2 cot( a l ) θ121,2 = csc( a l ) θ122,2 = 0

θ131,1 = 1 θ131,2 = 0 θ132,2 = 0

with

a2 =
m0ω

2

AE0

(B.3)

It may be noted that the matrices
[
βl(ω)

]
and

[
θl(ω)

]
are all symmetric and only the upper

triangle part of these matrices have been listed above.

B.2 Expressions of the dynamic weighted integrals Xl

Expression of Xl for l = 1..10 depends upon the sign of b4 and are shown to be given by

Case 1 : b4 > 0

X1=

∫ L

0

{(
k0 ǫ1 f1(x )−m0 ω

2 ǫ2 f2(x )
)
sin( b x )2 + EI0 ǫ3 f3(x ) sin( b x )

2 b4
}
dx

X2=

∫ L

0

{(
k0 ǫ1 f1(x )−m0 ω

2 ǫ2 f2(x )
)
sin( b x ) cos( b x ) + EI0 ǫ3 f3(x ) sin( b x ) b

4 cos( b x )
}
dx

X3=

∫ L

0

{(
k0 ǫ1 f1(x )−m0 ω

2 ǫ2 f2(x )
)
sin( b x ) sinh( b x ) − EI0 ǫ3 f3(x ) sin( b x ) b

4 sinh( b x )
}
dx

X4=

∫ L

0

{(
k0 ǫ1 f1(x )−m0 ω

2 ǫ2 f2(x )
)
sin( b x ) cosh( b x )− EI0 ǫ3 f3(x ) sin( b x ) b

4 cosh( b x )
}
dx

X5=

∫ L

0

{(
k0 ǫ1 f1(x )−m0 ω

2 ǫ2 f2(x )
)
cos( b x )2 + EI0 ǫ3 f3(x ) cos( b x )

2 b4
}
dx
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X6=

∫ L

0

{(
k0 ǫ1 f1(x )−m0 ω

2 ǫ2 f2(x )
)
cos( b x ) sinh( b x )− EI0 ǫ3 f3(x ) cos( b x ) b

4 sinh( b x )
}
dx

X7=

∫ L

0

{(
k0 ǫ1 f1(x )−m0 ω

2 ǫ2 f2(x )
)
cos( b x ) cosh( b x )− EI0 ǫ3 f3(x ) cos( b x ) b

4 cosh( b x )
}
dx

X8=

∫ L

0

{(
k0 ǫ1 f1(x )−m0 ω

2 ǫ2 f2(x )
)
sinh( b x )2 + EI0 ǫ3 f3(x ) sinh( b x )

2 b4
}
dx

X9=

∫ L

0

{(
k0 ǫ1 f1(x )−m0 ω

2 ǫ2 f2(x )
)
sinh( b x ) cosh( b x ) + EI0 ǫ3 f3(x ) sinh( b x ) b

4 cosh( b x )
}
dx

X10=

∫ L

0

{(
k0 ǫ1 f1(x )−m0 ω

2 ǫ2 f2(x )
)
cosh( b x )2 + EI0 ǫ3 f3(x ) cosh( b x )

2 b4
}
dx

for l = 11..13

X11 =

∫ L

0

{
−m0 ω

2 ǫ2 f2( x ) sin( a x )
2 + AE0 ǫ4 f4( x ) cos( a x )

2 a2
}
dx

X12 =

∫ L

0

{
−m0 ω

2 ǫ2 f2( x ) sin( a x ) cos( a x )−AE0 ǫ4 f4( x ) cos( a x ) a
2 sin( a x )

}
dx

X13 =

∫ L

0

{
−m0 ω

2 ǫ2 f2( x ) cos( a x )
2 + AE0 ǫ4 f4( x ) sin( a x )

2 a2
}
dx

for the above expressions b, b′ and a is same as defined in equations (B.2), (??) and (B.3).



Appendix C

MAPLE V Program BMSYM

#########################################################################
#PROGRAM FOR CALCULATING THE SYMBOLIC EXPRESSION OF MEAN OF DYNAMIC
#STIFFNESS MATRIX, MATRIX ASSOCIATED WITH THE WEIGHTED INTEGRALS AND
#EXPRESSIONS OF THE WEIGHTED INTEGRALS IN FLEXURAL MOTION OF THE BEAM
#ELEMENT.
#------------------------------------------------------------------------

with(combinat):
with(linalg):

#DEFINING DIFFERENT ARRAYS:
Gamma:=array(1..4,1..4):
N:=array(1..4):
Du:=array(1..4,1..4):
for lr to 10 do

alpha.lr:=array(1..4,1..4):
od;

s:=array(1..4,[sin(b*x),cos(b*x),sinh(b*x),cosh(b*x)]);
Rb:=array(1..4,1..4,[[0,1,0,1],[b,0,b,0],

[sin(b*l),cos(b*l),sinh(b*l),cosh(b*l)],
[cos(b*l)*b,-sin(b*l)*b,cosh(b*l)*b,sinh(b*l)*b]]);

t:=inverse(Rb):
Gammas:=map(simplify,transpose(t)):
N:=evalm(Gammas &* s):
nd:=map(diff,N,x$2):
pn:=evalm(N &* transpose(N) ):
pnd:=evalm(nd &* transpose(nd) ):
kr:=evalm( evalm( -b^4* pn) + pnd):
Du1:=evalm(EI*map(simplify,map(normal,

map(convert,map(int,kr,x=0..l),trig),expanded))):

#CALCULATION OF MATRIX ASSOCIATED WITH WEIGHTED INTEGRALS FOR b^4
#NOT EQUAL TO 0

for i to 4 do
for j to 4 do

for k to 4 do
for r to 4 do
ll:=(k-1)*4+r-numbcomb(k,2);
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if r < k
then next

fi;
if r = k then
alphas.ll[i,j]:=Gammas[i,k]*Gammas[j,r]

else
alphas.ll[i,j]:=Gammas[i,k]*Gammas[j,r]+ Gammas[i,r]*Gammas[j,k]
fi;

od
od;

od;

# EVALUATING THE EXPRESSIONS OF THE WEIGHTED INTEGRALS
for k to 4 do

for r to 4 do
ll:=(k-1)*4+r-numbcomb(k,2);
if r < k
then next

fi;
if r >= k then
X.ll:= int( (((k 0*epsilon1*f 1(x)

- m 0*omega^2*epsilon2*f 2(x) )*s[k]*s[r])
+ (EI 0 *epsilon3*f 3(x) * diff(s[k],x$2)

* diff(s[r],x$2))),x=0..L)
fi;

od
od;

# SIMPLIFYING THE EXPRESSION OF alphas MATRIX TO alpha MATRIX
for l1 to 10 do

for i to 4 do
for j to 4 do
alpha.l1[i,j]:=simplify( subs(sin(b*l)=s,cos(b*l)=c,

sinh(b*l)=S,cosh(b*l)=C,alphas.l1[i,j]) )
od

od;
od;
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# SIMPLIFYING THE EXPRESSION OF Du1 MATRIX TO Du MATRIX
for i to 4 do

for j to 4 do
Du[i,j]:=simplify( subs(sin(b*l)=s,cos(b*l)=c,

sinh(b*l)=S,cosh(b*l)=C,Du1[i,j]) )
od

od;

# SIMPLIFYING THE EXPRESSION OF Gammas MATRIX TO Gamma MATRIX
for i to 4 do

for j to 4 do
Gamma[i,j]:= simplify(subs(sin(b*l)=s,cos(b*l)=c,

sinh(b*l)=S,cosh(b*l)=C,Gammas[i,j]));
od

od;
else fi;
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