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Chapter 1

Introduction

Uncertainty quantification in a real-life engineering structural system allows a good assess-

ment on the reliability of that system. Uncertainty can be introduced on the one hand by

parameters like material properties, geometric parameters, boundary conditions or applied

loads, and on the other hand by epistemic uncertainty like lack of knowledge about the

model that should represent the system (linear or nonlinear system, viscous or non-viscous

damping model, model of structural joints) and numerical methods. Some practical exam-

ples of structures where randomness exists, and so they have to be designed with negligible

probability of failure, are nuclear power plants, offshore platforms, high-rise buildings or

reentry space vehicles, where the system randomness can be introduced by soil variability,

earthquake-induced ground motion, random ocean waves, thermal and acoustic loadings and

uncertain fatigue effects. The reliability of the design will depend on knowing the effects of

those uncertainties in the system response .

Engineering systems are modelled using conservation laws: conservation of momentum,

energy and angular momentum, combined with constitutive equations, from where a differ-

ential equation of the system will arise. This equation can be solved analytically only for

simple geometries or systems: that means generally an analytical solution is not available.

Several procedures have been developed to solve the problem using a numerical approach.

Finite Element Method (FEM) has become most versatile tool for solving any real-life engi-

neering problem. This method firstly uses Hamilton principle to obtain a weak-form of the

differential equation of the system. The geometry of the system is discretized into elements

where some shape functions are defined (as in the Galerkin method, but for each element

instead of the whole structure). After this discretization process, a matrix equation of the

form KU = f (in a static case) needs to be solved, where K is the stiffness matrix, U the

displacement vector (giving the displacement of every node of the structure) and f is the

force vector.

If a structure is modelled as an interaction between a system operator Λ, an excitation

force f (ΛU = f, U being the response), the effect of random excitation in the response

of the system has widely been studied elsewhere in the literature (Lin (1967), Yang and

1
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Kapania (1984) and Lin et al. (1986)). However, the case when randomness is introduced

by the operator is still under study due to its higher difficulty. Particular solutions to some

stochastic differential equation (e.g. Itô type (Itô (1951)) and functional integration (Hopf

(1952), Lee (1974))), are available for few cases. But problems where stochastic operators’s

random coefficients possess smooth sample path has no mathematical theory for obtaining

the exact solution. The method for finding a solution to the stochastic differential equation

needs two steps. The first step consist in modelling adequately the random properties (Ben-

jamin and Cornell (1970) and Vanmarcke (1983)). The second step involves solution of the

differential equation.

1.1 Random field discretization

In this section some basics of probability theory and random field/process are summarized

(Ghanem and Spanos (1991), Sudret and Der-Kiureghian (2000), Papoulis and Pillai (2002)

or Keese (2003)). Emphasis has been made on the available discretization schemes of random

field/process.

A probability space is denoted by L2(Θ,B, P ) , where Θ is the set of elementary events

or sample space, containing all the possible outcomes; B is the σ-algebra of events: collection

of possible events having well-defined probabilities and P is the probability measure.

A random variable X is a function whose domain is Θ ; X : (Θ,B, P ) −→ R inducing a

probability measure on R called the probability distribution of X , PX . The mathematical

expectation, mean variance and n-th momentum of X are denoted respectively by µ, σ2 and

E[Xn]. We define {X < k} as the set of experimental outcomes such that after mapping

this set with the random variable, the result is less than k. The cumulative distribution

function (CDF) FX verifies FX = P{X < k} = PX(−∞, k), and the probability density

function (PDF) fX(x) is the derivative of the CDF. The covariance of two independent

random variables X1 and X2 is

Cov[X1, X2] = E[(X1 − µX1)(X2 − µX2)] (1.1)

Two random variables X1, X2 are uncorrelated if Cov[X1, X2] = 0, and they are orthogonal

if E[X1X2] = 0. A Hilbert space H is a generalization of euclidian space (R3) into R
n, is

complete and the inner product is defined as:

< f, g >=

∫

Rn

f(x)g(x)dx (1.2)

The probability space is a Hilbert space, and a random field H(x, θ) can be defined as a

curve in the probability space L2. That is, a collection of random variables indexed by x

related to the system geometry: for a given x0, H(x0, θ) is a random variable and for a given

outcome θ0, H(x, θ0) is a realization of the field.
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The random field is Gaussian if any vector {H(x1), ...H(xn)} is Gaussian, and is com-

pletely defined by its mean µ(X), variance σ2(X) and autocorrelation coefficient ρ(x, x′). It

is homogenous if its mean and variance are constant and ρ is a function of the difference

x′ − x. A discretization procedure allows to approximate the random field with a finite

set of random variables, and the better the approximation is, the less random variables are

needed to approximate the random field accurately. There are three groups of discretization

schemes, namely, point discretization, average discretization and series expansion. More de-

tails are given in Li and Kiureghian (1993a), Matthies et al. (1997), Ditlevsen and Madsen

(1996) or Sudret and Der-Kiureghian (2000).

1.1.1 Point discretization methods

The first group of discretization methods is based on point discretization, the random vari-

ables {χi} are selected values of the random field H(∗) at some given points xi, and the

approximated field •̂ is obtained from χ = {H(x1), . . . , H(xN)}.

• The shape function method, introduced by Liu et al. (1986a,b) approximates the ran-

dom field in each element using nodal values xi and polynomial shape functions Ni

associated with the element

Ĥ =

q∑

i=1

Ni(x)H(xi) (1.3)

with x ∈ Ω where Ω is an open set describing the geometry and q the number of nodes.

• The midpoint method, introduced by Der-Kiureghian and Ke (1987), uses as points xi

the centroid of each element, and then has as many random variables approximating

the random field as number of elements; it over-represent the variability of the random

field within each element.

• The integration point method (Matthies et al. (1997)), associate a single random vari-

able to each gauss point of each element appearing in the finite element resolution

scheme. This involves that every integration appearing in the Finite Element (FE)

model is done by Gauss point method. Results are accurate for short correlation length.

However, the total number of random variables involved increases dramatically with

the size of the problem.

• The optimal linear estimation method (OLE) or Kringing method, presented by Li and

Kiureghian (1993b), approximates the random field with random variables dependent

on nodal values χ = {H(x1), . . .H(xq)}. The dependence is linear

Ĥ(x) = a(x) + bT
i (x)χi (1.4)
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and coefficients are calculated minimizing the variance of the difference between the

approximated and exact random field Var
[
H(x)− Ĥ(x)

]
while keeping the mean of

that difference equal to zero : E
[
H(x)− Ĥ(x)

]
= 0.

1.1.2 Average discretization methods

The second group of discretization methods are the average discretization methods : the

random variables are weighted integrals of the random field over a domain:

χi =

∫

Ωe

H(x)w(x)dΩ (1.5)

• Spatial average method (Vanmarcke and Grigoriu (1983)) uses a random field constant

over each element. This constant is the average of the original field over the element,

and it has been shown that the variance of the spatial average over an element under-

represents the local variance of the random field (Der-Kiureghian and Ke (1987)).

• The weighted integral method (Shinozuka and Deodatis (1991), Deodatis (1991, 1990))

considers, for linear elasticity, the element stiffness matrices as random quantities: each

random variable is the result of integrating the product of one of the monomials used

in the FEM by the random field over each element.

1.1.3 Series expansion methods

The last group of discretization methods, Series expansion methods, expands any realization

of the original random field over a complete set of deterministic functions φi and truncates

the series after a finite number of terms

Ĥ(x, θ) =

N∑

i=1

χi(θ)φi(x) (1.6)

• The most widely used of all series expansion method is Karhunen-Loève expansion,

which will be discussed little later.

• The Orthogonal Series Expansion method (OSE) (Zhang and Ellingwood (1993)) selects

a set of deterministic orthogonal functions {hi(x)}
∞
i=1 forming a basis for the probability

space L2(Ω), the coefficients of the expansion are zero mean random variables

χi(θ) =

∫

Ω

[H(x, θ)− µ(x)]hi(x)dΩ (1.7)

and the expansion

H(x, θ) = µ(x) +
∞∑

i=1

χi(θ)hi(x) (1.8)

is obtained after computing the covariance matrix Σχχ of vector χ = {χ1, . . . , χM}

where M is the number of terms of the expansion and x is the vector of points xj.
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• An extension of OSE, using a spectral representation of χ, is Expansion Optimal Linear

Estimation method (EOLE) (Li and Kiureghian (1993a)):

χ(θ) = µχ +
N∑

i=1

√
λiξi(θ)φi (1.9)

with ξi independent standard normal variables and (λi,φi) are the eigenvalues and

eigenvectors of the covariance matrix Σχχ.

1.1.4 Karhunen-Loève expansion (KL expansion)

This method consist in expanding a random function, that is, a function defined on the

σ-field of random events, in a Fourier-type series. It was derived independently by different

researchers (Karhunen (1947) and Loeve (1948)) and is based on the spectral decomposition

of the covariance function CHH(χ,χ
′) = σ(χ)σ(χ′)ρ(χ,χ′).

A process χ(x) can be expanded into a series of the form

χ̂(x) =

∞∑

n=1

cnfn(x) 0 < x < L (1.10)

with fn(x) a set of orthonormal functions in (0, L)

∫ T

0

fn(x)f
∗
m(x)dx = δ[n−m] (1.11)

The coefficients cn =
∫ L

0
χ(x)f ∗

n(x)dx are random variables. We consider the problem of

determining a set of orthonormal functions fn(x) such that the sum (1.10) equals χ(x) and

coefficients cn are orthogonal.

To solve this problem, the eigenfunctions f(x1) and eigenvalues λ of the autocorrelation

R(x1, x2) of the process χ, are calculated solving the equation:

∫ L

0

R(x1, x2)f(x2)dx2 = λf(x1) 0 < x1 < L (1.12)

From theory of integral equations it is known that the eigenfunctions are orthonormal and

satisfy the identity R(x, x) =
∑∞

n=1 λn|fn(x)|
2. Then it can be shown that

E{|χ(x)− χ̂(x)|2} = 0 0 < x < L (1.13)

and

E{cnc
∗
m} = λnδ[n−m] (1.14)

We can note that if we have an orthonormal set of functions fn(x) and

χ(x) =
∞∑

n=1

cnfn(x) (1.15)
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E{cnc
∗
m} =

{
σ2
n n = m

0 n 6= m
(1.16)

Then the functions fn(t) must satisfy equation (1.10) with λ = σ2
n.

If the eigenfunctions are normalized so as to have E{cnc
∗
m} = δnm and we call the set of

uncorrelated random variables with zero mean {ξ1, ...ξn}, KL expansion becomes the well-

known formula:

χ(x) =

∞∑

n=0

ξn
√

λnfn(x) (1.17)

The KL expansion has some interesting properties over other existing schemes (Sudret and

Der-Kiureghian (2000)):

• It is error minimizing: the set of orthogonal functions given by this expansion is the one

that gives the minimum mean-square error from a finite representation of the original

process.

• KL expansion is unique.

• For a Gaussian process, KL expansion is almost surely convergent.

We consider the KL expansion of a random field with exponential correlation function

R(x1, x2) = e|x1−x2|/b (1.18)

The eigenfunctions f and eigenvalues λ are the solution to equation

∫ +a

−a

e|x1−x2|/bf(x2)dx2 = λf(x1) (1.19)

Where b is the correlation length. The explicit expressions of the eigenfunctions and eigen-

values are given by:






fn(x) =
cos(ωnx)√
a+ sin(2ωna)

2ωn

λn =
2c

ω2
n + c2

for n odd

f ∗
n(x) =

sin(ω∗
nx)√

a− sin(2ω∗

na)
2ω∗

n

λ∗
n =

2c

ω∗2
n + c2

for n even
(1.20)

where c = 1/b and ωn being the solutions of the first equation and ω∗ of the second:

{
c− ω tan(ωa) = 0 for n odd

ω∗ + c tan(ω∗a) = 0 for n even
(1.21)
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1.2 Response statistics calculation for static problems

Now, the aim is to estimate the variance of the response, how disperse the response is around

the mean. The input has N random variables related to geometry, material properties and

loads. Each of them can be represented as the sum of its mean and a zero-mean random

variables αi, the input variations around the mean are collected in a zero-mean random

vector α = {α1, ...αN}. If the problem is not specifically dynamic, methods for solving

the stochastic differential equation are based on second moment approaches and spectral

representation.

1.2.1 Second moment approaches

Second moment methods evaluate the statistics of the output from the mean values of input

variables and covariance matrix of α.

• The perturbation method uses Taylor series expansion of the quantities involved around

their mean value: stiffness K, response U and load vector f, and then identifies coeffi-

cients at both sides of the equation

KU = f (1.22)

The Taylor series expansion of each matrix is represented by:

K = K0 +

N∑

i=1

KI
iαi +

1

2

N∑

i=1

N∑

j=1

KII
ij αiαj + o(‖α‖2) (1.23)

U = U0 +

N∑

i=1

UI
iαi +

1

2

N∑

i=1

N∑

j=1

UII
ij αiαj + o(‖α‖2) (1.24)

f = f0 +
N∑

i=1

fIiαi +
1

2

N∑

i=1

N∑

j=1

fIIij αiαj + o(‖α‖2) (1.25)

with KI
i =

∂K
∂αi

∣∣∣
α=0

and KII
ij = ∂2K

∂αi∂αj

∣∣∣
α=0

Identifying the similar order coefficients in equation (1.22) after substituting with equa-

tions (1.23) to (1.25), the following expressions are obtained

U0 = K−1
0 .f0 (1.26)

UI
i = K−1

0 .(fIi −KI
i .U0) (1.27)

UII
ij = K−1

0 .(fIIij −KI
i .U

I
j −KI

j .U
I
i −KII

ij .U0) (1.28)

The statistics of U are available from that of α in equation (1.24):

E[U] ≈ U0 +
1

2

N∑

i=1

N∑

j=1

UII
ij Cov[αi, αj ] (1.29)
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Cov[U,U] ≈

N∑

i=1

N∑

j=1

UI
i .(U

I
j )

TCov[αi, αj] (1.30)

This method is used with a discretization of the random variables like spatial average

method (Baecher and Ingra(1981), Vanmarcke and Grigoriu(1983)) or shape functions

method (Liu et al. (1986a,b)).

• Another method based on perturbation method is the weighted integrals method. It

couples perturbation method with the representation of the stochastic stiffness matrix

as a random variable ke = ke
0+

NWI∑

l=1

∆ke
lχ

e
l where χ

e
l is the l-th of the NWI zero-mean

weighted integrals of the random field and ∆ke
l are deterministic matrices. As in the

former case, statistics of the response can be calculated.

• The quadrature method is based on computing the moments of response quantities

(Baldeweck (1999)). For a mechanical system, the uncertainties are described by a

vector of uncorrelated normal random variables X = {X1, ...XN} with prescribed joint

distribution. If S is a response quantity, the i-th moment of S can be calculated with

E[Si(X1, ...XN)] =

∫

RN

[s(x1, ...xN)]
iϕ(xN)...ϕ(xN )dx1...dxN (1.31)

Where ϕ(.) is the probability density function of a standard normal variate and s(x1, ..., xN )

is usually known. The quadrature of this integral is its approximation by a weighted

summation of the function at some points of the interval, as in the Gauss-points

method.

E[Si(X1, ...XN)] ≈
NP∑

k1=1

· · ·
NP∑

kN=1

wk1 . . . wkN [s(xk1, . . . , xkN )]
i (1.32)

This method uses information about the distributions of the basic random variables

for the calculations, so, it is not a ”pure” second moment approach. This method does

not discretize the random field and gives an upper bound on the response variance

independent of the correlation structure of the field and second order statistics of the

response.

• Neumann expansion method was introduced to the field of structural mechanics by

Shinozuka and Nomoto (1980). The theory developed by Neumann states that the

inverse of an operator (if exist) can be expanded in a convergent series in terms of the

iterated kernels

[L +Π]U = F (1.33)

U = [L+Π]−1F (1.34)

u(α(θ),x) =

∞∑

i=0

(−1)i[L−1(x)Π(α(x, θ),x)]i[f(x, θ)] (1.35)
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verifying that

‖ L−1Π ‖< 1

If only one parameter (α(x, θ)) of our system is random, substituting it by its KL

expansion α(x, θ) =
∑M

n=1 λnξnan(x) leads to:

[
K̄+

M∑

n=1

ξnK
(n)

]
U = f (1.36)

[
I+

M∑

n=1

ξnQ
(n)

]
U = g (1.37)

where

Q(n) = K̄
−1
K(n) g = K̄

−1
f (1.38)

[I+Ψ [{ξn}]]U = g (1.39)

Where Neumann expansion is applied

U =

∞∑

i=0

(−1)i

[
M∑

n=1

ξnQ
(n)

]i
g (1.40)

This expression is computationally more tractable than the original Neumann expan-

sion.

1.2.2 Spectral Stochastic Finite Elements Method (SSFEM)

This method is an extension of the deterministic FEM for boundary value problems involving

random material properties. In a deterministic case, a system motion is governed by a partial

differential equation (PDE) with associated boundary conditions and initial conditions. The

FEM discretizes those differential equations replacing the geometry by a set of nodes, and

the displacement field is approximated by the nodal displacements

KU = F (1.41)

ke =

∫

Ωe

BTDB dΩe (1.42)

where K,U,F,ke,B and D are respectively the stiffness matrix, displacement vector, ex-

ternal force vector, element stiffness matrix, matrix relating strains to nodal displacements

and elasticity matrix.

If system properties are modelled as random fields, the system is governed by a stochastic

PDE and the response will be a displacement random field u(x, θ) where θ denotes a basic

outcome in the space of all possible outcomes. It is discretized as a random vector of nodal

displacements U(θ). If a finite set of points {θ1, . . . , θQ} is selected so as to sample correctly

the space of all outcomes, it defines the random variable: this is the approach of Monte Carlo
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simulation.

A different approach, taken by SSFEM, is to discretize the random field with series expan-

sions. The input random field is discretized using a truncated KL expansion and each nodal

displacement is represented by its coordinates in an appropiate basis of the space of random

variables called polynomial chaos (PC).

Consider {ξi(θ)}
∞
i=1, a set of orthonormal Gaussian random variables. The set of polynomials

Γp in {ξi(θ)}
∞
i=1 of degree not exceeding p, orthogonal to the set of polynomials Γp−1, are

the PC of order p. Those polynomials will be symmetrical with respect to their arguments.

Any square-integrable random function can be approximated as closely as desired with the

representation:

µ(θ) = a0Γ0 +

∞∑

i1=1

ai1Γ1(ξi1(θ)) +

∞∑

i1=1

i1∑

i2=1

ai1i2Γ2(ξi1(θ), ξi2(θ))

+
∞∑

i1=1

i1∑

i2=1

ai1i2

i2∑

i3=1

ai1i2i3Γ3(ξρ1(θ), ξρ2(θ), ξρ3(θ)) + . . .

=
∞∑

j=0

âjΨj [ξ(θ)]

(1.43)

The convergence properties of this expansion depends on the order of PC and number of

terms in KL expansion. All PC are orthogonal, that means that

∫

Ωe

Γi(ξ)Γj(ξ)dP =< ΓiΓj >= 0 (1.44)

with ξ an element of the space of all possible outcomes representing a random variable with

zero mean and P the probability of that outcome). The uncorrelated Gaussian random

variables verify

< ξ1, . . . , ξ2n+1 >= 0 and < ξ1, . . . , ξ2n >=
∑∏

< ξiξj > (1.45)

Those conditions are the ones used for calculate them:

Γ0 = 1 the first polynomial chaos is a constant (1.46)

Γ1(ξi) = ξ1 the PC with order > 0 have zero mean (1.47)

Γ2(ξi1, ξi1) = ξi1ξi2 − δi1i2 (1.48)

Γ3(ξi1, ξi1, ξi3) = ξi1ξi1ξi3 − ξi1δi2i3 − ξi2δi1i3 − ξi3δi1i2 (1.49)

and so on. After substituting PC expansion and KL expansion, the equilibrium equation

becomes: ( ∞∑

i=0

Kiξi(θ)

)
.

( ∞∑

j=0

UjΨj(θ)

)
− F = 0 (1.50)
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After truncation of expansions, the error of the approximation is

ǫM,P =
M∑

i=0

P−1∑

j=0

Ki.Ujξi(θ)Ψj(θ)− F (1.51)

It can be minimized in a mean square sense: E[ǫM,P .Ψk] = 0 k = 0, . . . P − 1

if Kjk =

M∑

i=0

P−1∑

j=0

E[ξiΨjΨk]Ki and Fk = E[ΨkF], the error minimizing equation leads to the

system 


K00 . . . K0,P−1

K10 . . . K1,P−1
...

...
KP−1,0 . . . KP−1,P−1


 .




U0

U1
...

UP−1


 =




F0

F1
...

FP−1


 (1.52)

Knowing that U(θ) =
∑P−1

j=0 UjΨj(θ), the mean and covariance of nodal displacement vector

can be calculated:

E[U] = U0 (1.53)

and

Cov[U,U] =
P−1∑

j=0

E[Ψ2
i ]UiU

T
i (1.54)

1.3 Response statistics calculation for dynamic prob-

lems

In a deterministic dynamic system, the solution U is obtained by inverting the dynamic

stiffness matrix

D(s) = s2M+ sG(s) +K (1.55)

That is, getting the transfer matrix H(s) = D−1, and multiplying it by the forcing vector

U = Hf. This procedure is simplified using the residues theorem, that states that any

complex function can be expressed in terms of its poles sj and residues. If the poles are the

eigenvalues of H(s), the transfer matrix becomes

H(s) =
m∑

j=1

Rj

s− sj
. (1.56)

Here

Rj =
res

s=sj
[H(s)]

def
= lim

s→sj
(s− sj) [H(s)] =

zjz
T
j

zTj
∂D(sj)

∂sj
zj
. (1.57)

is the residue of the transfer function matrix at the pole sj, where zj is the corresponding

eigenvector. The transfer function matrix may be obtained as

H(iω) =
N∑

j=1

[
γjzjz

T
j

iω − sj
+

γ∗
j z

∗
jz

∗T
j

iω − s∗j

]
+

m∑

j=2N+1

γjzjz
T
j

iω − sj
, , (1.58)
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where

γj =
1

zTj
∂D(sj)

∂sj
zj
. (1.59)

Details about the derivation of this expressions can be found in Adhikari (2000).

Some special and useful cases can be defined:

1. Undamped systems : In this case G(s) = 0 results the order of the characteristic polyno-

mial m = 2N ; sj is purely imaginary so that sj = iωj where ωj ∈ R are the undamped

natural frequencies and zj = xj ∈ R
N . In view of the mass normalization relationship

Kxj = ω2
jMxj , γj =

1
2iωj

and equation (1.58) leads to

H(iω) =

N∑

j=1

1

2iωj

[
1

iω − iωj
−

1

iω + iωj

]
xjx

T
j =

N∑

j=1

xjx
T
j

ω2
j − ω2

. (1.60)

2. Viscously-damped systems with non-proportional damping (Lancaster (1966), Vigneron

(1986), Géradin and Rixen (1997)): In this case m = 2N and γj = 1

zT
j [2sjM+C]zj

.

These reduce expression (1.58) to

H(iω) =

N∑

j=1

[
γjzjz

T
j

iω − sj
+

γ∗
j z

∗
jz

∗T
j

iω − s∗j

]
. (1.61)

3. Viscously-damped systems with proportional damping derives from the former case,

where the eigenvectors are real and sj = −ζjωj + iωj, so they coincide with their

complex conjugate

H(iω) =
N∑

j=1

[
γjzjz

T
j

−ω2 − 2iωζjωj + ω2
j

]
(1.62)

The above expressions lead to the calculation of the response vector as a function of the

system matrices eigenvalues and eigenvectors. Therefore, a study of the effect of randomness

in eigenvalues and eigenvectors should lead to a study of the randomness in the displacement

field.

1.3.1 Random eigenvalue problem

The determination of natural frequencies and mode shapes require the solution of an eigen-

value problem. This problem could be either a differential eigenvalue problem or a matrix

eigenvalue problem depending on whether a continuous model or a discrete model is chosen

to describe the given vibrating system. Several studies have been conducted on this topic

since the mid-sixties: see Boyce (1968), Scheidt and Purkert (1983), Ibrahim (1987), Be-

naroya and Rehak (1988), and Benaroya (1992). Here a brief review of the literature on

methods used for random eigenvalue problem of differential equations and matrices will be

given.
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Continuous systems

Different models have been studied: the free vibration of elastic string and rod with random

mass density and area of cross section were studied by Boyce (1962), the random string

vibration problem by Goodwin and Boyce (1964), the case of random elastic beam and

beam columns were considered by Boyce and Goodwin (1964), Haines (1967) and Bliven

and Soong (1969), stochastic boundary value problems by Linde (1969) and Boyce (1966),

beam column with random material and geometric properties with random axial load by

Hoshiya and Shah (1971), etc. Widely used methods for the determination of eigenvalues

and normal modes are variational, asymptotic and perturbation method, leading to a Strum-

Liouville problem. Also Monte Carlo simulation is used.

The free vibration characteristics of systems governed by second order stochastic wave

equation have been investigated by Iyengar and Manohar (1989) and Manohar and Iyengar

(1993): the probability distribution of eigenvalues of random string equation are related

to the zeros of an associated initial value problem. Exact solutions to the problems are

shown to be possible only under special circumstances (Iyengar and Manohar (1989) and

Manohar and Keane (1993)) and, consequently, approximations become necessary. For spe-

cific types of mass and stiffness variations, Iyengar and Manohar (1989) and Manohar and

Iyengar (1993, 1994) have developed solution strategies based on closure, discrete Markov

chain approximation, stochastic averaging methods and Monte Carlo simulation to obtain

acceptable approximations to the probability densities of the eigensolutions. A qualitative

feature of the eigenvalue distributions emerged from these studies has been the tendency of

the eigenvalues, when normalized with respect to the deterministic eigenvalues, to become

stochastically stationary with respect to the mode count n for large values of n.

Studies on eigenvalues of non-self adjoint stochastic differential equation with stochastic

boundary conditions have been conducted by Ramu and Ganesan (1993c) using perturbation

method. They considered a random Leipholz column with distributed random tangential

follower load and derived the correlation structure of the free vibration eigenvalues and

critical loads in terms of second order moment properties of the system property random

fields. Ganesan (1996) also considered stochastic non-self adjoint systems and obtained

second order properties of the eigenvalues for different correlation structure of the system

parameters.

Discrete systems

For the above mentioned stochastic continuous systems, the applications are on relatively

simple structures (e.g, single beam-column, axially vibrating rod, string, rectangular plate)

and for simple boundary conditions. For the more general class of problems generally found

in engineering, discretization methods, such as FEM, are adopted. Then the governing
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eigenvalue problems have the form

K(Θ)X(Θ) = λ(Θ)M(Θ)X(Θ) (1.63)

Most of the available formulations are based on perturbation or Taylor series methods. Fox

and Kapoor (1968) have presented exact expressions for the rate of change of eigenvalues

and eigenvectors with respect to design parameters of the actual structure in terms of system

property matrices and eigenvalue and eigenvector under consideration. If δj (j = 1..r), are

design variables, λi and Xi are ith eigenvalue and eigenvector respectively, then, the rate of

change of eigenvalue can be expressed as

∂λi

∂δj
= XT

i

[
∂K

∂δj
− λi

∂M

∂δj

]
Xi (1.64)

They also presented two different formulation for rate of change of eigenvectors; these are as

follows:

Formulation 1:

∂Xi

∂δj
= −

[
FiFi + 2MXiX

T
i M

]−1
[
Fi

∂Fi

∂δj
+MXiXi

∂M

∂δj

]
Xi (1.65)

where Fi = K− λiM (1.66)

(1.67)

Formulation 2:

∂Xi

∂δj
=

r∑

k=1

aijkXk (1.68)

where aijk =
XT

l

[
∂K
∂δj

− λi
∂M
∂δj

]
Xi

λl − λi
for l 6= i (1.69)

= −
1

2

[
XT

i

∂M

∂δj
Xi

]
for l = i (1.70)

(1.71)

It may be noted that, formulation 1 requires the inversion of an n× n matrix, whereas such

an inversion does not appear in formulation 2. So formulation 2 is computationally less

intensive and has been used by many authors later. Collins and Thomson (1969) have given

expressions for the statistics of eigenvalues and eigenvectors in a matrix form in terms of

mass and stiffness matrix of the structure. According to their formulation, covariance matrix

for eigenvalue and eigenvector becomes

[
Cov(λ,x)

]
=

[ [
∂λ
∂k

] [
∂λ
∂m

]
[
∂x
∂k

] [
∂x
∂m

]
] [

Cov(k,m)

] [ [∂λ
∂k

] [
∂λ
∂m

]
[
∂x
∂k

] [
∂x
∂m

]
]T

(1.72)

Where the matrix
[
Cov(k,m)

]
contains variance and covariance of stiffness and mass elements.

They have also considered specific examples and compared the theoretical solutions with
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results from Monte Carlo simulation. Schiff and Bogdanoff (1972a,b) derived an estimator for

the standard deviation of a natural frequency in terms of second order statistical properties

of system parameters. The derivation was based upon mean square approximate systems.

Scheidt and Purkert (1983) have used perturbation expansion of eigenvalues and eigenvectors

and have given the expression of homogeneous terms up to 4th order. These terms then can

be used to determine expectation and correlation of the random eigenvalues and eigenvectors.

Bucher and Brenner (1992) have employed a first order perturbation and, starting from

the definition of Rayleigh’s quotient for discrete systems, and, assuming λi = λi0 + λi1,

xi = xi0 + ǫxi1, K = K0 + ǫK1 and M = M0 + ǫM1, they have shown that

E[λi] =
xT
i0K0xi0

xT
i0M0xi0

(1.73)

and

σ2
λi

= ǫ2λ2
i0E{(x

T
i0K1xi0)

2 + 2(xT
i0K1xi0)(x

T
i0M1xi0) + (xT

i0M1xi0)
2} (1.74)

In these equations it is assumed that ǫ << 1 and subscripts containing a 0 denote deter-

ministic quantities and subscripts with 1 denote random quantities. Zhu et al. (1992) have

used method of local averages to discretize random fields in conjunction with perturbational

approach to study the statistics of fundamental natural frequency of isotropic rectangular

plates. Their formulation also allows for multiplicity of deterministic eigenvalues. The latter

issue has also been addressed by Zhang and Chen (1991). Song et al. (1995) have out-

lined a first order perturbational approach to find the moments of the sensitivity of random

eigenvalues with respect to expected value of specified design variables.

Studies on random matrix eigenvalue problems arising in the study of structural stability

have been conducted byRamu and Ganesan (1992, 1993a,b, 1994), Sankar et al. (1993) and

Zhang and Ellingwood (1995) using perturbational approaches. The study of flutter of

uncertain laminated plates with random modulus of elasticity, mass density, thickness, fibre

orientation of individual lamina, geometric imperfection of the entire plate and in-plane loads

was carried out by Liaw and Yang (1993). Based on the study of distribution of zeros of

random polynomials, Grigoriu (1992) has examined the roots of characteristic polynomials

of real symmetric random matrices. It is suggested that such studies serve to identify the

most likely values of eigenvalues, determine the average number of eigenvalues within a

specified range and, finally, in conjunction with an assumption that eigenvalues constitute

Poisson points, to find the probability that there is no eigenvalue below or above a given

value or within a given range. Furthermore, the assumption that the random coefficients of

the polynomial are jointly Gaussian is shown to simplify the analysis significantly.

Solutions that do not consider the perturbation method around the deterministic natural

frequencies values are studied in Adhikari (2007a), Adhikari and Friswell (2007) and Adhikari

(2006). In these references is considered a joint probability distribution of the natural fre-

quencies based on perturbation expansion of the eigenvalues about an optimal point and an
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asymptotic approximation of multidimensional integrals. In Wagenknecht et al. (2005) possi-

bilistic uncertainties are propagated through the coupled second-order differential equations

that govern a dynamic system using pseudospectra of matrices.

1.3.2 High and mid frequency analysis: Non-parametric approach

This section focuses on the analysis of linear structural dynamical systems to which, at a

given frequency, vibrational response consist of small contributions from a large number of

modes, e.g. light flexible structures subjected to high frequency broad band excitation. The

procedure used to analyze a structure, as described by Langley (1989), consist in:

1. Dividing the structure into a number of interacting subsystems whose mean energies

and external power inputs are related via a set of linear equations. The coefficients of

those linear equations are expressed in terms of quantities known as the loss factors

and the coupling loss factors.

2. Study the systems individually, where the jth subsystem has a single response variable

ui(x, t), and x represents the spatial co-ordinates of a point within the subsystem. The

equation of motion which governs harmonic vibration of the jth subsystem is

(1 + iεj)Lj(uj)− ρjω
2(1− iγj)uj = Fj(x, ω) + f c

j (x, ω) (1.75)

where ω is the frequency of vibration, uj(zx, ω) is the complex amplitude of the re-

sponse, Lj is a differential operator depending on the structure (e.g. for a beam in

bending Lj = EIuiv
j ), ρj is the volume density (or equivalent) and εj and γj are dissi-

pation factors. Fj(x, ω) represents an external load (a distributed force) while F c
j (x, ω)

is a load arising from coupling to another system.

3. Allow the systems to interact, which allows the exchange of vibration energies between

the subsystems. The system response is characterized by calculating these energy

exchanges. The mean external power input into subsystem j is

Q̂j = 2ωεjŜj + 2ωγjT̂j + R̂j (1.76)

where T̂j, Ŝj and R̂j are the statistical average kinetic energy, the statistical average

strain energy stored in the subsystem and the transmitted power. If Ê = π[ρ−1q−1]T̂

then

Q̂ = (2/π)ω[γρq]Ê+ (1/π)NM̄
−1
[q]Ê (1.77)

where the first term of the equation represents the power dissipated internally, while the

second is the power transmitted. [γ] is a diagonal matrix of terms γj, dissipation factor

of each subsystem j, [ρ] has the same relation towards the volume density, [q], N and

M̄ are matrices whose entries depend on the Green function Gij(x,y, ω) representing

the response at x on subsystem i to a load applied at y on subsystem j.
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In all those steps, the uncertainty is introduced by the Green function, depending on which

Green function is taken, the method becomes Statistical Energy Analysis (SEA) or Gaussian

Orthogonal Ensemble (GOE). A comparison between those two methods can be found in

Langley and Brown (2004). It should be noted that the parameters variance has no influence

in SEA and GOE.

Statistical Energy Analysis (SEA)

Description of Statistical Energy Analysis (SEA) can be found in Lyon and Dejong (1995).

Different assumptions are adopted in the application of this method:

• The vibrating structure is considered to be drawn from an ensemble of nominally

identical systems.

• The subsystem eigensolutions are treated as having prescribed probability distribu-

tions: a set of Poisson points on the frequency axes. The natural frequencies are

mutually independent and identically (uniformly) distributed in a given frequency

bandwidth.

• The subsystem mode-shapes are deterministic.

• the power input and loss factors are uncorrelated.

The formulation presented by Lyon provides a fairly complete framework for obtaining mea-

sure of response variability. Those formulations were developed in early 1960’s to enable

prediction of vibration response of launch and payload structures to rocket noise at launch.

Subsequently, the method has been used not only in aerospace industry, but also in land

based vehicle design, ship dynamics, building acoustics, machinery vibration and in seismic

analysis of secondary systems. Some examples of recent applications are related by Lai and

Soong (1990) and Hynna et al. (1995).

Over the last decade there has been a resurgence of interest in this area of research

and several important papers dealing with the theoretical development of this method have

appeared, see, for example, the papers by Hodges and Woodhouse (1986), Langley (1989),

Keane (1992) and Fahy (1994); also see the theme issue on SEA brought out by the Royal

Society of London (Price and Keane (1994)) and the book edited by Keane and Price (1997).

Gaussian Orthogonal Ensemble (GOE)

Work on random matrix theory has investigated in detail the statistical properties of the

natural frequencies of a particular type of random matrix known as the Gaussian Orthogonal

Ensemble (GOE) (see Mehta (1991)). The GOE concerns a symmetric matrix whose entries

are Gaussian, zero mean, and statistically independent, with the off-diagonal entries having

a common variance, and the diagonal entries having twice this variance. The spacings
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between the eigenvalues obtained with GOE have a Rayleigh distribution (referred to as the

Wigner distribution in the random matrix literature). This contrasts with the exponential

distribution that would be obtained were the natural frequencies to form a Poisson point

process (used in SEA). It has arised from numerical and experimental studies that most

physical systems have natural frequencies that conform to the GOE statistics, even though

the random matrices that govern their behaviour have no obvious direct connection with the

GOE. However, when the system has many ”symmetries” and the natural frequencies from

all symmetric classes are superposed, the Poisson spacing statistics are obtained, see Weaver

(1989), Ellegaard et al. (2001), Bertelsen et al. (2000) and Langley and Brown (2004).

1.3.3 High and mid frequency analysis: Random Matrix Theory

The Random Matrix Theory was firstly studied by physicists and mathematicians,in the

1930s, in the context of nuclear physics. Many useful results can be found in Mehta (1991)

or Gupta and Nagar (2000). It has been said that SEA and GEO do not take account

of parametric variance. Therefore, a parametric approach using random matrices is being

investigated. Using the maximum entropy principle for positive symmetric real random

matrices, Soize (2001) obtained an ensemble distribution of random matrices. The fitness

of this approach to the problem at low-frequency range and a study of the statistics of the

random eigenvalues of these random matrices were studied in Soize (2003). The probability

density function of that ensemble distribution of random matrices coincide, under some

conditions, with the one of Wishart distribution.

1.4 Summary

As a summary, available methods for solving a stochastic differential equation are represented

in the following chart:
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Chapter 2

Random Matrix Theory (RMT)

As it has already been discussed, a discretized mechanical system equation of equilibrium

is given by DU = f where the dynamic stiffness matrix and force vector can be random

and consequently the nodal displacement is also random. Until now, some methods have

considered a parametric approach where randomness in stiffness matrix is a consequence of

randomness in material properties (Youngs modulus, mass density, Poissons ratio, damping

coefficient) and geometric parameters: all aleatoric uncertainties. Epistemic uncertainties

were studied separately, they do not depend explicitly on the system parameters: they can be

unquantified errors associated with the equation of motion (linear or non linear), damping

model (viscous or non viscous), model of structural joints and numerical method. RMT

approach could take account of these two different kinds of uncertainties.

2.1 Multivariate statistics

Multivariate statistics is a generalization of statistics to matrices. It is used widely in physics

to model quantum systems where the probability density function of eigenvalues of random

matrices is calculated. Several works in continuous matrix variate distribution theory have

been published, like Gupta and Nagar (2000), Muirhead (1982) and Mehta (1991). The

concept of random matrix derives from that of a random vector X = (X1, . . . , Xm)
′: a vector

whose components are jointly distributed, with defined mean or vector of expectations µ

and covariance matrix Σ

µ ≡ E(X) = (E(X1), . . . ,E(Xm))
′ (2.1)

Σ ≡ Cov(X) = E[(X− µ)(X− µ)′] (2.2)

A largely studied case is the case when this random vector is normally distributed, then the

marginal distribution of each component of X is univariate normal. If X is now a p × q

matrix, vec(X) is the pq × 1 vector formed by stacking the columns of X under each other.

Then the distribution of a matrix is in fact the distribution of the vector vec(X), and this

matrix is a random matrix.

20
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A matrix random phenomenon is an observable phenomenon represented in a matrix

form where the outcome of different observations is not deterministically predictable, but

they obey certain conditions of statistical regularity. The set of all outcomes of a random

matrix characterize the sample space Θ, where a probability function assigning a probability

to each outcome can be defined, a probability density function and a moment generating

function can as well be defined.

A random matrix X(p×n) is said to have matrix variate normal distribution with mean

N(p × n) and covariance matrix Σ ⊗ Ψ X ∼ Np,n(N,Σ ⊗ Ψ) where Σ(p × p) > 0 and

Ψ(n × n) > 0, if vec(X′) ∼ Npn(vec(N
′),Σ ⊗ Ψ). Its probability density function is given

by:

(2π)−
1
2
npdet(Σ)−

1
2
ndet(Ψ)−

1
2
petr{−

1

2
Σ−1(X−N)Ψ−1(X−N′)}, X ∈ R

p×n,N ∈ R
p×n

(2.3)

A particular case of this random matrix is the symmetric matrix variate normal distribution.

If X(p× p) is a symmetric matrix, the condition X = X′ is verified , a 1
2
p(p− 1)× 1 vector

vecp(X) = [x11 x12 x22 . . . x1p . . . xpp] with distribution N 1
2
p(p+1)(vecp(N), B′

p(Σ⊗Ψ)Bp) is

defined and ΣΨ = ΨΣ. The probability density function of X in terms of vecp(X)

(2π)−
1
4
p(p−1)det(B′

p(Σ⊗Ψ)Bp)
− 1

2×

exp

[
−
1

2
(vecp(X)− vecp(N))′.B+

p (Σ⊗Ψ)−1B+′

p (vecp(X)− vecp(N))

]
(2.4)

Where (Bp)ij,gh = 1
2
(δigδjh + δihδjg), with i ≤ p, j ≤ p, g ≤ h ≤ p and B+

p its Moore-Penrose

inverse.

A Wishart distribution is a p-variate generalization of χ2 distribution. A p × p random

symmetric positive definite matrix S has Wishart distribution with parameters p, n and

Σ(p× p) > 0, written as S ∼ Wp(n,Σ), if its p.d.f is given by:

{2
1
2
npΓp(

1

2
n)det(Σ)

1
2
n}−1det(S)

1
2
(n−p−1)etr(−

1

2
Σ−1S),S > 0, n ≥ p (2.5)

The mass and stiffness matrices M and K of a system are nonnegative definite symmetric

matrices, the damping matrix C, proportional to M and K, is also a nonnegative definite

symmetric matrix. Therefore, stiffness and mass matrix could be modelled as Wishart

matrices. The moments of the inverse of the dynamic stiffness matrix, the frequency response

matrix H(ω) = D−1(ω) (see (1.55)) should exist for all frequency ω, that is E[‖H(ω)‖νF] <

∞, ∀ω. This condition will always be verified if the inverse moments of M, K and C exist,

conditions easier to analyze than the former one.

It was shown in Soize (2001)and Soize (2000) that given a symmetric nonnegative definite

matrix G, maximizing the entropy associated with the matrix variate probability density

function pG(G)

S
(
pG
)
= −

∫

G>0

pG (G) ln
{
pG (G)

}
dG (2.6)
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and using the equations that act like constraints to obtain pG∫

G>0

pG (G) dG = 1 (the normalization) (2.7)

and E [G] =

∫

G>0

G pG (G) dG = G (the mean matrix) (2.8)

The probability density function resulting from that analysis is the matrix variate gamma

distribution. The main difference between the matrix variate gamma distribution and the

Wishart distribution is that historically only integer values were considered for the shape

parameter p in the Wishart matrices. Then, this pG is called in this thesis Wishart distribu-

tion probability density function with parameters p = (2ν+n+1) and Σ = G/(2ν+n+1),

that is G ∼ Wn

(
2ν + n + 1,G/(2ν + n+ 1)

)
.

2.2 Wishart matrix

It has already been said that a Wishart matrix is the generalization of χ2 to matrices. If

X(n+1)×p ∼ N(1µ′, In+1 ⊗ Σ) is a random matrix defined as X = [X′
1 . . . Xn+1]

′ where

X1, . . . ,Xn+1 are independent Np(µ,Σ) random vectors, 1 = (1, . . . , 1)′ ∈ R
n+1 and Σ is

positive definite, a Wishart matrix can be considered as the distribution of the covariance

of X with n ≥ p.

Then a Wishart matrix S ∼ Wp(n,Σ) has the same distribution as Z′Z, where the n × p

matrix Z is N(0, In ⊗ Σ) (the rows of Z are independent Np(0
′,Σ) random vectors). The

probability density function of S ∼ Wp(n,Σ) is given by:

{2
1
2
npΓp(

1

2
n)det(Σ)

1
2
n}−1det(S)

1
2
(n−p−1)etr(−

1

2
Σ−1S), S > 0, n ≥ p

If we know the matrix to fit has Wishart distribution, the parameters of matrix Z have to be

obtained. The moments of G ∼ Wp(n,Σ) are given by Gupta and Nagar (2000) [Chapter 3]

E [G] = pΣ = G (2.9)

E
[
G2
]
= pΣ2 + pTrace (Σ)Σ+ p2Σ2 =

1

θ + n + 1

[
(θ + n + 2)G

2
+G Trace

(
G
)]

(2.10)

cov (Gij, Gkl) = p (ΣikΣjl + ΣilΣjk) =
1

θ + n + 1

(
GikGjl +GilGjk

)
(2.11)

E
[
{G− E [G]}2

]
= E

[
G2
]
−G

2
=

1

θ + n+ 1

[
G

2
+G Trace

(
G
)]

(2.12)

Soize (2000) introduced the normalized standard deviation of G as

σ2
G =

E
[
‖G− E [G] ‖2F

]

‖E [G] ‖2F
(2.13)

It can be shown, using (2.9) to (2.12) that

σ2
G =

pTrace
(
Σ2
)
+ p{Trace (Σ)}2

p2Trace
(
Σ2
) =

1

p

{
1 +

{Trace (Σ)}2

Trace
(
Σ2
)
}

(2.14)
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With p = 2ν+n+1, it is obvious that, for a system with dimensions n =constant, the bigger

becomes the order of the inverse moment ν the smaller is σ2
G, a measure of the uncertainty

in the system matrices. This parameter ν is generally ν = 2, but it could be chosen so as

to decrease the uncertainty of the system, even if to do that would imply the order of the

inverse moment constraint increases.

Interest on Wishart matrix G ∼ Wp(n,Σ) also arise from the fact that the inverted

Wishart matrix distribution pV ∼ IWn(m,Ψ), is available making use of the jacobian of the

transformation V = f(G) = G−1 and the exterior product of each of the differential vectors

dG and dV. A n× n symmetric positive definite random matrix V is said to have inverted

Wishart distribution with parameters m and Ψ

pV (V) =
2−

1
2
(m−n−1)ndet{Ψ}

1
2 (m−n−1)

Γn

(
1
2
(m− n− 1)

)
det {V}m/2

etr
{
−V−1Ψ

}
; m > 2n, Ψ > 0. (2.15)

E
[
G−1

]
=

Ψ

m− 2n− 2
=

θ + n + 1

θ
G

−1
(2.16)

E
[
G−2

]
=

Trace (Ψ)Ψ+ (m− 2n− 1)Ψ2

(m− 2n− 1)(m− 2n− 2)(m− 2n− 4)

=
(θ + n+ 1)2Trace

(
G

−1
)
G

−1
+ θG

−2

θ(θ + 1)(θ − 2)
(2.17)

We can observe that, contrarily to what was supposed with Wishart matrix, the mean of

inverse Wishart matrix is not equal to the inverse of the mean. In fact, knowing that ν ≥ 2

and that matrices obtained with a FEM tend to represent big structures with thousands of

degrees of freedom n, those two values E
[
G−1

]
and G

−1
can be very different.

2.3 Fitting of parameter for Wishart distribution

A measure of the normalized standard deviation was introduced by Soize (2000), it is the

dispersion parameter σ2
G from (2.13):

σ2
G =

E
[
‖G− E [G] ‖2F

]

‖E [G] ‖2F
(2.18)

For a Wishart distribution, as seen in Adhikari (2008)

σ2
G =

1

θ + n+ 1




1 +
{Trace

(
G
)
}2

Trace
(
G

2
)






This parameter can also be obtained from the FEM if parameters which contain uncertainty

are expanded as KL expansion. Then, matrix G = {K, M, C} can be expanded as

G = G0 +
∑

i

ξiGi with G0 = E [G] (2.19)
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Details of this expansion are shown in Chapter 3, Chapter 4 and Chapter 5 for particular

cases of rod, beam and thin plate. Then, introducing this expansion in (2.18)

σ2
G =

E
[
‖
∑

i ξiGi ‖
2
F

]

‖E [G] ‖2F
(2.20)

=
E
[
Trace

(
(
∑

i ξiGi)(
∑

j ξjGj)
)]

‖G0 ‖
2
F

(2.21)

=
Trace

(
E
[
(
∑

i

∑
j ξiξjGiGj)

])

‖G0 ‖
2
F

(2.22)

σ2
G =

Trace
(
(
∑

i G
2
i )
)

‖G0 ‖
2
F

(2.23)

Several criteria can be developed to fit a symmetric random matrix with a Wishart

matrix, four are explained here, each of them verifying a different condition related to the

first moment and that the normalized standard deviation is same as the measured normalized

standard deviation σG = σ̃G:

1. Criteria 1: For each system matrices, we consider that the mean of the random matrix

is same as the deterministic matrix E [G] = G . This condition results

p = n+ 1 + 2ν and Σ = G/p (2.24)

where

ν =
1

2σ̃2
G



1 +

{Trace
(
G
)
}2

Trace
(
G

2
)



−

(n+ 1)

2
(2.25)

This criteria was proposed by Soize (2000, 2001).

2. Criteria 2: Called the optimal Wishart distribution, it was proposed by Adhikari

(2007b). The dispersion parameter is obtained after considering that the mean of the

random matrix and the mean of the inverse of the random matrix are closest to the

deterministic matrix and its inverse: that is
∥∥G− E [G]

∥∥
F
and

∥∥∥G−1
− E

[
G−1

]∥∥∥
F
are

minimum. This condition results:

p = n+ 1 + 2ν and Σ = G/α (2.26)

where α =
√
2ν(n + 1 + 2ν) and 2ν is as defined in equation (2.25). The rationale

behind this approach is that a random system matrix and its inverse should be math-

ematically treated in a similar manner as both are symmetric and positive-definite

matrices.

3. Criteria 3: Here we consider that for each system matrix, the mean of the inverse of

the random matrix equals to the inverse of the deterministic matrix: E
[
G−1

]
= G

−1
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. Using equation (2.16) and after some simplifications one obtains

p = n+ 1 + 2ν and Σ = G/2ν (2.27)

where ν is defined in equation (2.25).

4. Criteria 4: This criteria arises from the idea that the mean of the eigenvalues of

the distribution is same as the ‘measured’ eigenvalues of the mean matrix and the

normalized standard deviation is same as the measured normalized standard deviation.

Mathematically we can express this as

E
[
M−1

]
= M

−1
, E [K] = K, σM = σ̃M and σK = σ̃K (2.28)

This implies that the parameters of mass matrix is selected according to criteria 3 and

the parameters for the stiffness matrix is selected according to criteria 1. The damping

matrix is obtained using criteria 2. This case is therefore a combination of the previous

three cases.

It is verified with numerical simulations that the third criteria gives the best results.

2.4 Relationship between dispersion parameter and the

correlation length

As it has been seen, the parameter σ2
G is of the form

σ2
G =

Trace
(
(
∑

i G
2
i )
)

‖G0 ‖
2
F

(2.29)

Where matrices Gi are obtained by integration of the shape functions of the FE model cho-

sen multiplied by the KL expansion of a stochastic parameter of the system. Eigenfunctions

in KL expansion are always orthogonal, like the trigonometric functions obtained in sub-

section 1.1.4. A property of functions cosine and sine is that they are bounded: they vary

between −1 and 1. Then:

|cos(ax+ ab)| ≤ 1 (2.30)

|cos(ax+ ab)fj(x)| ≤ |fj(x)| (2.31)∣∣∣∣
∫

cos(ax+ ab)fj(x) dx

∣∣∣∣ ≤

∣∣∣∣
∫

fj(x) dx

∣∣∣∣ (2.32)

(

∫ l

0

cos(ax+ ab)fj(x) dx)
2 ≤ (

∫ l

0

fj(x) dx)
2 (2.33)

∑

j

(∫ l

0

cos(ax+ ab)fj(x) dx

)2

≤
∑

j

(∫ l

0

fj(x) dx

)2

(2.34)



2.5. Simulation method for Wishart system matrices 26

Where fj is a shape function and the sum for all the shape functions can be considered as a

sum of the square of the elements Gij of the matrix G for which the parameter σG is being

calculated.

It is observed here that in fact, each term of the matrix can have contributions from

the element matrices of different elements. It can be noticed that the right hand side of

(2.34) remains the same for those elements: if fn(x) and fm(x) are contributions from two

different element matrices, fn(x) + fm(x) can be considered as a new shape function. The

left hand side of (2.34) has different trigonometric function for each element: if an element

has a trigonometric function cos (a(x+ b1)) the next one has cos (a(x+ b2)). The difference

|b1 − b2| is equal to the distance between local origins of two different elements: it is the

length of the element if all elements have same length. We can also notice that if the number

of elements used is infinity, this difference |b1 − b2| = 0, and cos (a(x+ b1)) = cos (a(x+ b2)).

Then, we can consider that

(∫ l

0

cos(ax+ abn)fn(x) dx+

∫ l

0

cos(ax+ abm)fm(x) dx

)2

≈

(∫ l

0

cos(ax+ abn) (fn(x) + fm(x)) dx

)2

(2.35)

(∫ l

0

cos(ax+ abn)fn(x) dx+

∫ l

0

cos(ax+ abm)fm(x) dx

)2

≤

(∫ l

0

(fn(x) + fm(x)) dx

)2

(2.36)

So, we can identify G0kj as the right hand side of the equation and Gikj as the left hand side

of the equation. If we write the parameter σG as

σ2
G =

∑
i

λiσ
2
β

α2
i

∑n
kj G

2
ikj∑n

kj G
2
0kj

≤
∑

i

λiσ
2
β

α2
iβ

2
(2.37)

where
∑n

kj represents the summation to all the terms of a matrix, αi and λi are given by

the KL expansion, β is the parameter that has been expanded (e.g. EA for a bar stiffness

matrix) and σβ is the parameter variance, generally a percentage of β.

2.5 Simulation method for Wishart system matrices

The random matrix model for a system matrix is going to be a Wishart matrix with param-

eters p = n + 1 + 2ν and Σ = G/2ν, with ν given in (2.25), that means, criteria 3 is used.

The following different steps can now be followed to simulate with Wishart matrices for the

probabilistic structural dynamics:

1. Find n, the dimension of the system matrices. It is equal to the dimension of the

deterministic matrices G ≡ {M,C,K} obtained using the standard FEM. For complex

engineering systems n can be in order of several thousands or even millions.
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2. Obtain the normalized standard deviations or the ’dispersion parameters’ σ̃G ≡ {σ̃M , σ̃C , σ̃K}

corresponding to the system matrices,from experiment, experience or using the Stochas-

tic FEM.

3. Calculate

θG = 2ν =
1

σ̃2
G



1 +

{Trace
(
G
)
}2

Trace
(
G

2
)



− (n+ 1), for G = {M,C,K} (2.38)

4. Approximate (n+1+θG) to its nearest integer and call it p. That is p = [n+1+θG]. This

approximation would introduce negligible error. Create a n×p matrix X̃ with Gaussian

random numbers with zero mean and unit covariance i.e., X̃ ∼ Nn,p (O, In ⊗ Ip).

5. Because Σ = G/θG is a positive definite matrix, it can be factorized as Σ = ΓΓT .

Using the matrix Γ ∈ R
n×n, obtain the matrix X using the linear transformation

X = ΓX̃ (2.39)

Following theorem 2.3.10 in Gupta and Nagar (2000) it can be shown that X ∼

Nn,p (O,Σ⊗ Ip).

6. Now obtain the samples of the Wishart random matrices Wn

(
n+ 1 + θG,G/θG

)
as

G = XXT (2.40)

Alternatively, Matlab
r command wishrnd can be used to generate the samples of

Wishart matrices. Matlab
r can handle fractional values of (n + 1 + θG) so that the

approximation to its nearest integer in step 5 may be avoided.

7. Repeat the above process for the mass, stiffness and damping matrices and solve the

equation of motion for each sample to obtain the response statistics of interest.

This procedure can be implemented easily. Once the samples of the system matrices are

generated, the rest of the analysis is identical to any Monte Carlo simulation based approach.

If one implements this approach in conjunction with a commercial FE software, unlike the

SSFEM, the commercial software needs to be accessed only once to obtain the mean matrices.

This simulation procedure is therefore ‘non-intrusive’.

Although the random matrix based approach outlined above is very easy to implement,

there are some limitations:

• The statistical crossed correlations between mass, stiffness and damping matrices can-

not be considered in the present form. One must derive matrix variate joint probability

density function for M, K and C.
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• Unlike the deterministic matrices derived from FE discretisation, sample-wise sparsity

may not be preserved for the random matrices.

• Only one variable, namely the normalized standard deviation σG defined in (2.18), is

available to characterize uncertainty in a system matrix. This can be obtained, for

example using standard system identification tools (e.g., modal identification) across

the ensemble.

• Unlike the parametric uncertainty quantification methods, no computationally effi-

cient analytical method (e.g., perturbation method, polynomial chaos expansion) is

yet available for random matrix approach.

In the medium and high-frequency vibration of stochastic systems, where there is enough

‘mixing’ of the modes, the dynamic response is not very sensitive to the detailed nature of

uncertainty in the system. In this situation, in spite of the limitations mentioned above,

the random matrix approach provides an easy alternative to the conventional parametric

approach. The numerical examples in the next chapters illustrates this fact.

2.6 Generalized beta distribution

There is a gross ‘oversimplification’ of the nature of the uncertainty by only considering one

parameter θ as the origin or randomness in a random matrix. Any n× n symmetric matrix

G, supposing fully populated, can have N = n(n + 1)/2 number of independent elements.

Therefore, its covariance matrix is N2 = n2(n + 1)2/4 dimensional and symmetric. Which

implies that it can have N(N + 1)/2 = n(n + 1)(n(n + 1) + 2)/8 number of independent

elements. Nonparametric approach, therefore, only offers a single parameter to quantify

uncertainty which can potentially be expressed by n(n + 1)(n(n + 1) + 2)/8 number of

independent parameters. However, when very little information regarding the covariance

tensor of G is available, then a central Wishart distribution is the best that can be used to

quantify uncertainty. If more reliable information regarding the covariance tensor of G is

available, then we need a matrix variate distribution which not only satisfies being symmetric

and positive definite, but also must offer more parameters to fit the ‘known’ covariance tensor

of G. This is the central motivation of fitting a random matrix with a beta distribution.

As stated in Gupta and Nagar (2000), a p×p random symmetric positive definite matrix

X has generalized matrix variate beta type I distribution with parameters a, b, Ω, Ψ denoted

by X ∼ GBI
p(a, b,Ω,Ψ) if its p.d.f. is given by

det (X −Ψ)a−
1
2
(p+1) det (Ω−X)b−

1
2
(p+1)

βp(a, b)det (Ω−Ψ)(a+b)− 1
2
(p+1)

, Ψ < X < Ω (2.41)
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Where β is the multivariate beta function given by

βp(a, b) =

∫

0<A<Ip

det (A)a−
1
2
(p+1) det (Ip − A)b−

1
2
(p+1) dA =

Γp(a)Γp(b)

Γp(a + b)
= β(b, a) (2.42)

where Re(a) > 1
2
(p− 1) and Re(b) > 1

2
(p− 1)

X ∼ GBI
p(a, b,Ω,Ψ) can be derived from a matrix variate beta type I distribution U ∼

BI
p(a, b) with the formula X = (Ω − Ψ)

1
2U(Ω − Ψ)

1
2 + Ψ. Furthermore, the type I beta

distribution can be obtained from independent Y ∼ Np,n1(0,Σ ⊗ In1) and S2 ∼ Wp(n2,Σ)

random matrices, with S = S2 + Y Y ′, Z = S− 1
2Y and finally ZZ ′ ∼ BI

p(
1
2
n1,

1
2
n2) if n1 ≥ p

and X = Z ′Z ∼ BI
n1
(1
2
p, 1

2
(n1 + n2 − p)) if n1 < p.

The system matrices are symmetric positive definite, they could be fitted with a gener-

alized beta distribution. For this, assume Ψ = 0, parameters n1 and n2 and matrices Ω (one

for the stiffness matrix and another for mass matrix) have to be found.

Some properties about the generalized beta distribution X ∼ GBI
p(

1
2
n1,

1
2
n2; Ω, 0) are:

E [xij] =
n1

n
wij (2.43)

E [xijxkl] =
n1

n(n− 1)(n+ 2)
[(n1(n+ 1)− 2)wijwkl + n2(wjlwki + wilwkj)] (2.44)

cov (xij , xkl) =
n1n2

n(n− 1)(n− 2)
[−

2

n
wijwkl + wijwkl + wilwkj] (2.45)

For approximating the matrices with a beta distribution, we can state that the mean of

the system matrices is equal to the mean of the generalized beta distribution matrix that

approximates it, mathematically, and using (2.43):

K0 = E [XK ] M0 = E [XM ] (2.46)

K0 =
n1

n
ΩK M0 =

n1

n
ΩM (2.47)

This will allow us to find matrices ΩK and ΩM after finding n1 and n2. Those two con-

stants can be found identifying the mean of the terms of the covariance matrix of the beta

distribution derived from (2.45):

cov(vec(U)) =
n1n2

n(n− 1)(n− 2)
(−

2

n
vecΩvecΩ′ + Ω⊗ Ω +KnnΩ⊗ Ω) (2.48)

An approach to the problem using beta distribution has not been found in the available

literature, theWishart method offers then an already tested frame for our study. On the other

hand, the calculation of matrix cov(vec(U)) is computationally expensive, and simulations

of random matrices following the beta model is not available on Matlab
r. The simulation

of beta matrices based on Matlab
r available random matrices is also computationally

expensive. The simulation using beta distribution is therefore not going to be used in this

study.



Chapter 3

Axial vibration of rods with
stochastic properties

The rod model is a 1D model that uses linear shape functions and is therefore one of

the simplest FE models. It is also a widely used model, as many structural elements can

be modeled as rods. Here the theory for deriving this model is reminded at first: the

derivation of the equation of motion and the discretization process that leads to the well

known deterministic FE model of the rod. Then, expressions for other mass and stiffness

matrices taking account of the eigenfunctions appearing in the KL expansion of random

variables EA and ρA are derived.

3.1 Equation of motion

In this section, the governing equation of the system is derived, more details can be found

in Petyt (1998) and Géradin and Rixen (1997). Hamilton’s principle states

∫ t2

t1

(δ(T − U) + δWnc)dt = 0 (3.1)

Where T is the kinetic energy, U is the elastic strain energy, Wnc is the work of non con-

servative forces and δu = 0 at t = t1 and t = t2. In this study, linear constitutive model

is assumed (the stress-strain relation is linear (σx = Eεx, where the axial strain component

εx = ∂u
∂x

and E is Youngs modulus)), and the material is assumed as isotropic. It is assumed

that each plane cross-section remains plane during the motion and the only stress component

that is not negligible is σx, and it remains uniform over each cross section. The axial force

in one of the faces of the increment dx of axial element is σxA, and the extension of the

element is εx dx , the work done on the element as strain energy is dU = 1
2
σxεxAdx and for

the complete rod, the total strain and kinetic energy are

U =
1

2

∫ +a

−a

σxεxAdx =
1

2

∫ +a

−a

EAε2x dx (3.2)

30
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and

T =
1

2

∫ +a

−a

ρAu̇2 dx (3.3)

If there is an applied load of magnitude px per unit length, the work done in a virtual

displacement δu is δu.px dx and the virtual work for the whole rod is:

δW =

∫ +a

−a

pxδu dx (3.4)

After substituting those expressions in Hamilton’s principle and assuming that operators δ

and ∂()/∂t as well as δ and ∂()/∂ x are commutative, and that integrations with respect to

t and x are interchangeable, we can obtain the equation of motion:

EA
∂2u

∂x2
− ρA

∂2u

∂t2
+ px = 0 throughout − a ≤ x ≤ +a (3.5)

And boundary conditions

EA
∂u

∂x
= 0 or δu = 0 at x = −a and x = +a (3.6)

Depending on the boundary conditions, analytical solutions to this differential equation are

available.

3.2 Deterministic Finite Element model

The basic rod element of length l has two nodes, one at each end, and one degree of freedom

per node: the axial displacement u at each node, so, there are two degrees of freedom per

element: u1 and u2. The only forces acting on the element are point axial forces f1 and f2

acting at the ends (Dawe (1984)).

A displacement field, expressed in terms of the element nodal displacements, is assumed:

for each point of the element the displacement is given by u = A0 + A1x, or, in a matrix

form

u ≡ u = αA = [1 x]

[
A0

A1

]
(3.7)

If the origin of the x coordinate is at node 1, the boundary conditions

{
u = u1 at x = 0
u = u2 at x = l

for equation (3.7) lead to the system

d = CA where A = C−1d (3.8)

u = αC−1d = Nd (3.9)

or, expressed with matrices,

[
u1

u2

]
=

[
1 0
1 l

] [
A0

A1

] [
A0

A1

]
=

[
1 0

−1/l 1/l

] [
u1

u2

]
(3.10)
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and

N =
[
1− x

l
x
l

]
(3.11)

Where N is the matrix of shape functions or shape function matrix, and each shape

function equals one for a given degree of freedom and zero for all the others.

In a discrete system, Hamiltons principle can be expressed as Lagranges equation (here

stated without damping force):

d

dt

(
∂T

∂u̇

)
−

∂U

∂u
= f (3.12)

For this problem, f = px the axial force and the only strain and stress existing are εx and

σx = Eεx (acting in the axial direction).

εx =
du

dx
=

[
dN

dx

]
d =

[
−1/l 1/l

] [u1

u2

]
= Bd (3.13)

It is known that the (stretching) strain energy of the bar element of length l with origin

placed in node one is:

Ue =
1

2

∫ t

0

σt
xεxAdx =

1

2
dt

(∫ l

0

Bt(AE)B dx

)
d (3.14)

The element strain energy can be expressed as Ue = 1
2
dtKed, where Ke is the element

stiffness matrix. The stress is expressed as σt
x instead of σx due to the fact that while

σt
x = σx and the expression of Ue remains the same scalar quantity, the element stiffness

matrix can now be obtained and is independent of the displacement. The element stiffness

matrix is given by:

Ke =

∫ l

0

Bt(AE)B dx = AE

∫ l

0

[
−1/l
1/l

] [
−1/l 1/l

]
dx =

AE

l

[
1 −1
−1 1

]
(3.15)

So, U =
AE

2l

[
u1 u2

] [ 1 −1
−1 1

] [
u1

u2

]
(3.16)

The work of the forces applied to the element is

We = −f1u1 − f2u2 (3.17)

The kinetic energy of the rod element can be calculated in the same way

Te =
1

2

∫ l

0

ρAu̇2 dx =
1

2
u̇t

∫ l

0

ρANtN dxu̇ =
1

2
u̇tMeu̇ (3.18)

Me =
ρAl

6

[
2 1
1 2

]
(3.19)

After assembling the whole structure stiffness matrix, mass matrix and the forcing vector,

those expressions can be introduced in Lagrange’s equation (3.12) to obtain the system

equation of motion:

Mü+Ku = f (3.20)
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The assembly process consist in adding the element matrix corresponding to element number

e to the submatrix composed of rows and columns e and e+ 1 of an initially zero matrix of

dimensions N + 1 where N is the number of elements of the rod structure. This process is

done for mass and stiffness matrices, there is a similar process for the forcing vector where

the terms of the element forcing vector are added to the corresponding terms of a global

forcing vector.

3.3 Derivation of stiffness matrices

For the FE model of a straight axially loaded bar, the stiffness matrix is given by

Ke =

∫ l

0

Bt(AE)B dx (3.21)

where E is Youngs modulus, A denotes the cross section area, and the product AE, axial

rigidity, is a random field that can be represented as a KL expansion

Ke =

∫ l

0

Bt(A0E0 +

n/2∑

i=1

(λifi(x)ξi + λ∗
i f

∗
i (x)ξ

∗
i ))Bdx (3.22)

with ξi and ξ∗i set of uncorrelated random variables forming a Gaussian vector , λi and λ⋆
i

eigenvalues and fi and f ∗
i eigenfunctions of a given covariance function. The two different

sets of eigenfunctions and corresponding eigenvalues have to be integrated for the covariance

functions studied in subsection 1.1.4 As it has already been said:

c− ω tan(ωa) = 0 gives a set of solutions ωi for iodd (3.23)

ω + ω tan(ca) = 0 gives a set of solutions ω∗
i for i even (3.24)

The eigenfunctions and eigenvectors can be calculated:

λi =
2c

ω2
i + c2

λ∗
i =

2c

ω∗ 2
i + c2

(3.25)

fi(x) =
cos(ωix)√
a+ sin(2ωia)

2ωi

f ∗
i (x) =

sin(ω∗
i x)√

a−
sin(2ω∗

i a)

2ω∗

i

(3.26)

The expression for the stiffness matrix considering KL expansion is:

Ke = Ke0 +

n/2∑

i=1

(ξiλiKei + ξ∗i λ
∗
iK

∗
ei
) (3.27)

with

K0 =
A0E0

l

[
1 −1
−1 1

]
(3.28)
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Kei =
1

l2
√
a + sin(2ωna)

2ωn

[
1 −1
−1 1

] ∫ l

0

cos(ωn(x+ xe
1)) dx (3.29)

K∗
ei

=
1

l2
√
a− sin(2ω∗

na)
2ω∗

n

[
1 −1
−1 1

] ∫ l

0

sin(ω∗
n(x+ xe

1)) dx (3.30)

noting that:

∫
cos(ax+ b) dx =

∫
cos(X)

dX

a
=

sin(X)

a
=

sin(ax+ b)

a
(3.31)

∫
sin(ax+ b) dx =

∫
sin(X)

dX

a
=

− cos(X)

a
= −

cos(ax+ b)

a
(3.32)

(3.33)

and finally,

Kei =
sin(ωi(l + xe

1))− sin(ωix
e
1)

l2ωi

√
a+ sin(2ωia)

2ωi

[
1 −1
−1 1

]
(3.34)

K∗
ei

=
− cos(ω∗

i (l + xe
1)) + cos(ω∗

i x
e
1)

l2ω∗
i

√
a−

sin(2ω∗

i a)

2ω∗

i

[
1 −1
−1 1

]
(3.35)

We can notice here that, contrarily to the deterministic stiffness matrix, the terms in the

matrix will change from one element to the next one not only because of change in a given

parameter (EA), but also because of the effect of the eigenfunctions. This effect is neglected

when undertaking a Monte Carlo simulation, and can only be reflected adopting a fine mesh.

3.4 Derivation of mass matrices

For the mass matrix, a similar process gives the symmetric matrices Mei and M∗
ei
, the

components of whom are given by:

Mei11
=

(2ωil − 2 sin (ωil)) cos (ωix
e
1) + (−l2ωi

2 + 2− 2 cos (ωil)) sin (ωix
e
1)

l2ω3
n

√
a + sin(2ωia)

2ωi

Mei12
=

(− cos (ωil) lωi + 2 sin (ωil)− ωil) cos (ωix
e
1)

l2ω3
n

√
a+ sin(2ωia)

2ωi

+

(2 cos (ωil) + ωil sin (ωil)− 2) sin (ωix
e
1)

l2ω3
n

√
a+ sin(2ωia)

2ωi

Mei22
=

(2 cos (ωi l) lωi + (l2ωi
2 − 2) sin (ωil)) cos (ωix

e
1)

l2ω3
n

√
a + sin(2ωia)

2ωi

+

((l2ωi
2 − 2) cos (ωil)− 2ωil sin (ωil) + 2) sin (ωix

e
1)

l2ω3
n

√
a + sin(2ωia)

2ωi
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Me∗i11
=

(
l2ω∗

i
2 − 2 + 2 cos (ω∗

i l)
)
cos (ω∗

i el) + (2ω∗
i l − 2 sin (ω∗

i l)) sin (ω
∗
i el)

l2ω∗3
i

√
a−

sin(2ω∗

i x)

2ω∗

i

Me∗i12
=

(−2 cos (ω∗
i l) + 2− sin (ω∗

i l) lω
∗
i ) cos (ω

∗
i el)

l2ω∗3
i

√
a−

sin(2ω∗

i x)

2ω∗

i

+

(2 sin (ω∗
i l)− ω∗

i l − ω∗
i l cos (ω

∗
i l)) sin (ω

∗
i el)

l2ω∗3
i

√
a−

sin(2ω∗

i x)

2ω∗

i

Me∗i22
=

((
−l2ω∗

i
2 + 2

)
cos (ω∗

i l) + 2 sin (ω∗
i l) lω

∗
i − 2

)
cos (ω∗

i el) +

l2ω∗3
i

√
a−

sin(2ω∗

i x)

2ω∗

i(
2ω∗

i l cos (ω
∗
i l) +

(
−2 + l2ω∗

i
2
)
sin (ω∗

i l)
)
sin (ω∗

i el)

l2ω∗3
i

√
a−

sin(2ω∗

i x)

2ω∗

i

Those matrices are used in the following section to calculate the theoretical value of the

dispersion parameter.

3.5 Numerical illustrations

The example model verifies that its boundary conditions are the ones of a clamped-free

bar: zero displacement on the left end. Heuristically, it is considered that this boundary

condition is the one that will more likely cause a bigger variance in the response vector

than the one obtained with other typical boundary conditions like clamped-clamped bar.

The material properties are taken as ρ = 2700 kg/m3, E = 69GPa, values corresponding

to aluminium. Geometrical variables are: length of the bar L = 30m and cross section

A = 1 cm2. The variance of the parameters considered as random is 10% the value of the

parameter: σβ = 0.1 β. The parameters considered are β = EA for stiffness matrix and

β = ρA for mass matrix. The system response is calculated using equation (1.62): equation

for a viscously damped proportional model where damping factor is ζj = 0.02. For choosing

the number of elements of the structure, we consider that the smaller wavelength produced

by the vibration of the dynamic structure should be at least four times the element length.

If the maximum frequency for which the structure is analyzed covers the first fifty modes

(number of modes k = 50), the structure model will have 200 elements. This maximum

frequency is then calculated with an analytical expression available for rod:

fmax = (2k − 1)
1

4

√
EA

ρAL2
= 4.17KHz

The maximum frequency used for testing the structure in this numerical calculation is 4KHz.

Measure of the response vector is given for the forcing point, situated at the 3rd node, and

at a sensor situated at the 35-th node.

Four different correlation lengths used in the KL expansions are selected to research the

effect of this value on the response statistics. Those correlation lengths are 0.1L, 0.2L, 0.5L
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and L, where L is the bar total length. Also, the response statistics for uncorrelated random

variables is calculated. The number of terms in each KL expansion is chosen such that the

ratio between the square roots of the first term and last term eigenvalues is less than 0.05:
√
λ1√
λN

≤ 0.05

Correlation length 0.1L 0.2L 0.5L L
Terms of KL expansion 67 36 18 12

Table 3.1: Number of terms used in KL expansion for each correlation length

In Figure 3.1 and Figure 3.2 we show the mean of the dynamic response at two points

on the bar. From these figures it is observed that the mean of the absolute value of the

response does not coincide with the response of the deterministic system with mean values

of stochastic parameters. Also, the larger is the correlation length, the more different are

the mean responses from the deterministic response. This observation can be done for both

sensors where the system response is collected.
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Figure 3.1: Absolute value of the Frequency Response Function (FRF) for the mean of the
Monte Carlo simulations done directly with FEM for the excitation point (Point 1, free end).

In Figure 3.3 and Figure 3.4 we show the standard deviation of the dynamic response at

two points on the bar. A significant impact of the correlation of the random filed can be

observed on the dynamic response.
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Figure 3.2: Absolute value of the Frequency Response Function (FRF) for the mean of the
Monte Carlo simulations done directly with FEM for the sensor (Point 2, mid point).
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Figure 3.3: Absolute value of the FRF for the standard deviation of the Monte Carlo simu-
lations done directly with FEM for the excitation point (Point 1, free end) .
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Figure 3.4: Absolute value of the FRF for the standard deviation of the Monte Carlo simu-
lations done directly with FEM for the sensor (Point 2).



Chapter 4

Bending vibration of beams with
stochastic properties

4.1 Equation of motion

As in the previous chapter, expressions for total strain energy U , kinetic energy T , and virtual

work δW are derived, adopting the same hypothesis about linearity. The elementary theory

of bending assumes that the stress components σy, σz, τyz and τxz are zero, that the plane

sections normal to the undeformed centroidal axis remain plane after bending and that they

remain normal to the deformed axis. A distributed load py per unit length is applied. Then,

the axial displacement u at a distance y from the centroidal axis is u(x, y) = −y ∂v
∂x

where v

is the displacement of the centroidal axis in the y-direction at position x. Expressions for

strain and kinetic energy and virtual work are:

U =

∫

V

σxεxdv =

∫

V

Eε2xdv =

∫ +a

−a

EI2
(
∂2v

∂x2

)2

dx (4.1)

with Iz =

∫

A

y2dA (4.2)

T =
1

2

∫ +a

−a

ρAv̇2dx (4.3)

δW =

∫ +a

−a

pyδvdx (4.4)

After substituting those expressions in Hamilton’s principle equation (3.1), with δv = 0

when t = t1 and t = t2, the equation of motion is obtained:

−EI
∂2v

∂x4
− ρA

∂2v

∂t2
+ py = 0 Throughout − a ≤ x ≤ +a (4.5)

In addition, either {
EIz

∂2v
∂x2 = 0 or ∂v

∂x
= 0

EIz
∂3v
∂x3 = 0 or v = 0

(4.6)

39
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at x = −a and x = +a act as boundary conditions. ∂v
∂x

= 0 and v = 0 represent the

vanishing of slope and displacement respectively, while EIz
∂2v
∂x2 = 0 and EIz

∂3v
∂x3 = 0 represent

the vanishing of stress over a cross-section and shear force.

4.2 Deterministic Finite Element model

The basic beam element of length l has two nodes, one at each end, and two degrees of

freedom per node: the lateral displacement v and the rotation θz ≡
dv

dx
at each node, the

degrees of freedom for one element are v1, v2, θz1 and θz2 . At each node of the element are

acting a moment and a shear force as external forces: Mz1 ,Mz2 ,v1 and v2.

The displacement field, expressed in terms of the element coordinates, is assumed to have

a cubic form: for each point of the element the displacement is given by

u ≡ v = A0 + A1x+ A2x
2 + A3x

3 (4.7)

=
[
1 x x2 x3

]




A0

A1

A2

A3


 (4.8)

u = αA (4.9)

If the origin of the x coordinate is at node 1, the boundary conditions

{
v = v1 and θz = θz1 at x = 0
v = v2 and θz = θz2 at x = l

(4.10)

for equation (4.9) lead to the system

d = CA where A = C−1d (4.11)

and

u = αC−1d = Nd (4.12)

or, expressed in matrix form

d =




v1
θz1
u2

θz2


 =




1 0 0 0
0 1 0 0
1 l l2 l3

0 1 2l 3l2







A0

A1

A2

A3


 (4.13)

N =
[
1− 3x2

l2
+ 2x3

l3
x− 2x2

l
+ x3

l2
3x2

l2
− 2x3

l3
−x2

l
+ x3

l2

]
(4.14)

For the beam problem, f = py the transversal force. The only strain component is the axial

strain

εx = −y
d2v

dx2
= yχz (4.15)
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where y is the distance from the neutral axis and χz is the curvature and can be regarded as

a ‘pseudo-strain’ while Mz can be regarded as a ‘pseudo stress’ and Mz = EIzχz. the strain

energy of the element can be stated also as

Ue =
1

2

∫ l

0

M t
zχzdz =

1

2

∫ l

0

χt
zEIzχzdz (4.16)

The pseudo stress can be calculated

χz = −
d2v

dx2
= −

[
d2

dx2
N

]
d = Bd (4.17)

where

B =
[
6
l2
− 12x

l3
4
l
− 6x

l3
−6
l2

+ 12x
l3

2
l
− 6x

l2

]
(4.18)

Then, the strain energy

Ue =
1

2
dt

(∫ l

0

Bt(EIz)Bdx

)
d =

1

2
dtKed (4.19)

with

Ke =

∫ l

0

Bt(EIz)Bdx (4.20)

Ke = EIz




12/l3 6/l2 −12/l3 6/l2

4/l −6/l2 2/l
symmetric 12/l3 −6/l2

4/l


 (4.21)

The work of the forces applied to the element is

We =

∫ l

0

pyδv dx = δut

∫ l

0

pyN
t dx (4.22)

The kinetic energy of the rod element can be calculated in the same way

Te =
1

2

∫ l

0

ρAu̇2 dx =
1

2
u̇t

∫ l

0

ρANtN dxu̇ =
1

2
u̇tMeu̇ (4.23)

with

Me =

∫ l

0

Nt(ρA)Ndx (4.24)

Me =
ρAl

420




156 22l 54 −13l
4l2 13l −3l2

symmetric 156 −22l
4l2


 (4.25)

After assembling the whole structure stiffness matrix, mass matrix and the forcing vector,

those expressions can be introduced in Lagrange’s equation (3.12) to obtain the system

equation of motion:

Mü+Ku = f (4.26)

The assembly process of K, M and f is similar to the one described for rod.
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4.3 Derivation of stiffness matrices

As expressed in the derivation of the FEM, the strain energy can be expressed as:

Up =
1

2

∫ l

0

M t
zχzdz =

1

2

∫ l

0

χt
zEIzχzdx =

1

2
dT

(∫ l

x=0

Bt(EIz)Bdx

)
d (4.27)

Where EIz is the parameter that is going to be replaced by the usual KL expansion:

k =

∫ l

x=0

Bt(EIz)Bdx (4.28)

k =

∫ l

x=0

Bt



Iz0E0 +

n/2∑

i=1

(λifi(x)ξi + λ∗
i f

∗
i (x)ξ

∗
i )



Bdx (4.29)

k = k0 +

n/2∑

i=0

(ξiλiki + ξ∗i λ
∗
ik

∗
i
) (4.30)

Matrices k0, ki and k∗
i
are symmetric, and each of them has 16 terms: for each of them only

10 terms will have to be calculated.

k0 = E0Iz0




12/l3

6/l2 4/l symmetric
−12/l3 −6/l2 12/l3

6/l2 2/l −6/l2 4/l


 (4.31)

For integrating ki and k∗
i
, we observe that the coordinates for the eigenfunctions are linked

to the whole structure, and not to each element, whereas functions in B are linked to each

element. Integration will be done in element coordinates, and variables of eigenfunctions are

going to be changed: if X is the coordinate used by the eigenfunction, and x the one used

in a particular element, X = x+ xe
1, with xe

1 being the coordinate of the initial node of the

element, related to the whole structure.

ki11
=

36√
a+ sin(2ωna)

2ωn
l6ω3

n

[(
8− ω2

nl
2
)
(sin(ωnx

e
1)− sin(ωn(l + xe

1)))+

4ωnl (cos(ωn(l + xe
1)) + cos(ωnx

e
1))]

with ki11
= ki33

= −ki13

ki12
=

12√
a+ sin(2ωna)

2ωn
l6ω3

n

[
sin(ωn(l + xe

1))
(
l3ω2

n − 12l
)
+ 2l sin(ωnx

e
1)
(
6− ω2

nl
2
)
+

l2ωn (5 cos(ωn(l + xe
1)) + 7 cos(ωnx

e
1))
]

with ki12
= −ki32

ki14
=

12√
a+ sin(2ωna)

2ωn
l6ω3

n

[
2l sin(ωn(l + xe

1))
(
ω2
nl

2 − 6
)
+ l sin(ωnx

e
1)
(
12− ω2

nl
3
)
+

l2ωn (7 cos(ωn(l + xe
1)) + 5 cos(ωnx

e
1))
]
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with ki14
= −ki34

ki22
=

4√
a+ sin(2ωna)

2ωn
l6ω3

n

[
sin(ωn(l + xe

1))
(
l4ω2

n − 18l2
)
+ 2l2 sin(ωnx

e
1)
(
9− 2l2ω2

n

)

+l3ωn (cos(ωn(l + xe
1)) + 12 cos(ωnx

e
1))
]

ki24
=

4√
a+ sin(2ωna)

2ωn
l6ω3

n

[
2l2
(
2ω2

n − 9
)
(sin(ωn(l + xe

1))− sin(ωnx
e
1))+

9l3ωn (cos(ωn(l + xe
1)) + cos(ωnx

e
1))
]

ki44
=

4√
a+ sin(2ωna)

2ωn
l6ω3

n

[
2l2 sin(ωn(l + xe

1))
(
2l2ω2

n − 9
)
+ l2 sin(ωnx

e
1)
(
18l2 − 4l2ωn

)
+

+6l3ωn (2 cos(ωn(l + xe
1)) + cos(ωnx

e
1))
]

k∗
i11

=
36√

a− sin(2ω∗

na)
2ω∗

n
l6ω∗

n
3

[
4lω∗

n (sin(ω
∗
n(l + xe

1)) + sin(ω∗
nx

e
1)) +

(
l2ω∗

n
2 − 8

)
(cos(ω∗

nx
e
1)−

cos(ω∗
n(l + xe

1)))]

k∗
i12

=
12√

a− sin(2ω∗

na)
2ω∗

n
l5ω∗

n
3

[
ω∗
nl (5 sin(ω

∗
n(l + xe

1)) + 7 sin(ω∗
nx

e
1)) + cos(ω∗

nx
e
1)
(
12− l2ω∗

n
2
)
+

2 cos(ω∗
n(l + xe

1))
(
ω∗
n
2l2 − 6

)]

k∗
i14

=
12√

a− sin(2ω∗

na)
2ω∗

n
l6ω∗

n
3

[
lω∗

n (7 sin(ω
∗
n(l + xe

1)) + 5 sin(ω∗
nx

e
1)) + cos(ω∗

nx
e
1)
(
l2ω∗

n
2 − 12

)
+

2 cos(ω∗
n(l + xe

1))
(
6− ω∗

nl
2
)]

k∗
i22

=
4√

a− sin(2ω∗

na)
2ω∗

n
l4ω∗

n
3

[
6lω∗

n (sin(ω
∗
n(l + xe

1)) + 2 sin(ω∗
nx

e
1)) + 2

(
2l2ω∗

n
2 − 9

)
cos(ω∗

nx
e
1)+

(
18− ω∗

n
2l2
)
cos(ω∗

n(l + xe
1))
]

k∗
i24

=
2√

a− sin(2ω∗

na)
2ω∗

n
l4ω∗

n
3

[
9lω∗

n (sin(ω
∗
n(l + xe

1)) + sin(ω∗
nx

e
1)) + 2

(
l2ω∗

n
2 − 9

)
(cos(ω∗

nx
e
1)−

cos(ω∗
n(l + xe

1)))]

k∗
i44

=
4√

a− sin(2ω∗

na)
2ω∗

n
l4ω∗

n
3

[
6lω∗

n (2 sin(ω
∗
n(l + xe

1)) + sin(ω∗
nx

e
1)) + cos(ω∗

nx
e
1)
(
l2ω∗

n
2 − 72

)
+

2 cos(ω∗
n(l + xe

1))
(
9− 2ω∗

n
2l2
)]

and identities ki11
= ki33

= −ki13
, k∗

i12
= −k∗

i32
, and k∗

i14
= −k∗

i34
hold.

4.4 Derivation of mass matrices

As expressed in the derivation of FEM, the kinetic energy can be expressed as:

Te =
1

2

∫ l

0

ρAu̇2 dx =
1

2
u̇t

∫ l

0

ρANtN dxu̇ (4.32)
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Where ρA is the system parameter that is going to be replace by the usual KL expansion:

m =

∫ l

x=0

Nt(ρA)Ndx (4.33)

m =

∫ l

x=0

Nt


ρ0A0 +

n/2∑

i=1

(λifi(x)ξi + λ∗
i f

∗
i (x)ξ

∗
i )


Ndx (4.34)

m = m0 +

n/2∑

i=0

(ξiλimi + ξ∗i λ
∗
im

∗
i
) (4.35)

Matrices m0, mi and m∗
i
are symmetric, and each of them has 16 terms: for each of them

only 10 terms will have to be calculated.

m0 =

∫ l

0

Nt(ρA)Ndx (4.36)

m0 =
ρ0A0l

420




156
22l 4l2 symmetric
54 13l 156

−13l −3l2 −22l 4l2


 (4.37)

For integrating mi and m∗
i
, we observe that the coordinates for the eigenfunctions are

linked to the whole structure, and not to each element, whereas functions in N are linked to

each element. Integration will be done in element coordinates, and variables of eigenfunctions

are going to be changed: if X is the coordinate used by the eigenfunction, and x the one

used in a particular element, X = x + xe
1, with xe

1 being the coordinate of the initial node

of the element, related to the whole structure. The integrals giving the expression for each

element of the mass matrix are

mi11 =

∫ l

0

cos(ωn(x+ xe
1))√

a+ sin(2ωna)
2ωn

(
1−

3x2

l2
+

2x3

l3

)2

dx

mi21 =

∫ l

0

cos(ωn(x+ xe
1))√

a+ sin(2ωna)
2ωn

(
1−

3x2

l2
+

2x3

l3

)(
x−

2x2

l
+

x3

l2

)
dx

mi31 =

∫ l

0

cos(ωn(x+ xe
1))√

a+ sin(2ωna)
2ωn

(
1−

3x2

l2
+

2x3

l3

)(
3x2

l2
−

2x3

l3

)
dx

mi41 =

∫ l

0

cos(ωn(x+ xe
1))√

a+ sin(2ωna)
2ωn

(
1−

3x2

l2
+

2x3

l3

)(
−
x2

l
+

x3

l2

)
dx

mi22 =

∫ l

0

cos(ωn(x+ xe
1))√

a+ sin(2ωna)
2ωn

(
x−

2x2

l
+

x3

l2

)2

dx

mi32 =

∫ l

0

cos(ωn(x+ xe
1))√

a+ sin(2ωna)
2ωn

(
3x2

l2
−

2x3

l3

)(
x−

2x2

l
+

x3

l2

)
dx
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mi42 =

∫ l

0

cos(ωn(x+ xe
1))√

a+ sin(2ωna)
2ωn

(
−
x2

l
+

x3

l2

)(
x−

2x2

l
+

x3

l2

)
dx

mi33 =

∫ l

0

cos(ωn(x+ xe
1))√

a+ sin(2ωna)
2ωn

(
3x2

l2
−

2x3

l3

)2

dx

mi43 =

∫ l

0

cos(ωn(x+ xe
1))√

a+ sin(2ωna)
2ωn

(
−
x2

l
+

x3

l2

)(
3x2

l2
−

2x3

l3

)
dx

mi44 =

∫ l

0

cos(ωn(x+ xe
1))√

a+ sin(2ωna)
2ωn

(
−
x2

l
+

x3

l2

)2

dx

mi∗11
=

∫ l

0

sin(ωn(x+ xe
1))√

a− sin(2ω∗

na)
2ω∗

n

(
1−

3x2

l2
+

2x3

l3

)2

dx

mi∗21
=

∫ l

0

sin(ωn(x+ xe
1))√

a− sin(2ω∗

na)
2ω∗

n

(
1−

3x2

l2
+

2x3

l3

)(
x−

2x2

l
+

x3

l2

)
dx

mi∗31
=

∫ l

0

sin(ωn(x+ xe
1))√

a− sin(2ω∗

na)
2ω∗

n

(
1−

3x2

l2
+

2x3

l3

)(
3x2

l2
−

2x3

l3

)
dx

mi∗41
=

∫ l

0

sin(ωn(x+ xe
1))√

a− sin(2ω∗

na)
2ω∗

n

(
1−

3x2

l2
+

2x3

l3

)(
−
x2

l
+

x3

l2

)
dx

mi∗22
=

∫ l

0

sin(ωn(x+ xe
1))√

a− sin(2ω∗

na)
2ω∗

n

(
x−

2x2

l
+

x3

l2

)2

dx

mi∗32
=

∫ l

0

sin(ωn(x+ xe
1))√

a− sin(2ω∗

na)
2ω∗

n

(
3x2

l2
−

2x3

l3

)(
x−

2x2

l
+

x3

l2

)
dx

mi∗42
=

∫ l

0

sin(ωn(x+ xe
1))√

a− sin(2ω∗

na)
2ω∗

n

(
−
x2

l
+

x3

l2

)(
x−

2x2

l
+

x3

l2

)
dx

mi∗33
=

∫ l

0

sin(ωn(x+ xe
1))√

a− sin(2ω∗

na)
2ω∗

n

(
3x2

l2
−

2x3

l3

)2

dx

mi∗43
=

∫ l

0

sin(ωn(x+ xe
1))√

a− sin(2ω∗

na)
2ω∗

n

(
−
x2

l
+

x3

l2

)(
3x2

l2
−

2x3

l3

)
dx

mi∗44
=

∫ l

0

sin(ωn(x+ xe
1))√

a− sin(2ω∗

na)
2ω∗

n

(
−
x2

l
+

x3

l2

)2

dx

The solutions of the integrals is not expressed explicitly: expressions become complicated

and long, and can be obtained easily with any symbolic calculation program once the pro-

cess for obtaining them is understood. This work has evidently been carried out and its

application is exposed in the following section.
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4.5 Numerical illustrations

The example beam model verifies that its boundary conditions are the ones of a clamped-

free beam: zero vertical displacement and rotation on the left end. Heuristically, it is

considered that this boundary condition is the one that will more likely cause a bigger

variance in the response vector than the one obtained with other typical boundary conditions

like clamped-clamped beam. The material properties are ρ = 7800 kg/m3, E = 200GPa,

values corresponding to steel. Geometrical variables values are: length of the beam L =

1.65m and rectangular cross section with length b = 40.06mm and width 2.05mm. The

variance of the parameters considered as random is 10% the value of the parameter: σβ =

0.1 β. The parameters considered are β = AIZ for stiffness matrix and β = ρA for mass

matrix. The system response is calculated using equation (1.62): equation for a viscously

damped proportional model where damping factor is ζj = 0.015. The structure has 90

elements: when comparing at least the first 50 modes of the deterministic FEM with the

analytical response obtained with equation

η1 = 1.875 η2 = 4.694 η3 = 7.855 ηk>3 = (2k − 1)
π

2
(4.38)

ωk =

√
η4kEIz
L4ρA

(4.39)

the error between modes (analytical value minus numerical value divided by analytical value)

is less than 1%. The 50-th natural frequency value is 4.2364Hz, and the maximum frequency

for which the structure is going to be tested is 1.5KHz (the 30-th natural frequency).

Measure of the response vector is given for the forcing point, situated at the 3rd node,

and at a sensor situated at the 27-th node.

The same four different correlation lengths as the ones used in the rod case are selected

to research the effect of this value on the response statistics. We recall that those correlation

lengths are 0.1L, 0.2L, 0.5L and L, where L is the beam total length. The uncorrelated

random variables case is also studied. The number of terms in each KL expansion is chosen

such that the ratio between the square roots of the first term and last term eigenvalues is

less than 0.05, this leads to the same number of terms as in the former case, exposed in

Table 3.1.

In Figure 4.1 and Figure 4.2 we show the mean of the dynamic response at two points

on the bar. From these figures it is observed that the mean of the absolute value of the

response does not coincide with the response of the deterministic system with mean values

of stochastic parameters. Also, the larger is the correlation length, the more different are

the mean responses from the deterministic response. This observation can be done for both

sensors where the system response is collected. The larger the correlation length is, the more

”damped” are the mean of the responses at high natural frequencies.
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Figure 4.1: Absolute value of the FRF for the mean of the Monte Carlo simulations done
directly with FEM for the excitation point (Point 1, free end) .
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Figure 4.2: Absolute value of the FRF for the mean of the Monte Carlo simulations done
directly with FEM for the sensor (Point 2, mid point).

In Figure 4.3 and Figure 4.5 we show the standard deviation of the dynamic response at

two points on the bar. A significant impact of the correlation of the random filed can be
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observed on the dynamic response.
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Figure 4.3: Absolute value of the FRF for the standard deviation of the Monte Carlo simu-
lations done directly with FEM for the excitation point (Point 1, free end).
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Figure 4.4: Absolute value of the FRF for the standard deviation of the Monte Carlo simu-
lations done directly with FEM for the sensor (Point 2, mid point).



Chapter 5

Flexural vibration of thin plates with
stochastic properties

5.1 Equation of motion

A thin plate of constant thickness h = 2b is subjected to distributed surface loads normal to

the middle surface. It is assumed that the direct stress in the transverse direction, σz is zero

and that normals to the middle surface of the undeformed plate remain straight and normal

to the middle surface during deformation. Displacements parallel to the undeformed middle

surface are given by:

u(x, y, z) = −z
∂w

∂x
(5.1)

v(x, y, z) = −z
∂w

∂y
(5.2)

Where w(x, y) is the displacement of the middle surface in the z direction. The strains are

given by:

εx =
∂u

∂x
= −z

∂2w

∂x2
(5.3)

εy =
∂v

∂y
= −z

∂2w

∂y2
(5.4)

γxy =
∂u

∂y
+

∂v

∂x
= −2z

∂2w

∂x∂y
(5.5)

(5.6)

γxz =
∂u

∂z
+

∂w

∂x
= 0, γyz =

∂v

∂z
+

∂w

∂y
= 0 (5.7)

or, if {χ} are the pseudo-strains, equations (5.3) to (5.5) can be rewritten in a vectorial way

{ε} = −z{χ}. (5.8)

49
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Knowing that {σ} = [D]{ε}, with [D] a symmetric matrix depending on the material, the

strain energy for the element is

U =
1

2

∫

V

(σxεx + σyεy + τxyγxy) dV =
1

2

∫

V

{σ}T{ε} dV

=
1

2

∫

V

{ε}T [D]{ε} dV

U =
1

2

∫

A

h3

12
{χ}T [D]{χ} dA

D =
E

(1− ν2)



1 ν 0
ν 1 0
0 0 1

2
(1− ν)




(5.9)

If the rotary inertia terms are neglected, the kinetic energy of the plate and virtual work of

the transverse loading are given by:

T = =
1

2

∫

A

ρhẇ2 dA (5.10)

δW =

∫

A

pzδw dA (5.11)

The bending moments per unit length in the plate are calculated:

M =



Mx

My

Mxy


 =

∫ h

0

zα dz =

∫ h

0

z2Dχ dz = −D




[
∂2w

∂x2
+ ν

∂2w

∂y2

]

[
∂2w

∂y2
+ ν

∂2w

∂x2

]

(1− ν)
∂2w

∂x∂y




(5.12)

The moments Mn Ms and Mns are respectively the bending moment in plane Onz oriented

along the tangent to the contour, in the perpendicular direction and the twisting moment

about the normal. They are obtained from Mx,My and Mxy using equilibrium for a volume

element on the plate boundary. And after introducing U , T and W into Hamilton’s Principle

equation, we obtain the equation of motion, verified at any point on the surface.

∂Qx

∂x
+

∂Qy

∂y
−mẅ + p = 0 where

{
Qx = ∂Mx

∂x
+ ∂Mxy

∂y

Qy =
∂My

∂y
+ ∂Mxy

∂y

(5.13)

while at any point on the contour, the boundary conditions must be satisfied:





Kn = 0 or w = 0

Mn = 0 or ∂w
∂n

= 0

(5.14)

with Kn = ∂Mn

∂n
+ 2∂Mns

∂s
+ 1

R
(Mn −Ms) the Kirchhoff shear force, and R the edge radius of

curvature.
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5.2 Deterministic Finite Element model

The measures of strain in plate bending analysis are the bending and twisting curvatures.

Any displacement field has to verify that a rigid-body motion is possible, in the plate,

this implies a translation in the z direction with w = constant and a rigid body rotation

about the x and y axis of the form w = constant.y and w = constant.x respectively. It also

verifies that a state of constant strain is possible, or, for a plate, a displacement with constant

second derivatives of w; and that the expression or deflection is smoothly continuous over the

element. Another condition to verify is that of the continuity of derivatives, at interelement

boundaries, of one order less that the highest-order derivative appearing in the potential

energy expression: here, continuity of ∂w/∂x and ∂w/∂y. Then, for a 12-degree of freedom

rectangular element, a deflection equation that verifies those conditions is

w =
[
1 x y x2 xy y2 x3 x2y xy2 y3 x3y xy3

]




A1

A2
...

A12


 (5.15)

Each one of the four nodes of the element has three degrees of freedom wi φi θi with φi =
∂w
∂y

the rotation about the x axis and θ = ∂w
∂x

the one about y axis for node i. As for rod and

beam, it can be stated:

w = αA = αC−1d (5.16)

With

C−1 = 1
8a3b3

































































2a3b3 a3b4 a4b3 2a3b3 a3b4 −b3a4 2a3b3 −a3b4 −a4b3 2a3b3 −a3b4 a4b3

−3a2b3 −a2b4 −a3b3 3a2b3 a2b4 −a3b3 3a2b3 −a2b4 −a3b3 −3a2b3 a2b4 −a3b3

−3a3b2 −a3b3 −a4b2 −3a3b2 −a3b3 a4b2 3a3b2 −a3b3 −a4b2 3a3b2 −a3b3 a4b2

0 0 −a2b3 0 0 a2b3 0 0 a2b3 0 0 −a2b3

4a2b2 a2b3 a3b2 −4a2b2 −a2b3 a3b2 4a2b2 −a2b3 −a3b2 −4a2b2 a2b3 −a3b2

0 −a3b2 0 0 −a3b2 0 0 a3b2 0 0 a3b2 0

b3 0 ab3 −b3 0 ab3 −b3 0 ab3 b3 0 ab3

0 0 a2b2 0 0 −a2b2 0 0 a2b2 0 0 −a2b2

0 a2b2 0 0 −a2b2 0 0 a2b2 0 0 −a2b2 0

a3 a3b 0 a3 a3b 0 −a3 a3b 0 −a3 a3b 0
−b2 0 −ab2 b2 0 −ab2 −b2 0 ab2 b2 0 ab2

−a2 −a2b 0 a2 a2b 0 −a2 a2b 0 a2 −a2b 0

































































As for rod and beam, a stiffness, mass and forcing vector can be obtained from the

expressions of strain and kinetic energy, and virtual work. The strain energy is:

Up =
1

2

∫∫
εtpEpεp dx dy =

1

2
dtKd Ep = D



1 ν 0
ν 1 0
0 0 1−ν

2


 (5.17)

D =
Eh3

12(1− ν2)
(5.18)
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with d the vector of displacements at each node and K the stiffness matrix.

Ke =

∫

Ae

Bt
pEpBp dAe = (C−1)t

(∫

Ae

βt
pEpβp dAe

)
C−1 =

h3E

12(1− ν2)
C−tkeC

with:

β =




0 0 0 2 0 0 6x 2y 0 0 6x 0
0 0 0 0 0 2 0 0 2x 6y 0 6xy
0 0 0 0 2 0 0 4x 4y 0 6x2 6y2



 (5.19)

and

ke =




0

0 0

0 0 0

0 0 0 ke44

0 0 0 0 ke55

0 0 0 ke64 0 ke66 symmetric

0 0 0 0 0 0 ke77

0 0 0 0 0 0 0 ke88

0 0 0 0 0 0 ke97 0 ke99

0 0 0 0 0 0 0 ke10 8 0 ke10 10

0 0 0 0 ke11 5 0 0 0 0 0 ke11 11

0 0 0 0 ke12 5 0 0 0 0 0 ke12 11 ke12 12




(5.20)

with

ke44 = 16ab ke55 = 8ab(1− ν) ke64 = 16νab

ke66 = 16ab ke77 = 48a3b ke88 =
16ab ((2− 2ν) a2 + b2)

3

ke97 = 16νa3b ke99 =
16ab(a2 + 2(1− ν)b2)

3
ke10 8 = 16νab2

ke10 10 = 48ab3 ke11 5 = 8 (1− ν) a3b ke11 11 = 4a3b(
9(1− ν)a2

5
+ 4b2)

ke12 5 = 8 (1− ν) ab3 ke12 11 = 8(ν + 1)a3b3 ke12 12 =
8 ab3 (10a2 + 9(1− ν)b2)

5

The kinetic energy is:

Tp =
1

2
ḋ
t
∫

ρhC−tαtαC dAe ḋ =
1

2
ḋ
t
Meḋ

with d the vector of displacements at each node and Me the mass matrix of the element.

Me = C−t

∫
ρhαtα dAeC = ρhC−tmeC (5.21)
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with

me = 4ab




1 0 0 a2

3
0 b2

3
0 0 0 0 0 0

0 a2

3
0 0 0 0 a4

5
0 a2b2

9
0 0 0

0 0 b2

3
0 0 0 0 a2b2

9
0 b4

5
0 0

a2

3
0 0 a4

5
0 a2b2

9
0 0 0 0 0 0

0 0 0 0 a2b2

9
0 0 0 0 0 a4b2

15
a2b4

15

b2

3
0 0 a2b2

9
0 b4

5
0 0 0 0 0 0

0 a4

5
0 0 0 0 a6

7
0 a4b2

15
0 0 0

0 0 a2b2

9
0 0 0 0 a4b2

15
0 a2b4

15
0 0

0 a2b2

9
0 0 0 0 a4b2

15
0 a2b4

15
0 0 0

0 0 b4

5
0 0 0 0 a2b4

15
0 b6

7
0 0

0 0 0 0 a4b2

15
0 0 0 0 0 a6b2

21
a4b4

25

0 0 0 0 a2b4

15
0 0 0 0 0 a4b4

25
a2b6

21




Now, the KL expansion of parameters appearing in deterministic mass and stiffness matri-

ces expressions allows the calculation of matrices used for the calculation of the dispersion

parameter.

5.3 Derivation of stiffness and mass matrices

As explained, assumptions are introduced (like Kirchhoff hypothesis) in order to convert

the equations of three-dimensional elasticity into a theoretical (but approximate) model of

plate behavior in which deformation throughout the plate is expressed solely in terms of the

middle surface deflection w. Classical plate behavior is characterized by the variable w: the

governing differential equations of equilibrium, when written in terms of displacements, are

now of fourth order. If the pseudo-strains are

χp = −
{
∂2w/∂x2 ∂2w/∂y2 2∂2ω/∂x∂y

}
(5.22)

the strain energy is given by:

Up =
1

2

∫∫
χt

pEpχp dx dy =
1

2
dtKed (5.23)

with

Ke =

∫

Ae

Bt
pEpBpdAe = (C−1)t

(∫

Ae

βt
pEpβpdAe

)
C−1 = C−t ke C

−1 (5.24)

and d the vector of displacements at each node, Ke the stiffness matrix and D given by

(5.18). The kinetic energy is given by:

Tp =
1

2
ḋ
t
∫

ρhC−tαtαC dAe ḋ =
1

2
ḋ
t
Meḋ (5.25)
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Me = C−t

∫
ρhαtα dAeC = C−tmeC (5.26)

with d the vector of displacements at each node and Me the mass matrix of the element.

Variables D, appearing in the expression of Ep, and m = ρh are going to be expanded

with a KL expansion, assuming a correlation function

C(x1, x2; y1, y2) = e−|x1−x2|c1−|y1−y2|c2 (5.27)

Following the Kl expansion in subsection 1.1.4, we consider n1 number of terms in the x-

direction and n2 number if terms in the y- direction. Combining we have

D = D0 +

n1/2∑

i=1

n2/2∑

j=1

(ξijλijfij + ξi∗jλi∗jfi∗j + ξij∗λij∗fij∗ + ξi∗j∗λi∗j∗fi∗j∗) (5.28)

m = m0 +

n/12∑

i=1

n2/2∑

j=1

(ξijλijfij + ξi∗jλi∗jfi∗j + ξij∗λij∗fij∗ + ξi∗j∗λi∗j∗fi∗j∗) (5.29)

with

λij =
4c1c2

(ω2
ix + c1)(ω2

jy + c2)
(5.30)

fij =
cos(wix)√
a+ sin(2ωia)

2ωi

cos(wjy)√
b+

sin(2ωjb)

2ωj

(5.31)

λi∗j =
4c1c2

(ω∗ 2
ix + c1)(ω2

jy + c2)
(5.32)

fi∗j =
sin(w∗

i x)√
a−

sin(2ω∗

i a)

2ω∗

i

cos(wjy)√
b+

sin(2ωjb)

2ωj

(5.33)

λij∗ =
4c1c2

(ω2
ix + c1)(ω

∗ 2
jy + c2)

(5.34)

fij∗ =
cos(wix)√
a+ sin(2ωia)

2ωi

sin(w∗
jy)√

b−
sin(2ω∗

j b)

2ω∗

j

(5.35)

λi∗j∗ =
4c1c2

(ω∗ 2
ix + c1)(ω∗ 2

jy + c2)
(5.36)

fi∗j∗ =
sin(w∗

i x)√
a−

sin(2ω∗

i a)

2ω∗

i

sin(w∗
jy)√

b−
sin(2ω∗

j b)

2ω∗

j

(5.37)

For all those equations, coordinates x and y are given with respect to some global axes

placed in a corner of the plate. Those coordinates do not coincide with the coordinates of

each element of the FEM x and y, their relation with a given element coordinates is

x = xeo + x and y = yeo + y (5.38)
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Where xeo and yeo are the global coordinates of the element origin of coordinates (situated at

the center of the element). Those values, integrated to form the stiffness and mass matrices

of the system, will give

ke = ke0+

n1/2∑

i=1

n2/2∑

j=1

(ξijλijk
ij
e + ξi∗jλi∗jk

i∗j
e + ξij∗λij∗k

ij∗

e + ξi∗j∗λi∗j∗k
i∗j∗

e ) (5.39)

me = me0+

n1/2∑

i=1

n2/2∑

j=1

(ξijλijm
ij
e + ξi∗jλi∗jm

i∗j
e + ξij∗λij∗m

ij∗

e + ξi∗j∗λi∗j∗m
i∗j∗

e ) (5.40)

with ke0 and me0 being the mean values of ke and me, that is, those matrices as they were

obtained in a deterministic system. Matrices kij
e ,k

i∗j
e ,kij∗

e ,ki∗j∗

e have a structure like k[ ]
e and

mij
e ,m

i∗j
e ,mij∗

e ,mi∗j∗

e like m
[ ]
e . Each term of each matrix is an integral of the product of the

what was integrated for the deterministic case by the corresponding eigenfunction f :

k[ ]
e =




0

0 0

0 0 0

0 0 0 ke44

0 0 0 0 ke55

0 0 0 ke64 0 ke66 symmetric

0 0 0 ke74 0 ke76 ke77

0 0 0 ke84 ke85 ke86 ke87 ke88

0 0 0 ke94 ke95 ke96 ke97 ke98 ke99

0 0 0 ke10 4 0 ke10 6 ke10 7 ke10 8 ke10 9 ke10 10

0 0 0 ke11 4 ke11 5 ke11 6 ke11 7 ke11 8 ke11 9 ke11 10 ke11 11

0 0 0 ke12 4 ke12 5 ke12 6 ke12 7 ke12 8 ke12 9 ke12 10 ke12 11 ke12 12




Matrix m
[ ]
e is fully populated and symmetric, each of its element is denoted by meij with

i, j = 1, . . . , 12.

All those integrals Ieij are the result of the product of a function of x by a function of

y (Ieij = f(x) g(y)). Those two functions f(x) and g(y) are a linear combinations of other

integrals In with same shape for both x and y, so

f(x) =
∑

n

κxn
In(z = x) and g(y) =

∑

n

κynIn(z = y) (5.41)

Where κ[ ] are constants obtained from the eigenvectors, eigenfunctions and shape functions

and In(z) is such that

In(z) =

∫
zm cos(w z + a) dz (5.42)
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or

In(z) =

∫
zm sin(w z + a) dz with m = 1, ..., 6 (5.43)

The constant w is wi, w
∗
i , wj or w

∗
j and a is a constant equal to the product a = wzeo (zeo can

be xeo for z = x or yeo for z = y). A more detailed description on the derivation of the terms

of mass and stiffness matrices are given in Appendix A.

5.4 Numerical illustrations

The example model’s boundary conditions are the ones of a clamped on one edge plate: zero

vertical displacement and rotation along both edges at positions that verify x = 0, that is, one

of the narrow edges of the plate. Heuristically, it is considered that this boundary condition

is the one that will more likely cause a bigger variance in the response vector than the one

obtained with other typical boundary conditions like displacement equal to zero everywhere

on the contour (boundary condition where an analytical solution is available). Material

properties are taken as ρ = 7860 kg/m3, E = 200GPa and ν = 0.3, values corresponding to

steel. Geometrical variables are: length and width of the plate L = 0.998m, W = 0.59m

and thickness t = 3.0mm. The variance of the parameters considered as random is 10% the

value of the parameter: σβ = 0.1 β. The parameters considered are β = D = Et3/(12(1−ν2))

for stiffness matrix and β = ρt for mass matrix. The system response is calculated using

equation (1.62): equation for a viscously damped proportional model where damping factor

is ζj = 0.02. The structure has its length divided into 25 elements (x direction) and its

width divided into 15 elements: so, the model has 375 elements. No analytical solution

is available for these boundary conditions, so, it is not possible to compare the natural

frequencies obtained from the numerical calculations with an analytical expression as it was

done for rod and beam.

The maximum frequency for which the structure is going to be tested is 4.0KHz. Mea-

sure of the response vector is given for the forcing point, situated at the 180-th node, that

is, coordinates x = 4 and y = 6, and at a sensor situated at the 307-th node (coordinates

x = 7 and y = 11).

The same four different normalized correlation lengths as the ones used in the rod and

beam cases are selected to research the effect of this value on the response statistics. We

recall that the non-normalized correlation lengths are 0.1 d, 0.2 d, 0.5 d and d, where d is

the plate dimension considered (width or length) As it has been said in the description of

KL expansion for the plate case, each direction can have a different associated correlation

length. Here the normalized correlation length linked to each direction, is, for each Monte

Carlo Simulation: 0.1, 0.2, 0.5 and 1. The uncorrelated random variables case is also studied.

The number of terms in each KL expansion is chosen such that the ratio between the square

roots of the first term and last term eigenvalues is less than 0.05, verifying also that the KL

expansion in both directions has the same number of terms. Now, each eigenvalue is going to
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be the product of two eigenvalues, each one coming from one different 1D KL expansion. So,

the last eigenvalue is the product of the two last eigenvalues of each 1D KL expansion, and

so, the first eigenvalue is the product of the two first eigenvalues of each 1D KL expansion. In

other words, The terms of each 1D KL expansion is given in Table 5.1 When simulating the

Correlation length/d 0.1 0.2 0.5 1
Terms of KL expansion 16 9 6 6

Table 5.1: Number of terms used in KL expansion for each normalized correlation length

system matrices, Wishart matrices are fitted following criteria 3 in section 2.3. The number

of samples for Monte Carlo simulations are 1000 both for the FE model and Random Matrix

direct Monte Carlo simulation. Each sample of the direct Monte Carlo simulation of FEM

is done as a deterministic case where the variables are correlated following the correlation

function already described in KL expansion.

In Figure 5.1 and Figure 5.2 we show the mean of the dynamic response at two points

on the bar. From these figures it is observed that the mean of the absolute value of the

response does not coincide with the response of the deterministic system with mean values

of stochastic parameters. Also, the larger is the correlation length, the more different are

the mean responses from the deterministic response. This observation can be done for both

sensors where the system response is collected. The larger the correlation length is, the more

”damped” are the mean of the responses at high natural frequencies.

In Figure 5.3 and Figure 5.4 we show the standard deviation of the dynamic response

at two points on the bar. It is noticed that the impact of correlation of variables in the

system response variance for direct Monte Carlo simulations of FEM is not as big as the one

observed for rod and beam models.
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Figure 5.1: Absolute value of the FRF for the mean of the Monte Carlo simulations done
directly with FEM for the excitation point (Point 1) .
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Figure 5.2: Absolute value of the FRF for the mean of the Monte Carlo simulations done
directly with FEM for the excitation point (Point 1) and the sensor (Point 2).
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Figure 5.3: Absolute value of the FRF for the standard deviation of the Monte Carlo simu-
lations done directly with FEM for the excitation point (Point 1).
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Figure 5.4: Absolute value of the FRF for the standard deviation of the Monte Carlo simu-
lations done directly with FEM for the sensor (Point 2).



Appendix A

The elements of the stochastic mass
and stiffness matrices of a plate

In Chapter 4 was explained how to derive the stiffness and mass matrices, for a plate, using

Karhunen-Loève expansion. Each of the elements of those matrices for each eigenfunction

f , are:

ke44 =

∫ a

−a

∫ b

−b

4 f dx dy ke55 =

∫ a

−a

∫ b

−b

(2− 2ν) f dx dy

ke64 =

∫ a

−a

∫ b

−b

4ν f dx dy ke66 =

∫ a

−a

∫ b

−b

4 f dx dy

ke74 =

∫ a

−a

∫ b

−b

12x f dx dy ke76 =

∫ a

−a

∫ b

−b

12xν f dx dy

ke77 =

∫ a

−a

∫ b

−b

36x2 f dx dy ke84 =

∫ a

−a

∫ b

−b

4y f dx dy

ke85 =

∫ a

−a

∫ b

−b

4x(1− ν) f dx dy ke86 =

∫ a

−a

∫ b

−b

4yν f dx dy

ke87 =

∫ a

−a

∫ b

−b

12xy f dx dy ke88 =

∫ a

−a

∫ b

−b

(4y2 + 8x2(1− ν)) f dx dy

ke94 =

∫ a

−a

∫ b

−b

4xν f dx dy ke95 =

∫ a

−a

∫ b

−b

4y(1− ν) f dx dy

ke96 =

∫ a

−a

∫ b

−b

4x f dx dy ke97 =

∫ a

−a

∫ b

−b

12x2ν f dx dy

ke98 =

∫ a

−a

∫ b

−b

4xy(2− ν) f dx dy ke99 =

∫ a

−a

∫ b

−b

4(x2 + 2y2(1− ν) f dx dy

ke10 4 =

∫ a

−a

∫ b

−b

12yν f dx dy ke10 6 =

∫ a

−a

∫ b

−b

12y f dx dy

ke10 7 =

∫ a

−a

∫ b

−b

36xyν f dx dy ke10 8 =

∫ a

−a

∫ b

−b

12y2ν f dx dy

ke10 9 =

∫ a

−a

∫ b

−b

12xy f dx dy ke10 10 =

∫ a

−a

∫ b

−b

36y2 f dx dy
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ke11 4 =

∫ a

−a

∫ b

−b

12xy f dx dy ke11 5 =

∫ a

−a

∫ b

−b

6x2(1− ν) f dx dy

ke11 6 =

∫ a

−a

∫ b

−b

12xyν f dx dy ke11 7 =

∫ a

−a

∫ b

−b

36x2y f dx dy

ke11 8 =

∫ a

−a

∫ b

−b

12x(y2 + x2(1− ν)) f dx dy ke11 9 =

∫ a

−a

∫ b

−b

12x2y f dx dy f dx dy

ke11 10 =

∫ a

−a

∫ b

−b

36xy2ν f dx dy ke11 11 =

∫ a

−a

∫ b

−b

18x2(2y2 + x2(1− ν)) f dx dy

ke12 4 =

∫ a

−a

∫ b

−b

12xyν f dx dy ke12 5 =

∫ a

−a

∫ b

−b

6y2(1− ν) f dx dy

ke12 6 =

∫ a

−a

∫ b

−b

12xy f dx dy ke12 7 =

∫ a

−a

∫ b

−b

36x2yν f dx dy

ke12 8 =

∫ a

−a

∫ b

−b

12xy2 f dx dy ke12 9 =

∫ a

−a

∫ b

−b

12y(x2 + y2(1− ν)) f dx dy

ke12 10 =

∫ a

−a

∫ b

−b

36xy2 f dx dy ke12 11 =

∫ a

−a

∫ b

−b

18x2y2(1 + ν) f dx dy

ke12 12 =

∫ a

−a

∫ b

−b

18y2(2x2 + y2(1− ν)) f dx dy

me11 =

∫ a

−a

∫ b

−b

f dx dy me21 =

∫ a

−a

∫ b

−b

x f dx dy me22 =

∫ a

−a

∫ b

−b

x2 f dx dy

me31 =

∫ a

−a

∫ b

−b

y f dx dy me32 =

∫ a

−a

∫ b

−b

xy f dx dy me33 =

∫ a

−a

∫ b

−b

y2 f dx dy

me41 =

∫ a

−a

∫ b

−b

x2 f dx dy me42 =

∫ a

−a

∫ b

−b

x3 f dx dy me43 =

∫ a

−a

∫ b

−b

x2y f dx dy

me44 =

∫ a

−a

∫ b

−b

x4 f dx dy me51 =

∫ a

−a

∫ b

−b

xyf dx dy me52 =

∫ a

−a

∫ b

−b

x2yf dx dy

me53 =

∫ a

−a

∫ b

−b

xy2f dx dy me54 =

∫ a

−a

∫ b

−b

x3yf dx dy me55 =

∫ a

−a

∫ b

−b

x2y2f dx dy

me61 =

∫ a

−a

∫ b

−b

y2f dx dy me62 =

∫ a

−a

∫ b

−b

xy2f dx dy me63 =

∫ a

−a

∫ b

−b

y3f dx dy

me64 =

∫ a

−a

∫ b

−b

x2y2f dx dy me65 =

∫ a

−a

∫ b

−b

xy3f dx dy me66 =

∫ a

−a

∫ b

−b

y4f dx dy

me71 =

∫ a

−a

∫ b

−b

x3f dx dy me72 =

∫ a

−a

∫ b

−b

x4f dx dy me73 =

∫ a

−a

∫ b

−b

x3yf dx dy

me74 =

∫ a

−a

∫ b

−b

x5f dx dy me75 =

∫ a

−a

∫ b

−b

x4yf dx dy me76 =

∫ a

−a

∫ b

−b

x3y2f dx dy

me77 =

∫ a

−a

∫ b

−b

x6f dx dy me81 =

∫ a

−a

∫ b

−b

x2yf dx dy me82 =

∫ a

−a

∫ b

−b

x3yf dx dy
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me83 =

∫ a

−a

∫ b

−b

x2y2f dx dy me84 =

∫ a

−a

∫ b

−b

x4yf dx dy me85 =

∫ a

−a

∫ b

−b

x3y2f dx dy

me86 =

∫ a

−a

∫ b

−b

x2y3f dx dy me87 =

∫ a

−a

∫ b

−b

x5yf dx dy me88 =

∫ a

−a

∫ b

−b

x4y2f dx dy

me91 =

∫ a

−a

∫ b

−b

xy2f dx dy me92 =

∫ a

−a

∫ b

−b

x2y2f dx dy me93 =

∫ a

−a

∫ b

−b

xy3f dx dy

me94 =

∫ a

−a

∫ b

−b

x3y2f dx dy me95 =

∫ a

−a

∫ b

−b

x2y3f dx dy me96 =

∫ a

−a

∫ b

−b

y4xf dx dy

me97 =

∫ a

−a

∫ b

−b

x4y2f dx dy me98 =

∫ a

−a

∫ b

−b

x3y3f dx dy me99 =

∫ a

−a

∫ b

−b

x2y4f dx dy

me10 1 =

∫ a

−a

∫ b

−b

y3f dx dy me10 2 =

∫ a

−a

∫ b

−b

xy3f dx dy me10 3 =

∫ a

−a

∫ b

−b

y4f dx dy

me10 4 =

∫ a

−a

∫ b

−b

x2y3f dx dy me10 5 =

∫ a

−a

∫ b

−b

y4xf dx dy me10 6 =

∫ a

−a

∫ b

−b

y5f dx dy

me10 7 =

∫ a

−a

∫ b

−b

x3y3f dx dy me10 8 =

∫ a

−a

∫ b

−b

x2y4f dx dy me10 9 =

∫ a

−a

∫ b

−b

y5xf dx dy

me10 10 =

∫ a

−a

∫ b

−b

y6f dx dy me11 1 =

∫ a

−a

∫ b

−b

x3yf dx dy me11 2 =

∫ a

−a

∫ b

−b

x4yf dx dy

me11 3 =

∫ a

−a

∫ b

−b

x3y2f dx dy me11 4 =

∫ a

−a

∫ b

−b

x5yf dx dy me11 5 =

∫ a

−a

∫ b

−b

x4y2f dx dy

me11 6 =

∫ a

−a

∫ b

−b

x3y3f dx dy me11 7 =

∫ a

−a

∫ b

−b

x6yf dx dy me11 8 =

∫ a

−a

∫ b

−b

x5y2f dx dy

me11 9 =

∫ a

−a

∫ b

−b

x4y3f dx dy me11 10 =

∫ a

−a

∫ b

−b

x3y4f dx dy me11 11 =

∫ a

−a

∫ b

−b

x6y2f dx dy

me12 1 =

∫ a

−a

∫ b

−b

xy3f dx dy me12 2 =

∫ a

−a

∫ b

−b

x2y3f dx dy me12 3 =

∫ a

−a

∫ b

−b

y4xf dx dy

me12 4 =

∫ a

−a

∫ b

−b

x3y3f dx dy me12 5 =

∫ a

−a

∫ b

−b

x2y4f dx dy me12 6 =

∫ a

−a

∫ b

−b

y5xf dx dy

me12 7 =

∫ a

−a

∫ b

−b

x4y3f dx dy me12 8 =

∫ a

−a

∫ b

−b

x3y4f dx dy me12 9 =

∫ a

−a

∫ b

−b

x2y5f dx dy

me12 10 =

∫ a

−a

∫ b

−b

y6xf dx dy me12 11 =

∫ a

−a

∫ b

−b

x4y4f dx dy me12 12 =

∫ a

−a

∫ b

−b

x2y6f dx dy
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Essonne, France.

Benaroya, H. (1992), “Random eigenvalues, algebraic methods and structural dynamic mod-

els”, Applied Mathematics and Computation, 52, pp. 37–66.

Benaroya, H. and Rehak, M. (1988), “Finite element methods in probabilistic structural

analysis: a selective review”, Applied Mechanics Reviews, ASME , 41 (5), pp. 201–213.

Benjamin, J. R. and Cornell, C. A. (1970), Probability, statistics and decision for civil engi-

neers , McGraw-Hill, New York.

Bertelsen, P., Ellegaard, C., and Hugues, E. (2000), “Distribution of eigenfrequencies for

vibrating plates”, European Physical Journal B , 15, p. 8796.

63



Bibliography 64

Bliven, D. O. and Soong, T. T. (1969), “On frequencies of elastic beams with random

imperfections”, Journal of Franklin Institute, 287, pp. 297–304.

Boyce, W. E. (1962), “Random vibrations of elastic strings and bars”, Proceedings of the

4th US national congress of applied mechanics, Berkeley CA, (pp. 77–85).

Boyce, W. E. (1966), “Stochastic nonhomogeneous strum-liouville problem”, Journal of

Franklin Institute, 282, pp. 205–215.

Boyce, W. E. (1968), Random Eigenvalue Problems , Probabilistic methods in applied math-

ematics, Academic Press, New York, a. T. Bharucha-Reid (editor).

Boyce, W. E. and Goodwin, B. E. (1964), “Random transverse vibration of elastic beams”,

Society for Industrial and Applied Mathematics Journal , 12, pp. 613–629.

Bucher, C. G. and Brenner, C. E. (1992), “Stochastic response of uncertain systems”, Archive

of Applied Mechanics , 62, pp. 507–516.

Collins, J. D. and Thomson, W. T. (1969), “The eigenvalue problem for structural systems

with statistical properties”, AIAA Journal , 7 (4), pp. 642–648.

Dawe, D. (1984), Matrix and Finite Element Displacement Analysis of Structures , Oxford

University Press, Oxford.

Deodatis, G. (1990), “Bounds on response variability of stochastic finite element systems”,

Journal of Engineering Mechanics, ASCE , 116 (3), pp. 565–585.

Deodatis, G. (1991), “Weighted integral method i: stochastic stiffness”, Journal of Engi-

neering Mechanics, ASCE , 117 (8), pp. 1851–1864.

Der-Kiureghian, A. and Ke, J. B. (1987), “The stochastic finite element in structural relia-

bility”, Journal of Engineering Mechanics, ASCE , 3 (2), pp. 83–91.

Ditlevsen, O. and Madsen, H. O. (1996), Structural Reliability Methods , John Wiley and

Sons Ltd, Chichester, West Sussex, England.

Ellegaard, C., Schaat, K., and Bertelsen, P. (2001), “Acoustic chaos”, Physica Scripta, 90,

p. 223230.

Fahy, F. J. (1994), “Statistical energy analysis : a critical overview”, Philosophical Transac-

tions of Royal Society of London, A346, pp. 431–447.

Fox, R. L. and Kapoor, M. P. (1968), “Rates of change of eigenvectors and eigenvalues”,

AIAA Journal , 6, pp. 2426–2429.



Bibliography 65

Ganesan, R. (1996), “Probabilistic analysis of non-self-adjoint mechanical systems with un-

certain parameters”, International Journal of Solids and Structures , 33 (5), pp. 675–688.

Géradin, M. and Rixen, D. (1997), Mechanical Vibrations , John Wiley & Sons, New York,

NY, second edition, translation of: Théorie des Vibrations.
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