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This paper investigates the elastic wave propagation, mode veering, and in‐plane vibration of pre‐stressed
hexagonal lattice embedded in an elastic medium and composed of axially loaded Timoshenko beams with
attached point masses. The frequency band structure of the lattice system is obtained by solving the corre-
sponding eigenvalue problem based on the Bloch theorem and the finite element method. The parametric study
is performed by investigating the effects of the pre‐stress magnitude, stiffness of elastic medium, and attached
point masses on the band structure of a lattice unit cell. For simulating the free vibration behavior of the pro-
posed lattices with different topologies, the Hurty‐Craig‐Bampton method is introduced to reduce the number
of degrees of freedom. Based on the reduced finite element model, the natural frequencies are determined for
various boundary conditions. The additional interface reduction technique, called system‐level reduction, has
been observed to achieve accurate results compared to that of the full model. Numerical experiments demon-
strated a significant influence of the additional masses, pre‐stress, and stiffness of elastic medium on Bloch
waves and eigenvalues of the proposed lattice systems. The effects of different parameters on the emergence
of mode veering phenomenon and band gaps are investigated in detail.
1. Introduction

A lattice material is an artificially constructed enlarged crystal with
carefully tuned properties to attain desired functionality for engineer-
ing applications [1]. The concept of lattice materials is naturally
inspired by concepts from crystal physics where instead of atoms, lat-
tices are formed by a spatially periodic network of interconnected
beams, rods, plates or other slender structures. Their advantage lies
in the fact that their unit‐cell architecture can be tailored to achieve
unique mechanical, elastodynamic or acoustic properties to satisfy
specific application demands that may not be achievable with conven-
tional materials. Particularly, periodic [2] and quasi‐periodic [3]
hexagonal lattice structures may exhibit interesting wave propagation
properties in different directions due to its anisotropy, even for shorter
wavelengths [4]. Traditionally, lattice structures are classified as two‐
dimensional (2D) and three‐dimensional (3D) lattices. The 2D lattices
are formed by filling the plane from a regular polygon while 3D spatial
lattices are formed by occupying the space from polyhedra. In this
study, only 2D lattice structures are considered and analysed by adopt-
ing two different geometries of unit cells. The interesting wave phe-
nomena that appear in such organized structures can lead to the
advanced design of artificial materials for wave propagation control
using their specific filtering, direction preference, localization or/and
polarization properties. It was demonstrated in [2] that for linear
waves in two‐dimensional lattices, the dispersion relation depends
on the orientation of a lattice vector with respect to the wavenumbers.
The methods and analytical techniques used in the analysis of lattice
structures apply to periodic materials in general, including phononic
crystals and elastic metamaterials.

Some earlier studies demonstrated that in mechanical lattice struc-
tures there are intervals of frequencies for which there is no propaga-
tion of elastic waves [5,6]. In some of them two‐dimensional periodic
structures were considered with phononic band‐gap phenomena stud-
ied based on the assumption of an infinite linear system and Bloch con-
dition in such a manner that the analysis is restricted to a single unit‐
cell. Later in [7], plane wave propagation in hexagonal and re‐entrant
lattices, modelled as an assembly of rigidly connected beam elements,
was investigated using the Bloch theorem and finite element method.
To study the directional behaviour of hexagonal lattices for varying
construction angles, two‐dimensional dispersion relations were
obtained and analysed. The authors devoted special attention to the
determination of phase and group wave velocities. Similarly, a novel
design of a honeycomb lattice geometry based on a combination of
conventional and auxetic cores is proposed in [8] to improve the band
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structure of such periodic structures. The computational analyses of
bandgap properties of the proposed systems are performed by using
a spectral finite element approach combined with Bloch wave bound-
ary conditions and the use of a Wittrick‐Williams method [9]. In con-
trast to Bloch waves analysis of general two‐dimensional lattices using
approximate methods such as Ritz, finite element or plane wave
expansion, an exact wave‐based approach is proposed in [10]. The
validity of the method is demonstrated on the simple example of an
aperiodic bi‐material beam, and for more complex examples of the
square, diamond, and hexagonal honeycomb lattices. Moreover, in
[11] the authors have questioned the applicability of Bloch analysis
for band structure investigation of discrete systems with asymmetry.
The conclusions from solid‐state physics claim that extremum of fre-
quencies exclusively occurs on the boundary of the irreducible Bril-
louin zone. However, using the new transformation technique and
asymmetrical counter‐example of honeycomb lattice, the authors have
shown that this is not strictly valid for a general wave propagation
problem.

Investigating the vibration behaviour of periodic and quasi‐
periodic lattice beam structures is important for their complete
dynamic analysis and potential design of vibration insulators
[12–14]. One of the popular methods for analyzing dynamic systems
is component mode synthesis (CMS), which is essentially a physics‐
based sub‐structuring and model reduction technique. In general, it
operates by modelling the sub‐components individually and their
reduced dynamic models are assembled to form a global system. Thus,
it captures the global dynamic behaviour within a significantly
reduced computational effort. This is discussed later in detail (Sec-
tion 3). The literature related to CMS methods is well developed and
they have been utilized to solve structural dynamic problems over
the past few decades. Extensive reviews of CMS methods can be found
in [15,16]. However, their usefulness for analyzing periodic structures
has only been explored recently. Few applications of CMS in analyzing
periodic structures are as follows: Dynamics of two gradient honey-
comb structure was investigated in [17] by considering the full‐scale
finite element model with CMS sub‐structuring to determine the fre-
quency response functions (FRF). The wave finite element (WFE)
and Craig‐Bampton method were used for assessing the harmonic
response of coupled mechanical systems that involve one‐
dimensional periodic structures and coupling elastic junctions in
[18]. A numerical approach was proposed in [19] to compute the
dynamic response of periodic structures with cyclic symmetry, and
assemblies made up of periodic structures. An efficient topology opti-
mization method for periodic structures with static condensation was
developed in [20] such that the macrostructure is identically parti-
tioned into several scale‐related sub‐structures represented by the zero
contours of a level set function.

The vibration transmission and isolation properties of the tri‐chiral
lattice structure was studied in [21] for the uniform and gradient types
of geometry parameters. The finite element method in conjunction
with the Bloch theorem was employed to analyse the band structure
and identify the corresponding stop and passbands. Moreover, by con-
sidering the full finite element model of the lattice structure, the har-
monic response is estimated and significant attenuation in the
vibration transmission is found with the width corresponding to the
frequency range of bandgap region. In [22], the authors observed an
important problem of the in‐plane impact and dynamic response of
the gradient hexagonal lattice by studying the deformation modes
and energy absorption capacity in details. By considering the strain
gradient elasticity theory and homogenization technique, the band
buckling and vibration of a two‐dimensional triangular lattice and a
sandwich structure based on the Euler–Bernoulli and Timoshenko
beam theories were studied in [23]. It is found that the bending rigid-
ity, critical buckling load and natural frequency are strongly affected
by the lattice microstructure properties and these dependencies are
captured by the generalized simple beam model. On the other hand,
2

in [24] the authors have analysed the base excited beam‐like periodic
lattice structure with internal resonators, where the model exhibits
high stiffness and damping. It was demonstrated that for the specially
designed geometry based on chiral topology, the system can be in res-
onance at selected frequencies with vibration attenuation capabilities
obtained over desired frequency ranges.

Investigations in the previously mentioned studies mostly relied on
dynamic models and Bloch wave analysis of bandgap and directional
behaviour properties of cellular lattices. The other methodologies to
study the dynamic behaviour of periodic solids includes homogeniza-
tion techniques, which yield an equivalent continuum representation
with the information about the properties and geometry of the unit
cell. Among these techniques, there are several approaches but two
major directions applied in lattice structures include numerical multi-
scale methods [25] and asymptotic expansion methods [26,27].
Another class of lattice structures that excludes Bloch analysis belongs
to strongly nonlinear periodic lattices, where suitable methods for
nonlinear differential equations are used to calculate amplitude‐
dependent dispersion curves [28,29]. The hierarchical [30] and undu-
lated [31] structural lattices are also studied in the literature using
finite element method and Bloch theory [31]. However, the aforemen-
tioned analyses are out of the scope of this research and are not
detailed here.

Pre‐stress effect introduced into the lattice beam elements can
boost the bandgap properties by controlling the dispersion character-
istics through the alternation of the structural effective stiffness. Such
pre‐stressed beams assembled in the hexagonal lattice are investigated
in [32], where finite element method and Bloch’s theorem are
employed to generate dispersion curves. This effect is also examined
on dispersion diagrams for the axial and flexural waves in quasi‐
periodic infinite beam structures [33]. It was noticed that a tensile
axial pre‐stress causes a length reduction of passbands by leaving the
length of stop‐band intervals almost unaltered. More general analysis
of periodic and quasi‐periodic structures can be found in [34–36].

The literature on periodic Timoshenko beams based lattice struc-
tures without [9,37] and with pre‐stress [38,36,39] is sparse and as
per the author’s knowledge, there is no work addressing the problem
of lattice structures with pre‐stressed Timoshenko beams embedded
in elastic medium and with attached point masses. A few studies inves-
tigated the veering of dispersion branches in waveguides [40] and lat-
tice structures [4,7,41–43]. According to [44], mode localization
phenomenon has often been observed in periodic structures [45–47],
where small disturbances in the periodicity may lead to the confine-
ment of one or more vibration modes to some small regions. Mode
veering can also occur in non‐conservative mechanical systems with
dissimilar components [48,49]. Moreover, in [50], the authors studied
the emergence and disappearance of veering, cut‐off/cut‐on, and
branch overtaking phenomena in periodic structures with various
topologies representing microtubule‐like networks. They also investi-
gated the effect of damping and analysed both in‐plane and out‐of‐
plane motions as well as dependence between their modes. Very
recently, close mode approximation in near‐periodic structures was
investigated in [51]. Therefore, the analysis of mode veering phe-
nomenon is significant for practical applications since mode localisa-
tion can cause unexpectedly high levels of response in periodic
structures, as shown in the first experimental study [52]. In general,
this study shows that this phenomenon plays an important role in
the analysis of dispersion curves as demonstrated on the frequency
band structure diagrams, which are determined for the reduced model
of the lattice structures. Some studies [4] reported that the mode veer-
ing phenomenon comes from the weak modal coupling in the system
but such kind of analysis is not elaborated in this work.

Motivated by the lack of studies that address more complex lattice
systems, we have sought to study the dynamic and band structure prop-
erties of the hexagonal lattice systems embedded in the elastic medium
with attached point masses and beam elements subjected to pre‐load at
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the same time. The finite element method and Bloch theorem are uti-
lized to determine dispersion curves while finite element and reduction
technique are used for dynamic analysis. The suggested design results in
different band structure properties anddynamic behaviour of hexagonal
lattices that can be tuned only by changing the parameters such as the
valueof pointmasses, pre‐loadmagnitudeor stiffness of the surrounding
medium and without changing the topology of the lattice itself. This is
demonstrated through a comprehensive parametric study, where the
effects of different parameters on the appearance or disappearance of
higher/zero‐frequency band gaps and mode veering are discussed in
details. This paper is organized as follows: the mechanical model of a
hexagonal structure composed of interconnected Timoshenko beams
surrounded by an elastic medium and included pre‐stress effect and
pointmasses is presented in Section 2. The procedure for the Blochwave
solution and thefinite elementmethod to obtain the dispersion relations
is outlined. The methodology to generate the the model for dynamic
analysis of the proposed systemwithmodel reduction technique is given
in Section 3. The verification study and effect of lattice angle, point
masses and pre‐stress on dispersion characteristic of the system is dis-
cussed in Section 4. Finally, Section 5 summarizes the main contribu-
tions and results of this work.

2. Problem formulation

2.1. Mechanical model of a lattice structure

To analyse the free in‐plane wave propagation in a two‐
dimensional periodic structure, a hexagonal type of lattice embedded
in an elastic Winkler medium is considered as shown in Fig. 1(a).
The presented hexagonal structure is formed by a periodically dis-
tributed three‐pointed star‐like unit cells consisting of three rigidly
connected pre‐stressed beams with attached point masses Fig. 1(b).
The pre‐stress is realized through linear springs placed in the beam’s
axial direction, which possess compressive or tensile properties with
the value N0. The proposed elastic medium is modelled as a Winkler’s
medium and it is represented by the parallelly distributed springs with
stiffnesses in the axial ku and transverse kw directions of the beam.
Here, the Timoshenko beam model is adopted by taking into account
the shear effects and rotational inertia. The local beam coordinates
are adopted in such a way that the x‐coordinate is considered along
the length of the beam and the z‐coordinate is considered along the
thickness direction.
Fig. 1. Mechanical model of a hexagonal lattice composed of Timoshenko beam
dimensional hexagonal lattice, and b) three-pointed star shape of a unit cell.

3

Additional details of the geometrical model of a hexagonal periodic
structure unit cell, with its characteristic dimensions and vectors, are
given in Fig. 2(a). The internal angle of a unit cell is defined as θ.
Therefore, by changing the internal angle θ, a hexagonal lattice struc-
ture can be transformed into the re‐entrant one, where θ can be taken
as a negative value. The main geometrical characteristic of the unit cell
is the wall’s slenderness ratio defined as β ¼ d=L. In the literature, the
regular hexagonal and re‐entrant lattice structures are having internal
angles of θ ¼ 30� and θ ¼ �30�, respectively. As stated before, the
hexagonal lattice structures are based on periodically distributed unit
cells, where connection nodes are known as lattice points. The vectors
defining primitive unit cells and their connection with other unit cells
are called basis vectors ðe1; e2Þ, which also defines the direct lattice
space [7], as given in Fig. 2(a). Therefore, the problem of wave prop-
agation in periodic lattice structures can be reduced to a typical unit
cell problem by introducing the periodic boundary conditions accord-
ing to the Bloch theorem. For the unit cell of the hexagonal lattice
structure with positive internal angle θ the basis vectors ðe1; e2Þ are
defined in local Cartesian coordinates with unit vectors ði1; i2Þ as
e1 ¼ ðL cos θ; Lð1þ sin θÞÞT ; ð1Þ
e2 ¼ ð�L cos θ; Lð1þ sin θÞÞT :

As mentioned before and based on concepts from the solid‐state
physics, the lattice points with the corresponding base vectors
ðe1; e2Þ define the direct lattice space, which determines the periodic
structure. For such given direct lattice space, one can define the recip-
rocal lattice space based on the following relation

ei � e�j ¼ 2πδij; ð2Þ
where e�j represents the basis vector of the reciprocal lattice and δij

denotes Kronecker delta. For the proposed hexagonal lattice structure
and unit cell architecture, the reciprocal lattice vectors takes the follow-
ing form

e�1 ¼ 1
2L cos θ

;
1

2Lð1þ sin θÞ
� �T

; ð3Þ

e�2 ¼ � 1
2L cos θ

;
1

2Lð1þ sin θÞ
� �T

:

In the following sections, the applicability of the proposed concepts
will be demonstrated by introducing the Bloch theorem and related
periodic boundary conditions.
s with attached point masses and embedded in an elastic medium, a) two-



Fig. 2. The geometrical characteristics of a unit cell and the first Brioullin zone.
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2.2. Bloch’s theorem

By assuming the propagation of an elastic wave through an infinite
periodic lattice structure formed by tessellating the unit cell along the
basis vectors ðe1; e2Þ and connected through lattice points, this kind of
an infinite structure can be reduced by introducing the concept of
Bloch theorem and the primitive unit cell. In order to select the proper
unit cell, we are going to use the methodology developed for elastic
periodic structures [10,7], where position of the primitive unit cell
is determined by the vector s ¼ rþ ne1 þme2 placed in the plane of
a lattice structure. The set of numbers ðn;mÞ taking the integer values
defines the number of unit cells placed along the basis vectors ðe1; e2Þ.
Therefore, the vector s is going from the ð0; 0Þ unit cell until the unit
cell defined as ðn;mÞ. The vector r is related to the position of any
point inside the reference primitive unit cell defined as ð0;0Þ. Now,
according to the Bloch theorem, introducing the displacement vector
wðrÞ ¼ wreiωt�k�r at some arbitrary point inside the reference unit cell
corresponds to the wave that propagates at frequency ωðrad=sÞ. It
should be noted that wr is related to the wave amplitude and k is
the wave vector of plane wave. By considering the chosen unit cell
determined by the set of numbers ðn;mÞ, where n and m are the num-
bers of unit cells considered in the e1 and e2 directions, respectively,
the displacement vector of an arbitrary point inside the chosen unit
cell is defined as

wðsÞ ¼ wðrÞek�ðs�rÞ ¼ wðrÞek�ðne1þme2Þ; ð4Þ
where k � ðne1 þme2Þ ¼ nk1 þmk2.

According to the Bloch’s theorem [53], amplitude of a propagating
wave of a lattice structure without attenuation is independent of a unit
cell location within the periodic system. Therefore, elastic wave prop-
agation properties of a periodic system can be completely described by
a single representative unit cell with corresponding boundary condi-
tions. Therefore, application of Bloch’s theorem can save significant
computational efforts and it can be viewed as a kind of (physics‐
based) model reduction technique applicable to ideally periodic struc-
tures. According to Eq. (4), wavenumbers ki; ði ¼ 1;2Þ are complex
values given as ki ¼ ϕi þ iεi; ði ¼ 1;2Þ, where the real part ϕi is related
to the amplitude attenuation due to wave propagation from one unit
cell to another. The imaginary part εi is related to phase changes across
cells and it is known as the phase constant. When analysing the Bloch
waves, it is assumed that they are propagating without attenuation
since the real part ϕi is set to 0. Further, it will be shown how Bloch’s
theorem is used for setting the periodic boundary conditions in the
finite element (FE) model of a unit cell.

To analyse the elastic wave propagation without attenuation, val-
ues of the wave vector k are considered to be imaginary with its values
varied within the first Brillouin zone. The concept of Brillouin zone is
introduced by considering the reciprocal periodic lattice determined
by the vectors defined in Eq. (3), which restricts the value of the wave
vector k. According to [7,54], the free wave propagation can be
reduced to an eigenvalue problem with the frequency of wave propa-
4

gation determined by varying the parameters ðk1; k2Þ. The relation
between ω and ðk1; k2Þ is known as dispersion surface, where each
surface is related to a different mode of elastic wave propagation
through the periodic structure. To analyse the wave propagation in
hexagonal and re‐entrant lattice structures, the relation between fre-
quency and wave vectors will be determined by considering the
Timoshenko beam element and periodic boundary conditions intro-
duced through the Bloch’s theorem.

2.3. The equations of motion of an embedded Timoshenko beam

The partial differential equations of motion of the elastically
embedded and pre‐stressed Timoshenko beam with attached
point masses are derived by using the Hamilton’s principle. Based on
the displacement fields of Timoshenko beam and elastic constitutive
relation given in [55] the variations of kinetic ~δK and potential ~δU
energies are given as

δK¼
Z L

0
ρA _u~δ _uþρI _ψ~δ _ψþρA _w~δ _wþ ∑

M

p¼1
Mpδðx�apÞ _u~δ _uþ ∑

M

p¼1
Mpδðx�apÞ _w~δ _w

" #
dx;

ð5Þ

δU ¼
Z L

0
EA

@u
@x

~δ
@u
@x

þ EI
@ψ

@x
~δ
@ψ

@x
þ GAks ψ � @w

@x

� �
~δ ψ � @w

@x

� �
þ kww~δwþ kuu~δu

�

� N0
@w
@x

~δ
@w
@x

�
dx;

ð6Þ

where ~δ is the variation operator and δðx � apÞ is the Dirac delta func-
tion defining the position of masses on the beam.

Using Eq. (5) and Eq. (6) and Hamilton’s principle yieldsZ t2

t1

ð~δK � ~δUÞdt ¼ 0; ð7Þ

After partial integration process, the system of partial differential
equations for longitudinal and transverse vibrations is obtained as

ρAþ ∑
M

p¼1
Mpδðx � apÞ

" #
€u� EA

@2u
@x2 þ kuu ¼ pðx; tÞ ð8Þ

ρAþ ∑
M

p¼1
Mpδðx � apÞ

" #
€wþ GAks

@ψ

@ψ
� @2w

@x2

� �
þ kwwþ N0

@2w
@x2

¼ qðx; tÞ ð9Þ

EI
@2ψ

@x2 � GAks ψ � @w
@x

� �
� ρI€ψ ¼ 0 ð10Þ

where uðx; tÞ is the axial displacement, wðx; tÞ is the transverse displace-
ment and ψðx; tÞ is rotation of the cross section. Here, the symbol _ð�Þis
used to represent @ð�Þ=@t. Material characteristics of the proposed beam
model are defined by mass density ρ, modulus of elasticity E, shear
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modulus G ¼ E=ð2ð1þ νÞÞ and Poisson ratio ν. The width of a beam is
defined with h. The pre‐stress of a lattice structure is introduced
through axial springs connected to each beam in the lattice and it is
denoted by N0. The stiffness of Winkler’s type elastic medium is intro-
duced in x‐ and z‐directions and denoted by ku and kw, respectively. The
shear correction factor ks is adopted in the following form
ks ¼ 10ð1þ νÞ=ð12þ 11νÞ, [10]. In this study, the influence of external
axial pðx; tÞ and transverse qðx; tÞ excitation forces is neglected.

2.4. The finite element model of the unit cell

One of the most applied structural analysis techniques is the finite
element method that is often used to obtain the stiffness matrix of the
beam. Here, the FE method is introduced to discretize the motion
equations of a unit cell with Bloch boundary conditions. The unit cell
is modelled as an assembly of rigidly connected Timoshenko beams in
the form a three‐pointed star, where each limb is represented by a sin-
gle beam element with attached point masses and surrounded by an
elastic medium. Adopted slender ratio starts from β ¼ 1=15 represent-
ing a thick beam model for which effects of shear forces and rotary
inertia should be taken into account. Typical finite element models
for Timoshenko beam theory are given in [55,56], where approxima-
tions of displacements uðx; tÞ and wðx; tÞ and rotation ψðx; tÞ are given
in the following form

uðx; tÞ ¼ ∑
6

j¼1
ΓjðxÞqjðtÞ; wðx; tÞ ¼ ∑

6

j¼1
ΛjðxÞqjðtÞ;

ψðx; tÞ ¼ ∑
6

j¼1
ΘjðxÞqjðtÞ;

ð11Þ

where ΓjðxÞ;ΛjðxÞ and ΘjðxÞ; ðj ¼ 1;2; . . . ;6Þ are the shape functions for
six nodal degrees of freedom of Timoshenko beam element given as
qðtÞ ¼ ½u1;w1;ψ1; u2;w2;ψ2�T . The mode shape functions are adopted
from [56] and are given in Appendix A. By considering the equations
of motion of Timoshenko beam Eqs. (8)–(10), energy variation Eqs.
(10)–(7) and approximation of displacements and rotation Eq. (11),
the FE model is defined as

Me€qe þKeqe ¼ fe; ð12Þ
where Me and Ke are mass and stiffness matrices of the beam element
while qe and fe are the corresponding element displacement and force
vector, respectively.

By considering a typical unit cell of a hexagonal and re‐entrant lat-
tice, the model represents a frame structure where mass and stiffness
matrices ðMe;KeÞ of the beam element are obtained in local coordi-
nates but should be transformed into the global ones. The relations
between the local and global mass Me

g and stiffness Ke
g matrices are

given by the transformation matrix in the following form

Me
g ¼ TTMeT; Ke

g ¼ TTKeT; ð13Þ

in which the transformation matrix is formed as

T ¼ T0 0
0 T0

� �
; ð14Þ

and

T0 ¼
cosφ sinφ 0
� sinφ cosφ 0

0 0 1

0
B@

1
CA; ð15Þ

where T0 is the rotation matrix and φis the angle between the local and
global axial directions of the beam as shown in [55]. The three beam
model of the chosen unit cell ðn;mÞ, connected under different angles
according to the local coordinate system, can be assembled by consid-
ering matrices from Eq. (13) as follows
5

K ¼ A
nele

e¼1
Ke

g ; M ¼ A
nele

e¼1
Me

g ; ð16Þ

where M and K are the global mass and stiffness matrices of the unit
cell and nele is the number of elements in the unit cell. Thus, the FE
model of a unit cell is given as

M€qþKq ¼ f: ð17Þ
The number of elements ðneleÞ chosen in discretization of the unit

cell is defined in the numerical section.

2.5. Dispersion relations – Periodic boundary conditions

By using the previously described concept, a corresponding eigen-
value problem can be established whose solution gives dispersion
curves i.e. frequencies in terms of wavenumbers. Dispersion analysis
enables one to detect band gaps at corresponding ranges of frequen-
cies. Therefore, by considering the Bloch wave propagation in a unit
cell described by the FE model given in Eq. (17), the dispersion curves
can be generated as the solution of the following eigenvalue problem.
Introducing harmonic solution qðx; tÞ ¼ qðxÞeiωt into Eq. (17), yields

ðK� ω2MÞq ¼ 0; ð18Þ
where the force vector f of interaction between cells is neglected and ω
is the frequency of free wave propagation. The vector q of nodal dis-
placements is given in the following form

q ¼ fq0 q1 q2 qigT ; ð19Þ
where q0; q1, and q2 are the vectors of nodal displacements at end
nodes of the unit cell. The nodal displacements in vector qi are related
to degrees of freedom of internal nodes of the unit cell. The absence of
external forces in internal nodes simplifies the analysis by considering
the free wave propagation, which yields a significant reduction in com-
putation time. Based on the Bloch’s theorem, the periodic boundary
conditions related to the unit cell are applied on the end nodes displace-
ments as follows

q1 ¼ ek1q0; q2 ¼ ek2q0: ð20Þ
By using the Eq. (20), transformation matrix can be applied to the

global vector of nodal displacements as

q ¼ Tbqr ; ð21Þ
where the global vector of nodal displacements is reduced to
qr ¼ fq0 qigT , and matrix Tb is defined as

Tb ¼

I 0
Iek1 0
Iek2 0
0 I

2
6664

3
7775: ð22Þ

Inserting Eq. (21) into Eq. (18) and pre‐multiplying the resulting
equation with the Hermitian (complex conjugate) transpose matrix
TH

b , yields

ðKrðk1; k2Þ � ω2Mrðk1; k2ÞÞqr ¼ 0; ð23Þ
where mass and stiffness matrices are now given as

Mrðk1; k2Þ ¼ TH
b MTb; ð24Þ

Krðk1; k2Þ ¼ TH
b KTb:

The transformation matrix for the force vector can be found in a
similar manner (see [4,10]).

By solving the eigenvalue problem given in Eq. (23) and varying
the values of wave numbers ki; ði ¼ 1; 2Þ within the first Brillouin
zone, obtained results can be displayed in the form of dispersion sur-
faces ω ¼ ωðk1; k2Þ. However, computational effort can be substan-
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tially reduced by exploiting the symmetry properties of the first Bril-
louin zone and a unit cell. From the physical viewpoint, the geometri-
cal shape of the first Brillouin zone is directly dependent on the
internal lattice angle θ and it can form a uniquely defined primitive
cell in the reciprocal space determined by the vectors ðe�1; e�2Þ. One
can find more details about the symmetry and Brillouin zone structure
in [57,58]. The reduced part of the first Brillouin zone is known as the
irreducible Brillouin zone (IBZ), where for solution of the eigenvalue
problem and determination of dispersion curves one should consider
values of wavenumbers along the contours only. For hexagonal and
re‐entrant lattices, the IBZ and its contours are given as shaded regions
denoted by O� A� B� C � O (see Fig. 2(b)). However, for the regu-
lar hexagonal lattice there is one additional symmetry whose IBZ is
given in the first part of (Fig. 2(b)) with its reduced contours
O� B� C � O. In the following, the formation of a band structure is
based on the restricted zone of the IBZ in the reciprocal lattice frame,
where coordinates of boundary points are given in Table 1, [9].

To determine the band structure diagrams, values of the wave vec-
tor defined in the reciprocal space as k ¼ k1e�1 þ k2e�2, are varied along
the contour O� A� B� C � O. The eigenvalue problem Eq. (23) is
used to detect bandgap regions. The passbands are frequency ranges
for which the lattice structure behaves as a wave‐guide. On the other
hand, the band gap regions are ranges of frequencies at which propa-
gation of waves is stopped. The importance of determining the band
structure of lattice structures lies in potential design of wave‐filters.

The eigenvalue problem from Eq. (23) is solved by implementing
the MATLAB function eig() to obtain corresponding dispersion curves.
Also, the mass and stiffness matrices of the unit cells for the whole
structure are implemented in MATLAB to analyse the free wave prop-
agation and in‐plane vibrations of the embedded lattice structure with
attached masses. The complete set of the surface ωðk1; k2Þ is denoted as
the phase constant surface or dispersion surface. The number of disper-
sion surfaces directly depends on the size of the eigenvalue problem.

3. Dynamic analysis of the lattice structure

In this section, our goal is to (i) reduce the model of periodic lattice
structures, (ii) solve the eigenvalue problem and analyse the band
structure, and (iii) investigate the resulting mode veering phenomena
due to identical/close modes. The presented lattice structure is mod-
elled as a system of periodically distributed unit cells in two directions
forming a rectangular plate with corresponding boundary conditions.
The results obtained in this section are presented in the form of eigen-
value curves for the in‐plane vibration. In these diagrams one can also
detect band gap regions. In the previous section, the main assumption
was that the hexagonal structure should be considered long enough to
apply the Bloch’s theorem for detection of band gaps. As a conse-
quence, such periodic structural systems may often consist of with
thousands or even millions of degrees of freedom (DOFs) obtained
by using the FE method. Analysing the global FE model may render
the numerical computation process to be time‐intensive, if not pro-
hibitive. Therefore, the Hurty‐Craig‐Bampton method (also referred
to as fixed‐interface CMS) is employed here, which reduces the initial
number of DOFs of the global FE model by dividing into sub‐
Table 1
The boundary points of the irreducible Brillouin zone of hexa

Type of periodic structure Hexagonal struct
0� ⩽ θ < 90�

O ð0; 0Þ
A 2πð1=ð4 sin2 ϕÞ;�1=ð4
B 2πð1� 1=ð4 sin2 ϕÞ; 1=ð
C 2πð1=2;1=2Þ
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components. Thus, the intention is to capture the overall dynamic
behaviour of the full FE model by an equivalent reduced model by
entailing significantly less computational cost. Few recent contribu-
tions of CMS include [15,59–61].

3.1. Hurty-Craig-Bampton model reduction

The Hurty‐Craig‐Bampton model reduction technique is based on
sub‐structuring the initial (assembled) system into different sub‐
components and analysing the interior dynamics by considering trun-
cated set of normal modes (eigenvectors), as shown in [62,63]. More-
over, the interface between (internal) sub‐structural components is
retained without any reduction. By using this fixed‐interface model
reduction framework, the presented hexagonal structure is divided
into two parts as shown in Fig. 3, where the red coloured circles
denote the interface between two sub‐structures while the grey
coloured circles represent the boundary conditions. The initial step
of the Hurty‐Craig‐Bampton technique is FE discretization of the equa-
tion of motion for pth sub‐structure, which gives

Mp€qp þKpqp ¼ fp; ð25Þ
where Mp and Kp are the mass and stiffness matrices of sub‐structures,
qp is the nodal displacement vector and fp is the forcing vector. Next
step is to express the system Eq. (25) into interior and interface (or
boundary) DOFs, which is given as

Mii;p Mib;p

Mbi;p Mii;p

� �
€qi;p

€qb;p

� �
þ Kii;p Kib;p

Kbi;p Kii;p

� �
qi;p

qb;p

" #
¼ 0

fb;p

� �
; ð26Þ

The subscripts b and i in the above equations are related to the
boundary (or interface) and internal DOFs of the mass and stiffness
matrices as well as displacement and force vectors. Following the
methodology proposed in [62,59], the component modes are formed
by determining the static responses corresponding to the internal
DOFs, where one of the interface DOF is set as unit displacement while
the other DOFs are fixed. From the unit static responses, the set of
component modes is formed as

qi;p ¼ �K�1
ii;pKib;p;

qb;p ¼ I; ! Ψp ¼ �K�1
ii;pKib;p

I

" #
:

ð27Þ

Consideration of this statically reduced model gives sufficiently
accurate solutions for the system under static deformation. The
obtained component modes ensure a basis for achieving static conden-
sation that holds each interface DOFs and eliminates interior DOFs
from the model. The main consequence is that the original physical
interface DOFs of a sub‐structure are retained, so the system can still
be reassembled easily. If only statically obtained component modes
are used, they cannot be applied for accurate analysis of the dynamic
behaviour of internal DOFs. To extend the analysis and overcame this
restriction, the set of component modes should be augmented for the
set of dynamical modes that are obtained by fixing the interface DOFs.
Taking into consideration the harmonic solution for the internal DOFs
from Eq. (26) gives the following eigenvalue problem
gonal and re-entrant lattice structures.

ure Re-entrant structure
�30� < θ ⩽ 0�

ð0;0Þ
sin2 ϕÞÞ 2πð1=2;�1=2Þ
4 sin2 ϕÞÞ 2πð1� 1=ð4 cos2 ϕÞ;�1=ð4 cos2 ϕÞÞ

2πð1=ð4 cos2 ϕÞ; 1=ð4 cos2 ϕÞÞ



Fig. 3. Two sub-structures coupled through the interface in geometrical points.
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ðKii;p � ω2
rMii;pÞfηi;pgr ¼ 0: ð28Þ

The obtained eigenvectors as the solution of Eq. (28) are known as
fixed‐interface modes, whereby taking the truncated set of these mass
– normalized eigenvectors, they are composed into the fixed‐interface
mode matrix

Φp ¼
fηi;pg1; . . . ; fηi;pgn

0

� �
¼ Φi;p

0

� �
: ð29Þ

Now, by combining the set of component and fixed‐interface modes
one can form a unique matrix known as Hurty‐Craig‐Bampton (HCB)
reduction matrix given as

THCB
p ¼ Φp Ψp

� �
; ð30Þ

The above relation provides a transformation from the HCB gener-
alized DOFs to the sub‐structure physical DOFs,

qi;p

qb;p

( )
≈THCB

p

ui;p

qb;p

( )
; ð31Þ

where ui;p represents the modal coordinate vector associated with the
fixed‐interface modes.

Introducing the transformed DOFs from Eq. (31) into Eq. (25) and
pre‐multiplying such obtained results with HCB transformation matrix
Eq. (30) yields

MHCB
p ¼ THCB

p

� 	T
MpTHCB

p ; ð32Þ
KHCB

p ¼ THCB
p

� 	T
KpTHCB

p ;

where MHCB
p and KHCB

p represents the HCB reduced mass and stiffness
matrices, respectively.

After reducing the sub‐component matrices one needs to reassem-
ble the whole system to analyse global dynamic behaviour. As men-
tioned above, the presented hexagonal structure is divided into two
sub‐structures, where in the case of two parts the following value
p ¼ 2 is set. Introduction of the coupling matrices that connect
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displacement vectors of a sub‐structure with displacement vectors of
the assembly yields mass and stiffness matrices in the following form

MHCB ¼ ∑
2

p¼1
RHCB

p

� 	T
MHCB

p RHCB
p

� 	
; ð33Þ

KHCB ¼ ∑
2

p¼1
RHCB

p

� 	T
KHCB

p RHCB
p

� 	
;

where the reduced matrices ðMHCB; KHCBÞ represents a sum of the
reduced matrices of sub‐components. The sub‐structure coupling matri-
ces RHCB

p determined for the hexagonal structure are given in the follow-
ing form

ui;1

qb;1

( )
¼ I 0 0

0 0 I


 � ui;1

ui;2

qb;1

8><
>:

9>=
>;! RHCB

1 ¼ I 0 0
0 0 I


 �
; ð34Þ

ui;2

qb;2

( )
¼ 0 I 0

0 0 I


 � ui;1

ui;2

qb;1

8><
>:

9>=
>;! RHCB

2 ¼ 0 I 0
0 0 I


 �
:

In further analysis, the reduced mass and stiffness matrices in Eq.
(33) are used to determine natural frequencies of the presented hexag-
onal structure. However, it is well known that the interface DOFs can
be also reduced and the methodology based on the system‐level reduc-
tion is introduced next.
3.2. Interface reduction

The system‐level reduction is based on the secondary eigenvalue
problem of the assembled structure, where the number of interface
DOFs is reduced. By dividing the assembled mass and stiffness matri-
ces between the interface and interior parts, and considering only
the interface portion, the following eigenvalue problem is formed

ðKHCB
bb � ω2

rM
HCB
bb ÞfηS�CC

r g ¼ 0; ð35Þ
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where MHCB
bb and KHCB

bb are the mass and stiffness matrices of the inter-
face part of the assembled structure. The vector fηS�CC

r g represents trun-
cated set of eigenvectors or S‐CC modes. Collecting the S‐CC
normalized modes into one mode shape matrix yields

ΦS�CC ¼ ηS�CC
1 ; . . . ; ηS�CC

n

� �
: ð36Þ

Transforming the interface DOF of HCB assembled system by using
the Eq. (36), the reduced form of S‐CC vector is obtained as

qb≈ΦS�CCub: ð37Þ
To derive the S‐CC transformed mass and stiffness matrices, pre‐

and post‐multiplication with the extended S‐CC modal matrix gives

MS�CC ¼ RS�CC� T
MHCB RS�CC� 

; ð38Þ
KS�CC ¼ RS�CC� TKHCB RS�CC� 

;

where the extended S‐CC modal matrix has the following form

RS�CC ¼ I 0
0 ΦS�CC


 �
:

The main drawback of the interface reduction method is small
number of interface DOFs since the interface consists of geometrical
nodes that are connecting only two sub‐structures. However, for effi-
cient computation of large scale periodic structures in low‐frequency
regime this methodology can be cost‐effective and gives results with
satisfactory accuracy level.

4. Numerical study and discussion

The band structure of the proposed hexagonal lattice system is
investigated for the chosen unit cell configurations based on three cou-
pled elastically embedded Timoshenko beams with attached point
masses. Moreover, it is assumed that the beams within the unit cells
are pre‐stressed and rigidly connected. Two lattice models with differ-
ent unit cell configurations are adopted in this study known as hexag-
onal and re‐entrant lattices. From the eigenvalue problem formed with
mass and stiffness matrices given in Eq. (24) and values of the wave
vector k given along the contour of IBZ, one can obtain corresponding
dispersion curves and band structures of the proposed lattice systems.
Moreover, the iso‐frequency contours of the dispersion surface modes
are plotted as functions of wave numbers ωðk1; k2Þ characterizing the
directional wave properties. The effects of the elastic medium,
attached point masses, and pre‐stress on the frequency band structure
and iso‐frequency contours are examined in detail. The results from
this study are similar to those obtained in [7] when the influences of
the elastic medium, attached point masses, and pre‐stress are
neglected. It should be emphasized that the adopted pre‐stress is intro-
duced as a pre‐load at each beam of the system. The HCB model reduc-
tion technique is introduced to analyse the free in‐plane vibrations and
corresponding eigenvalue curves of the lattice structure formed for
two types of boundary conditions. The main reason for including such
reduced model‐based investigation was to save additional computa-
tional time compared to that of a full model and at the same time
ensure that the wave propagation analysis based on a single unit cell
can provide satisfactory results of the dynamic behaviour of a lattice
system. According to [40], the dispersion phenomena can be divided
into two groups such as weak coupling (veering and locking) and
strong coupling effects. Which phenomenon, veering or locking, will
occur depends on the product of the gradients of dispersion curves
at the crossing frequency. Therefore, veering occurs if the group veloc-
ities of propagating waves have the same sign while locking appears if
their signs differ [40]. In this study, a particular attention is devoted to
the analysis of weak coupling effect phenomenon called veering,
which occur in eigenvalue problems depending on a variable parame-
ter e.g. stiffness or mass. In the literature, veering phenomenon is usu-
ally attributed to the case when two or more curves describing the
8

eigenvalue loci as a function of some variable parameter veer away
and diverge instead of crossing. Here, emergence of veering among
dispersion curves and frequency curves in terms of stiffness founda-
tion, point masses, pre‐load and internal lattice angle is investigated.

4.1. The frequency band structure

The main characteristic of the proposed lattice periodic structure
based on the embedded Timoshenko beam‐mass system with addi-
tional pre‐load is that the propagation of Bloch waves and dynamic
responses can be controlled by changing only the external pre‐load
and attached masses without changing the main structural parameters
of the lattice structure. Dispersion relations are obtained by varying
the wave vector along the contour of the first Brillouin zone. The
resulting representation shows the presence of interesting wave phe-
nomena such as mode veering and band gaps. As given above, a com-
mon feature of dispersion curves for the hexagonal honeycomb and
other types of lattices is the veering of frequencies i.e. convergence
and divergence of the eigenvalues, where dispersion curves (disper-
sion branches) lay close to one another without crossing along the
locus O� A� B� C � O in k space. As shown in [7], the shape of
the first Brillouin zone changes with the value of the internal angle
and there is a significant difference in band structure between lattices
with negative and positive internal angles. Therefore, we adopted two
interesting cases of lattices with slenderness ratio β ¼ 1=15 and nega-
tive θ ¼ �10� and positive θ ¼ 30� internal angles also called re‐
entrant and regular hexagonal lattices, respectively. In [7] it was
demonstrated that a regular hexagonal lattice features both a veering
and bandgap phenomena while in the case of re‐entrant lattice the
later is absent. This study reveals that a number and position of
attached point masses can significantly affect the band structure of
the system and introduce new band gaps even for re‐entrant lattices.
From the physical viewpoint, the effect of attached point masses in
the proposed lattice system can be characterized as that of internal res-
onators in the locally resonant metamaterials [64,65], which leads to
the emergence of new band gaps in the frequency band diagrams.
Moreover, the emergence of zero‐frequency band gap due to the pres-
ence of an elastic medium surrounding the beam elements is demon-
strated, thus, causing the appearance of the phenomenon that is
often called in the literature as zero‐frequency Bragg gap [66]. It is
well known that the Bragg band gaps mostly appear at higher fre-
quency branches like in phononic type periodic structures [7,9,1].

Some authors [8] used a combination of conventional and auxetic
core topology in honeycomb lattices to induce phononic band gaps.
However, the lattice structure proposed in this study is a good example
where band gaps can emerge at the lowest possible frequency range,
starting from the zero‐frequency, as a consequence of the elastic med-
ium surrounding the beam elements within the unit cell of a lattice.
Moreover, in [67] the authors demonstrated the absence of band gaps
in regular hexagonal lattices and doubt about the Bragg scattering nat-
ure of band gaps in other types of lattices attributing their generation
to localized resonances. In this context, they concluded that in highly
connected lattices, the beams themselves act as mechanical resonators
enabling the generation of locally resonant band gaps. On the other
side, in [68] the authors have shown that resonance frequencies of pin-
ned–pinned beams do not match consistently with directional bandgap
frequencies in each direction, therefore suggesting directional band
gaps in beam lattice systems are not necessarily linked to local reso-
nance. Such difference of the results between previous studies is attrib-
uted to the fact that the latter includes group velocity maps and 3d
model considering both the in‐plane and out‐of‐plane modes. An
increase in the number of bandgaps at low frequencies caused by the
introduced concentrated masses connected to the primary structure
of a lattice by soft links was examined in [5]. Some later studies
observed locally resonant band gaps induced by microstructure can-
tilever beams connected to nodes of square [69] and hexagonal [70]
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lattices. In both studies, besides resonant modes of attached cantilever
beams, mass distribution was identified as an important mechanism
for bandgap generation. Here, the main goal was to investigate the
influences of attached concentrated masses, elastic medium and
applied pre‐load on the band structure of the proposed lattice systems
while elaborating the nature of the resulting band gaps is out of the
scope of this study.

Investigation of dispersion curves and their topology, leading to
detection of pass and stop bands by using the Bloch wave analysis
for a chosen unit cell configuration, is based on a solution of the cor-
responding eigenvalue problem. This insight into the band structure of
the lattice system allows us to passively control elastic wave propaga-
tion. In the numerical simulations, the following material and geomet-
rical parameters are adopted unless otherwise specified: the cross‐

sectional area A ¼ bh, the second moment of inertia I ¼ bh3
12 and the

wall’s slenderness ratio β ¼ L=d ¼ 1=15. Length of all the beams is
L ¼ 0:125 m; ρ ¼ 25 � 103 kg=m3 is the mass density, E ¼ 210 � 109 Pa
denotes the elastic modulus, ν ¼ 0:25 is the Poisson’s ratio and
M ¼ 2 is the number of attached masses per beam segment. The posi-
tions of attached point masses are identical for each beam in the unit
cell and they are also placed at the end of each beam i.e. at beam’s con-
nection points. The stiffness of Winkler’s elastic medium, in which a
unit cell is embedded, is given as ku ¼ kw ¼ 106 N=m2. The effect of
the pre‐stress is introduced through the pre‐load on each beam within
the unit cell as N0 ¼ �104 N. In the following, for clear demonstration
of the results, the frequency ωðk1; k2Þ is normalized with respect to ω0

as Ω ¼ ω=ω0, where ω0 ¼ π2

L2

ffiffiffiffi
EI
ρA

q
is the first flexural frequency of the

simply‐supported Euler–Bernoulli beam of the length L. The number
of finite elements per beam in the unit cell is adopted as nele ¼ 25.

4.2. The effect of attached point masses

The effects of attached masses and internal angle θ on the Bloch
wave propagation are investigated by analysing the obtained disper-
sion curves and corresponding frequency band structure. The disper-
sion diagrams demonstrate that introduction of additional masses at
beams connection points of the lattice can cause a widening of existing
or even appearance of new band gaps. Moreover, in some specific fre-
quency range, mode veering phenomenon may appear at several posi-
tions on the band structure diagrams. According to [1], for all values of
the wave vector k along O� A� B� C � O contour, veering phe-
nomenon occur when two branches are very close one to another with-
out any overlap or crossing. Furthermore, the analysis presented
herein is limited to two different lattice structures with the main differ-
ence in the internal angle θ. When the angle θ is positive ðθ ¼ 30�Þ, the
periodic structure is a regular hexagonal honeycomb lattice while for
the case when θ is negative ðθ ¼ �10�Þ the periodic structure belongs
to the class of re‐entrant (auxetic) lattice structures.

Fig. 4 shows the frequency band structure diagrams of a regular
honeycomb structure for different values of attached point masses
and wall’s slenderness ratio β ¼ 1=15. One can count fifteen branches
of dispersion curves that correspond to the first fifteen values obtained
by solving the eigenvalue problem from Eq. (23). The four different
cases are examined starting from the case without attached masses
Mp ¼ 0 and then introducing and increasing the values of attached
masses until Mp ¼ 1

2 ρAL. A comparison of the results obtained for dif-
ferent values of masses shows quite interesting band structure. It can
be noticed that an increase in the attached point masses values leads
to the appearance of new band gaps as well as the widening of the
existing ones at higher frequencies. Further, for an increase of the val-
ues of attached masses, one can observe stretching of dispersion curves
that become more flatten, especially curves bounding the band gaps. In
comparison to the case without attached masses Fig. 4(a) (see also
[7]), where only a single complete band gap is detected for the regular
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hexagonal honeycomb structure, several band gaps can be detected
when masses are attached to lattice nodes followed by widening of
band gaps at higher frequencies. As stated in [69], the phononic band
gaps are commonly attributed to the destructive interference during
the multiple scattering and reflection of elastic waves propagating in
periodic materials and structures. It is widely accepted that the loca-
tion and width of the phononic band gaps are related to the geometri-
cal and material properties of periodic lattice structures. Therefore,
band gaps due to destructive interference are strongly affected by
the distribution of elastic properties and mass in such materials. In
[69], the authors have modified a two‐dimensional square lattice by
introducing the auxiliary cantilever beams at lattice nodes, which
changes the mass distribution within the original lattice structure
and induce certain band gaps. Here, similar modifications are taken
over regular and re‐entrant hexagonal lattice structures by adding only
concentrated masses at nodes, which changes the mass distribution
inside the lattice but does not introduce locally resonant modes like
in the case when microstructure cantilever beams are considered.
However, attaching concentrated masses and increasing their values
introduces new band gaps (Fig. 4(b)–(d)). These new band gaps are
placed between branches that are located at frequencies higher than
the bandgap of the corresponding pristine lattice, which can confirm
that they are not of local resonance origin. Moreover, one can notice
several veering points of dispersion curves in the frequency band dia-
grams. For example, for all different mass cases in (Fig. 4(a) veering
between the second and third as well as between the third and fourth
branches of the dispersion curve can be observed along the locus O‐A.
The magnified picture of the veering zone reviles that eigenvalues are
close one to another and do not cross but veer away from each other.
However, changes in point masses do not affect significantly the num-
ber and position of veering points in regular honeycomb lattice
structures.

When the wave vector is taken along the entire first Brillouin Zone
one can explore the full dispersion surface. For such formed dispersion
surfaces one can additionally plot the iso‐frequency contour lines as
multiple sections of 3D dispersion surface. The iso‐frequency contours
of the regular hexagonal lattice structure given in Figs. 5 and 6 are
plotted for the first eight frequency branches in a succeeding manner
from the lowest to the highest one, and two attached point masses val-
ues given as ðMp ¼ 1

12 ρALÞ and ðMp ¼ 1
2 ρALÞ. In doing so, the following

values of internal lattice angle θ ¼ 30� and the wall’s slenderness ratio
β ¼ 1

15 are adopted. If one considers only the iso‐frequency contours of
the first branch (the first of eight surfaces in Figs. 5 and 6), for both
lower and higher values of attached masses, it can be noticed that
the outward direction of a given iso‐frequency line corresponds to
the direction of wave propagation at the observed frequency. These
contours display lobed features that indicate the anisotropic properties
of the lattice structure, which is in line with the results presented in
[7]. However, it is interesting to note how the shape of the contours
change with an increase of mass. These changes can not be noticed
at lower frequency branches while for the higher ones it is obvious that
they are significantly modified, which implies differences in the wave
propagation characteristics and mechanical properties between regu-
lar hexagonal lattices with different weights of attached masses. This
also suggests that if only higher modes are affected then changes in
band structure are not caused by the low frequency local resonances
but rather ascribed to some other mechanism such as mass distribution
within the lattice.

Further, Fig. 7 shows the effect of attached masses on the frequency
band structure in the case when the internal lattice angle is given as
θ ¼ �10� and the wall’s slenderness ratio as β ¼ 1=15. One can
observe fifteen dispersion curves with a single bandgap detected at
higher frequency branches. The well‐known hypothesis that Bragg
band gaps, which are sensitive to changes in lattice spacing, are
located at higher frequencies while locally resonant band gaps depend-



Fig. 4. The effect of the attached point masses on the frequency band structures determined for the regular hexagonal θ ¼ 30� lattice: (a)Mp ¼ 0; (b) Mp ¼ 1
6 ρAL;

(c) Mp ¼ 1
3 ρAL; (d) Mp ¼ 1

2 ρAL.

Fig. 5. The effect of the attached point masses on the iso-frequency contours of the regular hexagonal, θ ¼ 30� lattice with additional point masses Mp ¼ 1
12 ρAL.
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ing on the presence of resonating elements are narrow and located at
lower frequencies, will be corroborated based on the following analy-
sis. It can be noticed that an increase in the value of the attached point
masses Mp ¼ 1

2 ρAL generates additional narrow and lower frequency
band gap. Moreover, in comparison with the results from [7], the
example of re‐entrant lattice structure shows all the advantages of
10
the proposed design since new band gaps can emerge only by increas-
ing the values of attached masses. It can be noticed that mode veering
phenomenon becomes more prominent for lower values of attached
masses. However, for higher values of attached masses dispersion
curves are more flattened and new band gaps are opened, therefore,
reducing the number of veering points in the case of re‐entrant lattice



Fig. 6. The effect of attached point masses on the iso-frequency contours of the regular hexagonal θ ¼ 30� lattice with additional point masses Mp ¼ 1
2 ρAL.

Fig. 7. The effect of the attached point masses on the frequency band structures determined for the re-entrant θ ¼ �10� lattice: (a) Mp ¼ 0; (b) Mp ¼ 1
6 ρAL; (c)

Mp ¼ 1
3 ρAL; (d) Mp ¼ 1

2 ρAL.
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structures. This can be easily noticed at higher frequency branches
within the locus O� A� B� C � O

The iso‐frequency contour lines for eight frequency branches and
the re‐entrant lattice ðθ ¼ �10�Þ with two different values of attached
masses are given in Figs. 8 and 9. It can be noticed that iso‐frequency
11
contours in the first four frequency branches are only slightly changed
for the variations of the values of attached masses. However, the effect
of an increase of mass is more pronounced at higher frequency
branches, where the topology of contour lines is significantly changed
concerning the case with lower values of attached masses. Similar to



Fig. 8. The effect of attached point masses on the iso-frequency contours of re-entrant θ ¼ �10� lattice with additional point masses Mp ¼ 1
12 ρAL.

Fig. 9. The effect of attached point masses on the iso-frequency contours of re-entrant θ ¼ �10� lattice with additional point masses Mp ¼ 1
2 ρAL.
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the case with regular hexagonal lattice, these changes implies signifi-
cant difference in wave propagation properties between two lattice
configurations at higher frequency branches.

From the viewpoint of practical applications, the presented iso‐
frequency contours can be used for analysing the self‐collimation phe-
nomenon also called wave‐beaming [71]. The self‐collimation phe-
nomenon is an alternative way of waveguiding through the periodic
medium, where incident wave propagates with almost no diffraction
[71]. More details about the application of this phenomenon in the
design of mechanical waveguides can be found in [72,73]. There is a
promising potential of lattice structures with attached point masses
to be used as waveguides using the self‐collimation phenomenon,
which can be an interesting subject for some future investigation
challenge.

4.3. The effect of Winkler’s elastic medium

Fig. 10 shows the influence of the stiffness of Winkler’s elastic med-
ium on dispersion curves and band structure of the regular hexagonal
ðθ ¼ 30�Þ and re‐entrant ðθ ¼ �10�Þ lattice structures for the wall’s
slenderness ratio given as β ¼ 1=15. The following values of the stiff-
ness of elastic medium are adopted: ku ¼ kw ¼ 0 N=m2 and
12
ku ¼ kw ¼ 108 N=m2. The reason for introducing such high values of
stiffness is to obtain the lowest possible band gap known as zero‐
frequency Bragg gap, as explained in [66]. According to [66], zero‐
frequency Bragg gaps can appear in periodic structures when struc-
tural elements are lying on the elastic foundation, which means that
additional stiffness is introduced into the system. Fig. 10(a) and (b)
shows the effect of the stiffness of Winkler’s elastic medium on disper-
sion curves determined for the regular hexagonal unit cell. It can be
noticed that the band gaps around Ω ¼ 4:5 and Ω ¼ 14 are slightly
reduced. However, higher values of stiffness lead to the appearance
of the additional band gap near the zero frequency Fig. 10(b). In the
case of the re‐entrant lattice structure, the effect of change of elastic
medium stiffness becomes more prominent since the band gaps at
higher frequency branches are even more reduced. In this case, the
zero‐frequency band gap is also detected. Besides, it is worth noting
that dispersion curves are flattened for lower frequency branches
and higher values of the stiffness of elastic medium in both cases of
regular hexagonal and re‐entrant lattice structures. Such behaviour
can be physically interpreted as stiffening of the system, where as
explained above, re‐distribution of elastic properties can contribute
to change of band structure properties, which is in this case emergence
of the zero‐frequency band gap. A number and position of veering



Fig. 10. The effect of the Winkler’s elastic medium on the frequency band structures determined for N0 ¼ �104ðNÞ; Mp ¼ 1
12 ρAL, the regular hexagonal lattice,

(a) Ku ¼ Kw ¼ 0 N=m2; (b) Ku ¼ Kw ¼ 108 N=m2; the re-entrant lattice, (c) Ku ¼ Kw ¼ 0 N=m2; (d) Ku ¼ Kw ¼ 108 N=m2.
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points does not change significantly for an increase of the foundation’s
stiffness parameter. However, there is a significant difference between
two types of lattices where less veering points are located within a
locus A� B for regular hexagonal lattices, Fig. 10(a) and (b), while a
higher number of veering points can be detected in re‐entrant lattices
but mostly located between O� A and B� C in Fig. 10(c) and (d).

4.4. The effect of pre-load

Fig. 11 shows the influence of pre‐load on the frequency band
structure of the regular hexagonal ðθ ¼ 30�Þ and re‐entrant
ðθ ¼ �10�Þ honeycomb structures for N0 ¼ 0 and N0 ¼ 104 N. The
comparative study shows that the effect of pre‐load on dispersion
curves is small in both cases of honeycomb structures if compared to
the effect of other parameters. The main reason for such behaviour
might be attributed to the fact that the introduced additional stiffness
of the Winkler’s elastic medium increases the overall stiffness of the
system and therefore, the pre‐load does not affect dispersion branches
significantly. In other words, the stiffness of the elastic medium
reduces the effects of pre‐load on the band structure of the proposed
lattice systems. Moreover, by setting the optimal values of the pre‐
load and stiffness of the elastic medium, one can control the stop
and passbands of honeycomb structures, which can result in optimal
design procedures of waveguides and filters. Here, there are no differ-
ences in a number and position of veering points for changes in the
pre‐load parameter in both lower and higher modes.
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4.5. Dynamic behaviour of the embedded lattice structure

When investigating the free in‐plane vibration of the whole lattice
structure, size of the full FE model becomes large, which requires the
application of model reduction techniques such as HCB method to
reduce the problem. As stated above, the adopted model of the lattice
is similar to a plate‐like structure with corresponding boundary condi-
tions. Here, we consider two types of boundary conditions the Free‐
Free‐Free‐Free (FFFF) and the Clamped‐Free‐Free‐Free (CFFF), which
represent the conditions at four sides of the plate‐like lattice structure
i.e., boundary nodes. Dimensions of the plate‐like lattice are given as
L ¼ 1:95 m and W ¼ 2:1875 m. For the application of HCB technique,
the initial structure is divided into two sub‐structures of lengths
L1 ¼ 0:97428 m, and L2 ¼ 0:97572 m, while the height is equal to that
of the initial structure. It should be emphasized that the interface
reduction technique is based on the S‐CC reduction discussed in Sec-
tion 3. However, it is shown that since the interface consists of only
the geometrical nodes, then S‐CC reduction technique does not achieve
satisfying accuracy compared to the HCB reduction method. Also, a
comparative study has shown that the results obtained for natural fre-
quencies by the presented HCB method and COMSOL Multiphysics
software are in good agreement. However, the presented analysis does
not perform any convergence study of the reduced model, where max-
imum frequency and time errors are necessary for the eigenvalue anal-
ysis. For more details concerning these issues one is referred to
[15,59,63].



Fig. 11. The effect of the pre-load on the frequency band structures determined for Ku ¼ Kw ¼ 105 N=m2; Mp ¼ 3
12 ρAL, and the regular hexagonal lattice, (a)

N0 ¼ 0 N; (b) N0 ¼ 104 N; the re-entrant lattice, (c) N0 ¼ 0 N; (d) N0 ¼ 104 N.
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4.6. Verification

To verify the results for the hexagonal plate‐like structure obtained
by the HCB model reduction and those from the interface reduction S‐
CC method, a comparative study is presented in Table 2 and Table 3
for two types of boundary conditions CFFF and FFFF. In this analysis,
the effects of attached masses, pre‐load, and stiffness of the Winkler’s
elastic medium are neglected. By solving the corresponding eigenvalue
problem, the first ten natural frequencies are determined in Comsol
Multiphysics software for the full model of a lattice structure and then
compared with the results obtained by the HCB and S‐CC model reduc-
Table 2
The verification of natural frequencies Hz of the embedded hexagonal structure f
elements per length L is nele ¼ 5.

No. COMSOL Multiphysics Full model - CFF
(full model 5655 DOFs) 4638 DOFs

1 17.197 17.201
2 44.822 44.832
3 46.593 46.603
4 71 71.014
5 73.941 73.958
6 86.489 86.501
7 92.385 92.406
8 100.7 100.71
9 116.66 116.69
10 118.71 118.73
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tion techniques. Table 2 shows the results for natural frequencies given
in (Hz) for the CFFF boundary conditions while Table 3 shows the
results for the FFFF boundary conditions, where fine agreement
between different approaches is achieved. It should be emphasized
that the initial problem with 5655 and/or 4668 DOFs is reduced to
the problem with only 133 DOFs by introducing the HCB model reduc-
tion technique. This significantly reduces the computational time in
the dynamic analysis of large‐scale problems such as honeycomb
plate‐like structures. Moreover, it is shown that the interface reduction
technique achieves good results only for the first four natural frequen-
cies, reducing the initial problem to only 115 DOFs. In the following
or CFFF boundary conditions ðKw ¼ Ku ¼ Mp ¼ N0 ¼ 0Þ. The number of finite

F HCB reduction HCB+(S-CC) reduction
133 DOFs 115 DOFs

17.202 17.335
44.837 46.838
46.604 48.781
71.016 73.348
73.986 92.792
86.519 104.42
92.429 107.59
100.81 121.2
116.8 125.52
119.03 132.73



Table 3
The verification of natural frequencies Hz of the embedded hexagonal structure for FFFF boundary conditions ðKw ¼ Ku ¼ Mp ¼ N0 ¼ 0Þ. The number of finite
elements per length L is nele ¼ 5.

No. COMSOL Multiphysics Full model - FFFF HCB reduction HCB+(S-CC) reduction
(full model 5655 DOFs) 4668 DOFs 133 DOFs 115 DOFs

1 59.472 59.486 59.505 60.949
2 63.517 63.53 63.586 64.108
3 66.987 67.003 67.012 70.089
4 68.031 68.046 68.062 79.466
5 74.716 74.729 74.731 86.41
6 89.241 89.252 89.304 92.272
7 90.298 90.31 90.321 97.246
8 94.306 94.326 94.372 109.86
9 98.317 98.339 98.365 116.93
10 111.39 111.41 111.44 122.19

D. Karličić et al. Composite Structures 256 (2021) 113087
parametric study, the influence of mass and stiffness matrices on the
vibration behaviour of the lattice structure is investigated by the
HCB model reduction technique.

4.7. The effects of system parameters on eigenvalue curves

In this subsection, the natural frequencies are determined by using
the reduced mass and stiffness matrices obtained by the HCB reduction
method for both CFFF and FFFF boundary conditions, represented as
the eigenvalue curves. Fig. 12 shows the effect of Winkler’s elastic
medium stiffness on the first ten natural frequencies. The magnitude
of the stiffness is changed in the range 0–105 N and it is equal in both
directions ku ¼ kw. The obtained results reveal that an increase in the
stiffness increases natural frequencies for both boundary conditions.
However, it is evident that the influence of the medium’s stiffness is
more pronounced for CFFF boundary conditions than for the FFFF
one, as given in Fig. 12(a). On the other hand, the impact of stiffness
on the eigenvalue curves is almost linear for the FFFF boundary condi-
tions as observed from Fig. 12(b). It is interesting to note that in gen-
eral, the influence of elastic medium stiffness on higher natural
frequencies is very low. Here, a frequency veering phenomenon can
be observed from the modal analysis of the free in‐plane vibration of
the lattice structure, where the frequency is plotted in terms of system
parameters. Here, no veering phenomenon can be detected on fre-
quency curves for changes in stiffness of the Winkler’s elastic medium.

The first ten natural frequencies in the form of eigenvalue curves
with varying attached point masses for two different boundary
conditions of the lattice structure are presented in Fig. 13.
The values of attached point masses are changed in the range
Fig. 12. The effect of the stiffness of Winkler’s elastic medium on natural
N0 ¼ 104 N; Mp ¼ 3

6 ρAL; β ¼ 1
10; (a) CFFF and (b) FFFF boundary conditions.
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0–0:495 kg. It can be observed that an increase in the values of
attached point masses can reduce the natural frequencies. Moreover,
it can be seen that the natural frequencies determined for the FFFF
boundary condition are more affected for the varying attached masses
(refer Fig. 13(b)), in comparison to the configuration with CFFF
boundary conditions. However, in both cases one can notice a nonlin-
ear relationship between the natural frequency and change of values of
attached masses.

Further, Fig. 14 shows the influence of the pre‐load parameter,
given in the range �1:5 � 104 N < N0 < 1 � 104 N, on the first ten nat-
ural frequencies in form of eigenvalue curves for the lattice plate‐
like structure and two types of boundary conditions. In the previous
two examples, we have seen that the influences of elastic medium stiff-
ness and attached point masses on natural frequencies are almost iden-
tical for both boundary conditions. However, the pre‐load directly
influences the modes and corresponding natural frequencies. One
can notice a frequency veering phenomenon for changes of the pre‐
load parameter. Fig. 14(a) depicts the natural frequencies determined
for the plate‐like lattice structure with CFFF boundary conditions. One
can observe that the fourth, sixth, and eighth eigenvalues curves are
having different behaviour for varying the pre‐load parameter. At
some points in the graph one can detect mode veering. Fig. 14(b) also
shows an interesting behaviour of natural frequencies obtained for the
FFFF boundary conditions. In this case, one can also observe mode
veering for varying values of the pre‐load parameter. As mentioned
before, plotted curves of natural frequencies in terms of varying pre‐
load parameter shows mode veering at certain points of the graph,
which demonstrates the importance of this parameter for the appear-
ance of this phenomenon.
frequencies for the embedded regular hexagonal structure θ ¼ 30�, with



Fig. 13. The effects of attached point masses on natural frequencies determined for the embedded regular hexagonal structure θ ¼ 30�, with
N0 ¼ 104 N; β ¼ 1

10 ; Ku ¼ Kw ¼ 105 N=m2; (a) CFFF and (b) FFFF boundary conditions.

Fig. 14. The effects of the pre-load on natural frequencies determined for the embedded regular hexagonal structure θ ¼ 30�, where
Ku ¼ Kw ¼ 105 N=m2; Mp ¼ 3

6 ρAL; β ¼ 1
10; (a) CFFF and (b) FFFF boundary conditions.

Fig. 15. The effects of the internal angle θ on natural frequencies of the lattice structure for Ku ¼ Kw ¼ 105 N=m2; Mp ¼ 3
6 ρAL; N0 ¼ 104 N; β ¼ 1

10; (a) CFFF and
(b) FFFF boundary conditions.
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The last example shows the influence of the internal angle θ on the
eigenvalue curves of the plate‐like lattice system for two different
boundary conditions, Fig. 15. The natural frequencies in both bound-
16
ary conditions are almost independent on the angle θ, except in the
case when θ approaches the value of 30�. In 15(a), for the case with
CFFF boundary conditions, it can be noticed that the first natural
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frequency is almost unchanged for varying internal angle θ. However,
at higher values of natural frequencies, multiple mode veering occur.
On the other hand, the natural frequencies given in 15(b) for the FFFF
boundary conditions are manifesting slightly different behaviour since
multiple veering occurs in a narrow frequency band. For this boundary
condition case, natural frequencies demonstrate similar behaviour for
changes of the internal angle θ. It can be concluded that lattice config-
uration has a strong impact on the appearance of veering phe-
nomenon, which means it is sensitive to varying internal angle θ
[74,75]. Due to identical/close modes in periodic lattice structures,
mode veering can also lead to mode degeneration/localization and
should be investigated in the pre‐design stage based on adequate
dynamic models. According to [76], veering is manifested in dramatic
changes of vibration modes with a strong impact on the dynamic
response, which makes performed analyses crucial for insight into
the dynamic behaviour of the presented hexagonal lattice systems.

5. Summary and conclusions

The main contribution of this work lies in two aspects. First, it
develops a generalized integrated equivalent cost‐effective methodol-
ogy which reduces the computational effort inherently associated with
the analysis of wave propagation and dynamic behaviour of periodic
lattice structures. In doing so, the proposed methodology efficiently
blends in a two‐tier physics‐based model reduction strategy with the
finite element method by coupling, (i) Bloch theorem for reducing
the wave propagation analysis of lattice structures to that of a single
unit cell, and (ii) Hurty‐Craig‐Bampton approach for reducing the
internal and interface DOFs of the periodic lattice structures. Second,
the emergence of frequency veering and zero‐frequency band gap is
detected in both wave propagation and vibration analysis of honey-
comb lattice structures. This provides for the first time a framework
to analyse this phenomenon from two different standpoints leading
to results that shade into one another.

A model based on the finite element and Bloch wave analysis of the
embedded and pre‐stressed periodic lattice structure with attached
point masses has been developed. Two types of lattice structures,
namely, hexagonal and re‐entrant honeycombs have been studied,
with repetitive unit cells consisting of rigidly connected pre‐stressed
Timoshenko beams with attached point masses and embedded in the
Winkler’s type elastic medium. Dispersion curves have been generated
by solving the corresponding eigenvalue problem and thereby, impor-
tant information about band structures of the proposed lattice systems
has been obtained. It is found that the combination of the attached
point mass, pre‐stress and Winkler’s elastic medium significantly
changes the band structure of lattice structures by introducing new
band gaps at lower frequency branches including the zero‐frequency
band gap. Different veering points are noticed in regular and re‐
entrant lattice structures.

Dynamic behaviour of the finite length plate‐like lattice structures
has been investigated by comparing the full model and a reduced
model using Hurty‐Craig‐Bampton approach with additional interface
reductions. Comparison of the results for natural frequencies of the
finite length lattice structure obtained in Comsol Multiphysics soft-
ware for the full model and those obtained by using the model reduc-
tion techniques shows fine agreement. Parametric study based on the
reduced model demonstrated an interesting dynamic behaviour, espe-
cially for changes of the internal angle θ. The plots of natural fre-
quency versus internal angle have shown multiple mode veering
phenomena i.e., instances of mode degeneration/localization which
can significantly affect the dynamic behaviour of a system. Mode veer-
ing has been observed for changes in the pre‐load parameter. This is
possibly the first reported observation of mode veering in the proposed
configuration of lattice materials.
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In conclusion, the proposed periodic lattice structures revealed
exciting band structure and dynamic properties that make them
prospective candidates for waveguides and filters. Moreover, the intro-
duction of attached point masses, pre‐load and elastic medium is
shown to be effective for tuning the band structure properties of lattice
structures without changing the basic geometry of the system. These
promising results can prove to be useful for adaptive/smart design of
periodic lattice structures. The methods presented in this work can
be used in future studies for application to more complex 3D lattice
structures. Accounting for manufacturing variability in the proposed
periodic structures is also another interesting topic of future research.
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Appendix A. The shape function and matrix coefficients

The adopted shape functions of the Timoshenko beam element:

Γ1ðxÞ ¼ 1� ξ; Γ2ðxÞ ¼ 0; Γ3ðxÞ ¼ 0; ð39Þ

Γ4ðxÞ ¼ ξ; Γ5ðxÞ ¼ 0; Γ6ðxÞ ¼ 0;

Λ1ðxÞ ¼ 0; Λ2ðxÞ ¼ 1� 3ξ2 þ 2ξ3 þ ð1� ξÞΦ
1þ Φ

;

Λ3ðxÞ ¼
heðξ� 2ξ2 þ ξ3 þ 1

2 ðξ� ξ2ÞΦÞ
1þ Φ

;

ð40Þ

Λ4ðxÞ ¼ 0; Λ5ðxÞ ¼ 3ξ2 � 2ξ3 þ ξΦ
1þ Φ

;

Λ6ðxÞ ¼
heð�ξ2 þ ξ3 � 1

2 ðξ� ξ2ÞΦÞ
1þ Φ

;

Θ1ðxÞ ¼ 0; Θ2ðxÞ ¼ 6ð�ξþ ξ2Þ
heð1þ ΦÞ ;

Θ3ðxÞ ¼ 1� 4ξþ 3ξ2 þ ð1� ξÞΦ
1þ Φ

;

ð41Þ

Θ4ðxÞ ¼ 0; Θ5ðxÞ ¼ 6ðξ� ξ2Þ
heð1þ ΦÞ ; Θ6ðxÞ ¼ �2ξþ 3ξ2 þ ξΦ

1þ Φ
;

where ξ ¼ x=he is the dimensionless axial coordinate and Φ ¼ 12EI
GAksh2e

is

the shear deformation parameter.
The elements of the mass and stiffness matrices for finite element

beam model:
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Ke
ij ¼

Z he

0
EA

@Γi

@x
@Γj

@x
þ EI

@Θi

@x
@Θj

@x
þ GAks Θi � @Λi

@x

� �
Θj � @Λj

@x

� ��

þkwΛiΛj þ kuΓiΓj � N0
@Λi

@x
@Λj

@x

�
dx; ð42Þ

Me
ij ¼

Z he

0
ρAΓiΓj þ ρIΘiΘj þ ρAΛiΛj
� 

dx; ð43Þ

Re
ij ¼

Z he

0
∑
M

p¼1
Mpδðx � apÞΓiΓj þ ∑

M

p¼1
Mpδðx � apÞΛiΛj

 !
dx; ð44Þ

where matrix Re represents the additional mass matrix due to attached
point masses on the beam.
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This paper proposes the methodology to carry out the analysis of Bloch wave propagation
in an array of vertically aligned and elastically connected structural elements such as
beams, strings, plates, or other slender structures. The suggested approach is based on
the Galerkin approximation and Floquet-Bloch theorem used in defining the eigenvalue
problem and obtaining the band structure of the periodic systems. Special attention is
devoted to the case of elastically connected Rayleigh beams with attached concentrated
masses and wave propagation in the direction normal to the beam’s length. A validation
study is performed by using the finite element model and the frequency response function
to confirm the accuracy of the solution obtained via the Galerkin approximation. Two con-
figurations of unit cells, having two and three elastically connected beams with different
geometrical and material properties, are considered in the numerical study. The effects
of various parameters are investigated to reveal their influence on the frequency band
structure and emergence of the zero-frequency bandgap. The results of this study demon-
strates the tunability properties of the proposed periodic systems due to changes in values
of concentrated masses, stiffness of the coupling medium or boundary conditions on struc-
tural elements within the unit cell.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Some early notable contributions by Mead and co-workers [1] in the field of harmonic wave propagation analysis in peri-
odic structures motivated many researchers. The main attention in those works was given to one-dimensional [2–4] and
two-dimensional periodic structures [5]. It is a well-known fact that waves propagating in a homogeneous continuum are
non-dispersive. Contrarily, in a heterogeneous structured medium such as beams and plates, dispersion occurs due to the
presence of physical boundaries. Another characteristic of heterogeneous medium, which might be the consequence of
microstructural properties or structural interfaces, is the existence of bandgaps as frequency intervals at which waves decay
exponentially. This implies difference between homogeneous and heterogeneous medium that was demonstrated in [6],
where flexural harmonic waves propagating within the bi-coupled periodic system composed of Euler-Bernoulli beams have
been analyzed in great detail. The authors have demonstrated that periodicity, which introduces the internal length, causes
the dispersion curve to be reflected at the boundary of the first Brillouin zone. This makes it possible to apply the Floquet-
Bloch theory and obtain the dispersion relation that allows one to distinguish pass-bands, the frequencies of the waves that
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propagate without attenuation, and stop-bands (bandgaps) where the waves decay exponentially. However, in that study
only the bi-coupled continuous and discrete systems rigidly connected in series and parallel were considered. Here, the main
focus is put on specific type of heterogeneous systems composed of an array of parallel and elastically connected periodic
slender structures of the same length/width and boundary condition by studying the wave propagation along the array.

A good example of harmonic axial wave propagation in one-dimensional quasiperiodic-generated structured rods was
investigated in [7], which is given as an infinite bar with repeated elementary cells designed by using the Fibonacci substi-
tution rules. Propagation of a transition wave in a more complex system composed of a finite heterogeneous discrete beam
strip with periodically placed masses and subjected to the harmonic load was investigated in [8]. Some authors devoted spe-
cial attention to problems of flexural waves propagation in structures resting on elastic foundation due to the relevance of
this subject in various engineering applications.These application examples include models of infinite beams on elastic sup-
port carrying a dynamic load that represent slabs, rails or road pavements. The effects of compressive load and support’s
damping on the dispersion characteristic and transient response of a beam lying on elastic foundation of Winkler type is
investigated in [9]. A more complex case was studied in [10] by analyzing the wave propagation and attenuation properties
in ordered and disordered periodic composite beams on elastic foundations due to moving loads. It has been shown that one-
dimensional discrete flexural systems composed of massless beams connecting periodically placed masses can be used to
approximate the Rayleigh’s beam on elastic foundation in the long-wavelength limit [11]. In [12], the authors investigated
the existence of localized modes in a set of quasi-periodic continuous elastic beams with attached array of ground springs. It
is shown that vibration modes are first localized at a boundary and then migrate into a bulk for a varied projection param-
eter. The structured Rayleigh beams on the elastic foundation that can exhibit dispersion wave characteristics and localized
wave-forms were analysed in [13]. Moreover, the influence of pre-stress on the bandgap formation of the elastic beam on
elastic foundation was studied in [14]. The authors introduced repeated elementary cells generated by adopting the Fibo-
nacci sequence and then solved the eigenvalue problem by using the transmission matrix of the unit cell and the Bloch solu-
tion. By considering the Rayleigh beam theory, the free and forced wave propagation in an elastic grid structure was analysed
in [15], where several forms of vibration localization and wave channeling were observed. It was demonstrated that the
localization is triggered by several parameters such as rotation inertia and external excitation. By considering the complex
beam model suggested in [16], an energy harvesting device was developed based on the metamaterials design, showing
great applicability in surface wave control.

Most of the wave dispersion analyses of two-dimensional multi-structural systems in the literature are devoted to the
frame-like structures representing multi-story buildings [17], hexagonal chiral lattices [18] or shell structures [19]. Available
wave propagation studies of multi structural systems are mostly limited to the analysis of beams rigidly connected through
periodically distributed ribs [20] or sandwich structures with a soft [21] or auxetic core [22]. In [21], the authors employed
the asymptotic method to analyze a long-wave dynamic model of two layers adhesively connected by a thin and soft core.
Particularly, they analyzed the propagation of waves along the thin interface layer and reviled some interesting effects such
as coupling between the longitudinal and transverse displacements associated with a slow motion, and longitudinal dis-
placement jumps related to fast motion. Similar problems has been addressed by other authors [23], where also asymptotic
method was applied to study wave propagation in a three layer beam with a thin and soft core in the middle. In [24] the
authors demonstrated that dynamics of two beams bonded by adhesive joint can be approximately represented by the Win-
kler and Pasternak type elastic layers for different boundary conditions. This paved the way for dynamic studies of sandwich
beams [25], multi-beam [26] and multi-plate [27] systems coupled through discrete elastic or viscoelastic layers. If beam,
plate or membrane structures are coupled, they are observed as layered systems having unique band structure properties
[28,29] with a great potential for applications in wave absorption [30] and topological waveguiding [31].

According to [32], one can distinguish two main approaches to form the eigenvalue problem for wave propagation anal-
ysis in periodic structures.The first and the oldest is the inverse approach, where the propagation constant of a periodic
structure is fixed while the unknown frequencies need to be computed. The second is the direct approach, which was later
developed to avoid certain deficiencies of the inverse approach, but ill conditioning of the eigenvalue problem and possible
low machine precision set limitations to this approach. Therefore, in [32] the authors proposed a combination of these two
approaches when defining the eigenvalue problem. Different methods are used in the literature such as plane wave expan-
sion [33], transfer matrix [34], finite element [35] or finite difference method [36], which all belong to the inverse
approaches. In [37], the authors named the therein presented approach as the inverse method, where the band structure
is determined without explicitly including the terms related to the material and geometrical properties except for the lattice
constant, i.e. from the response of the system instead of using a model, as it is done in the majority of the methods available
in the literature. Moreover, an interesting study [38] of elastic wave propagation in two-component laminates revealed the
universal structure of its frequency spectrum independent of the geometry of the periodic-cell and the specific physical
properties. In this study, an inverse Floquet-Bloch approach is applied to define the eigenvalue problem, where the corre-
sponding inverse state-vector is formed after performing the discretization procedure.

The concept of locally resonant metamaterials is often used to form the periodic systems with low frequency bandgaps, in
which the lattice dispersion characteristics depend on the modal behaviour of the host structure with its resonators [39].
Modal analysis was shown to be very useful in the nonlinear periodic structure analysis, were the Galerkin approximation
method is applied to study the multi-mode vibration absorption capability of a nonlinear metamaterial Euler-Bernoulli beam
coupled to a distributed array of nonlinear spring-mass subsystems behaving as local vibration absorbers [40]. Similar
methodology was applied in [41], where frequencies of the attached resonators are tuned exactly to targeted modes of a non-
2
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linear metamaterial beam. In [42], a general approach for estimation of the band structure of metamaterials with locally res-
onant properties is proposed. However, in [43] the authors demonstrated that the Bragg-type and resonance-type gaps can
co-exist, which was explained through coupled bandgaps generated in the periodic system such as rod with multiple inter-
nal resonators. Since the first introduction of periodic materials with internal resonators [44], the mechanism responsible for
the opening of locally resonant bandgaps has been investigated in a number of studies [45–47]. In [48] the authors identified
the conditions for the transition between Bragg scattering and local resonance and showed the effects of this transition on
the lowest bandgap. This was demonstrated on the examples of different types of materials, geometric and boundary peri-
odicity in Timoshenko beams with and without elastically suspended masses. Moreover, another promissing application of
metamaterials and periodic structures lies in seismic shielding over the entire range of frequencies. According to [49], three
approaches are used to obtain shielding effects: Bragg scattering, locally resonant sub-wavelength inclusions and application
of zero-frequency stop-band media. However, all three mechanisms for bandgap formation occur in a small number of peri-
odic structures, thus providing the motivation for further investigations. Moreover, design of periodic structures is a pow-
erful concept to achieve mechanical wave filtering. Different concepts for filtering of elastic waves are suggested in the
literature. The concept based on structural interfaces, initially introduced in [50], involves a non-local mechanical behavior
and allows the achievement of special mechanical properties. It was revealed in [51] that thick interfaces separating different
regions of elastic materials introduce unique filtering characteristics that cannot be achieved with multilayered interfaces. In
this paper, a unique band structure proprieties of the herein proposed systems reveal the presence of all three requirements
needed for seismic shielding and wave filtering applications, such as the existence of zero-frequency and low-frequency
bandgaps, as well as the bandgaps at higher dispersion branches.

The present paper shows the methodology for studying the wave propagation along the array of vertically aligned and
elastically connected periodic structures (e.g. beams, plates, membranes or shallow shells) with the same boundary condi-
tions and coupling medium stiffness. The main steps in defining the problem are the derivation of the system’s governing
equations, application of multi-mode Galerkin discretization and the assumption of wave propagation in the thickness direc-
tion of structural elements using the Floquet-Bloch theory. This methodology is generalized for one-dimensional case. Fre-
quency band structure of the system is investigated by using the inverse approach to solve the eigenvalue problem and
generate dispersion curves when the propagation constant is confined to the first Brillouin zone. The paper is organized
as follows: the general mechanical model of periodic and coupled slender structures, Galerkin approximation procedure,
Floquet-Bloch theorem and definition of the eigenvalue problem are presented in Section 2. The particular problem of wave
propagation in an array of vertically aligned and elastically connected Rayleigh beams given in the so-called ”diatomic” and
”triatomic” unit cell configurations is detailed in Section 3. Section 4 shows the validation study of the methodology based on
Galerkin approximation by using the finite element model, and the parametric study of the influence of coupling medium
stiffness, concentrated masses and beam’s boundary conditions on the frequency band structure of the proposed coupled
beam-mass system.

2. Mathematical preliminaries

In order to analyze the free wave propagation in elastically connected structures such as beams, plates, strings or mem-
branes, different approaches to discretize partial differential equations are used in the literature. The exact solutions of wave
propagation problems in structural mechanics are difficult to find due to model complexities, such as specific boundary con-
ditions, shape of structural elements, concentrated masses, attached vibration absorbers, etc. Therefore, application of
approximate methods such as Rayleigh’s, Rayleigh-Ritz or Galerkin approximation method can play an important role in
solving the corresponding eigenvalue problems by approximating solutions using a finite number of mode shapes as admis-
sible functions [52].

Here, we focus our attention to application of the Galerkin approximation in combination with Floquet-Bloch theorem to
solve the corresponding eigenvalue problem. Typical unit cells of the proposed periodic system can be modelled as the dia-
tomic and triatomic chains, composed of, respectively, two and three elastically connected structural elements such as
beams or plates, Fig. 1.

2.1. The Galerkin approximation and inverse Floquet-Bloch formalism

The Galerkin approximation method belongs to a special group of weighted residual methods. The general solution of the
problem is given as a linear combination of trial functions, which are chosen such that they exactly satisfy the corresponding
boundary conditions.

Let us consider the m-th unit cell of an array of elastically connected slender structures, which is composed of several
structural elements with each one having different material (density) or geometrical properties (thickness) than others. It
is assumed that waves propagate only along the array of structural elements i.e. in the direction normal to the structures’
length/surface, which is denoted by wavy line in Fig. 1. The general unit cell model of such systems is governed by the fol-
lowing equations of motion
�iðxÞ @
2wiðx; tÞ
@t2

þPi½wiðx; tÞ� þPiþ1½wiþ1ðx; tÞ� þPi�1½wi�1ðx; tÞ� ¼ f iðx; tÞ; i ¼ 1; . . . ;p; ð1Þ
3



Fig. 1. The structural elastic models of unit cells proposed for: (a) a multi-beam-mass system formed as a diatomic unit cell and (b) a multi-plate system
modelled as a triatomic unit cell. The wavy line shows the direction of the wave propagation through the periodic slender structures.
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where p denotes the number of structures in a chosen unit cell, �iðxÞ is the inertia term of the considered element and f iðx; tÞ
is the external excitation. When p ¼ 2 the system is named diatomic chain and for p ¼ 3 it is called triatomic chain [53]. The
masses of the beams within a cell differ due to different geometrical and material properties or a different number of
attached concentrated masses. Assuming the solution of wiðx; tÞ in the form of a series of N comparison functions and time
generalized coordinates yields
wiðx; tÞ ¼
XN
k¼1

qðiÞkðtÞ/kðxÞ ¼ Cqi; i ¼ 1; . . . ; p; ð2Þ
in which qi ¼ ½qðiÞ1ðtÞ; qðiÞ2ðtÞ; . . . ; qðiÞNðtÞ�T represents the vector of time functions of the i-th structural element and
C ¼ ½/1ðxÞ;/2ðxÞ; . . . ;/NðxÞ� is the vector of the assumed mode shapes that satisfy the geometric and natural boundary con-
ditions, and which are differentiable at least up to the highest order of spacial derivative in the differential equation of
motion Eq. (1). The same boundary conditions are applied to all structural elements in the system. In general, the approx-
imated solution Eq. (2) satisfies all boundary conditions of the unit cell except for the equations of motion Eq. (1). By intro-
ducing Eq. (2) into the differential equation of motion Eq. (1), the resulting equation will define the i-th residue as
‘iðx; tÞ :¼ �iðxÞC€qi þPi½C�qi þPiþ1½C�qiþ1 þPi�1½C�qi�1 � f iðx; tÞ ¼ 0; i ¼ 1; . . . ;p; ð3Þ

where Pi½C� ¼ ðPi½/1ðxÞ�;Pi½/2ðxÞ�; . . . ;Pi½/NðxÞ�Þ. It should be noted that all the residuals will be equal to zero because trial
solution is composed of comparison functions that satisfy all the boundary conditions. According to the criteria of the Galer-
kin method, all residuals should be small. In other words, residue should have zero projection on the chosen basis functions
/jðxÞ; j ¼ 1; . . . ;N since approximated solution is placed in finite N-dimensional space. For the case of m unit cells, which
depends on the number of structural components, the solution will be extended to a number p. Therefore, multiplying
the i-th residual by comparison functions and then integrating their product over the domain of a specific structural com-
ponents gives
< ‘iðx; tÞ;/jðxÞ > :¼
Z l

0
‘iðx; tÞ/jðxÞdx ¼ 0; j ¼ 1; . . . ;N; i ¼ 1; . . . ; p: ð4Þ
Introducing the expression Eq. (3) into Eq. (4) and after integration, the set of ordinary differential equation appears with
the corresponding mass and stiffness matrices in the following form
Mi€qi þ Kiqi þ Kiþ1qiþ1 þ Ki�1qi�1 ¼ f i; i ¼ 1; . . . ; p; ð5Þ

where the elements of the mass and stiffness matrices and the force vector are determined as
Mi ¼
R l
0 �iðxÞCTCdx; Ki ¼

R l
0 C

TPi½C�dx; i ¼ 1; . . . ;p;

Kiþ1 ¼ R l
0 C

TPiþ1½C�dx; Ki�1 ¼ R l
0 C

TPi�1½C�dx; f i ¼
R l
0 C

T f idx:
ð6Þ
In general, for the m-th unit cell composed of p structural elements it holds
Mm€qmðtÞ þ KmqmðtÞ þ Kmþ1qmþ1ðtÞ þ Km�1qm�1ðtÞ ¼ Fm; ð7Þ

where the mass and stiffness matrices of the unit cell are given in Appendix A. The generalized time coordinates are given as

qm ¼ ½qð1Þ1ðtÞ; . . . ; qð1ÞNðtÞ; . . . ; qðpÞ1ðtÞ . . . ; qðpÞNðtÞ�T . To analyze the wave propagation, the harmonic solution is assumed by

neglecting the vector of external forces. Assuming that qmðtÞ ¼ �qmejxt and introducing it in Eq. (7), yields
4
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Km �x2Mm
� �

�qm þ Kmþ1�qmþ1 þ Km�1�qm�1 ¼ 0: ð8Þ

It is also assumed that unit cells are repeating periodically in the thickness direction i.e. normal to the length/surface of the
structural elements. Note that a unit cell and its neighbors in Eq. (8) may be identified by Km ¼ Ku, where Ku with u ¼ �1;0;1
denotes the previous, present and subsequent unit cell, respectively as given in [29].

For determination of dispersion characteristics of the system, the inverse method is introduced as given in [29,37]. The
dispersion curves are given by the wave frequency x as a function of propagation constant l. By considering the undamped
Bloch wave propagation, the corresponding eigenvalue problem can be formulated by using the expression given in Eq. (8).
However, only the real part of the dispersion curve without attenuation is observed.

To obtain the frequency band structure, i.e. dispersion diagrams, the solution procedure based on the Floquet-Bloch the-
orem [29] is applied to Eq. (8). The assumed plane wave solution is defined as
�qmðxÞ ¼ ~qðlÞejml; ð9Þ

in which the value of the propagation constant l is pre-set. Inserting the assumed plane wave solution Eq. (9) into Eq. (8)
yields the following linear eigenvalue problem
ðK�x2MÞ~qðlÞejml ¼ 0; ð10Þ

where the overall stiffness matrix is derived as
K ¼ K�1e�jl þ K0 þ Kþ1eþjl ¼
X

u¼�1;0;1

Kuejul
� �

: ð11Þ
The solution of the eigenvalue problem for the m-th unit cell obtained in Eq. (10) gives corresponding dispersion dia-
grams. Solution of this problem requires the propagation constant l to be known, which is taken within the First Brillouin
Zone (FBZ) fundamental period of the dispersion relation, determined for one-dimensional periodic structures in the range
�p 6 l 6 p, [53]. As stated in [29], for the wave propagation in periodic structures without attenuation, the wave propaga-
tion constant l corresponds to a real value. On the other hand, the imaginary values of the propagation constant l are
related to the spatial decay of the wave amplitude as the wave propagates through a periodic structure. The number of dis-
persion curves resulting from the solution of the eigenvalue problem directly depends on the number of connected structural
elements ðpÞ in the unit cell and the number of considered terms in the Galerkin approximation ðNÞ. The band structure
defines the position and width of pass and stop bands (bandgaps). It is well known that the pass-bands are related to the
frequency ranges where an elastic wave propagates through the periodic structure, while bandgaps are frequency ranges
where waves are attenuated.

3. Problem formulation

3.1. Motion equations of an array of elastically connected beams

In this section, an example of a periodic structure based on elastically coupled beams with concentrated masses is pre-
sented to demonstrate the efficiency of the approach based on the Galerkin approximation and Floquet-Bloch theorem. It is
well known that classical Euler-Bernoulli beam theory is often used for accurate modelling of long and slender beams,
whereas to accurately predict frequencies at higher modes of thick and short beams one should use higher order theories
such as Timoshenko’s beam theory. Lord Rayleigh developed simpler theory that includes the rotary inertia effect but with-
out the complexity of the Timoshenko’s beam theory. Nevertheless, Rayleigh’s beam theory can predict response of slender
beam structures with a satisfying accuracy.

Introducing the heterogeneity in the system is a major requirement to obtain the wave dispersion properties, which is
achieved by taking into account diatomic and triatomic unit cell configurations with two and three elastically connected
beams, respectively, having different material or geometrical properties such as density or beam’s height. It is assumed that
unit cells are periodically distributed in z- direction to infinity, as shown in Fig. 2. Moreover, identical boundary conditions
are assumed for all beams within the system (unit cells), which are mutually connected through the continuously distributed
springs i.e. Winkler’s type of elastic medium. In this analysis, two types of beam’s boundary conditions were considered:
clamped-free (Fig. 2(a)) and simply supported (Fig. 2(b)).

By introducing the assumptions from the Rayleigh’s beam theory [13,52], the governing equation of motion for the infi-
nite periodic system, with p structural elements in the unit cell, can be derived by using the Hamilton’s principle as
EsiIsi
@4wsi
@x4 þ kðwsi �wðs�1Þði�1ÞÞ þ kðwsi �wðsþ1Þðiþ1ÞÞ � qsiIsi

@4wsi
@t2@x2

þ qsiAsi þ
XMsi

b¼1

MbðsiÞdðx� abðsiÞÞ
" #

@2wsi
@t2

¼ f siðx; tÞ;
ð12Þ
where wsi ¼ wsiðx; tÞ and f si ¼ f siðx; tÞ are the transverse displacement and external load, respectively of the s-th beam in the
multiple beam system, and i-th beam in the unit cell, while k is the stiffness of Winkler’s elastic medium. The indices i and s
5



Fig. 2. Periodic system of elastically connected Rayleigh beams with concentrated masses (a) the clamped-free and (b) the simply-supported boundary
conditions. The unit cell composed of two elastically connected Rayleigh beams is named diatomic cell.
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can take the following values, s ¼ 1;2;3 . . .and i ¼ 1;2; . . . ; p, where p is the number of beams in the unit cell. The material
and geometrical characteristics of the si-th beam are given by Young’s modulus Esi , mass density qsi, cross-sectional area Asi

and moment of inertia Isi. The term MbðsiÞ denotes the b-th attached point mass on the position abðsiÞ in the axial direction of
each beam in the system.

The adopted boundary conditions for clamped-free (CF) and simply-supported (SS) beams are given as
wsið0; tÞ ¼ @wsið0; tÞ
@x

¼ @2wsiðL; tÞ
@x2

¼ @3wsiðL; tÞ
@x3

¼ 0; ð13Þ
and
wsið0; tÞ ¼ @2wsið0; tÞ
@x2

¼ wsiðL; tÞ ¼ @2wsiðL; tÞ
@x2

¼ 0: ð14Þ
The initial conditions are taken to be zero.
Taking into consideration the m-th unit cell of the periodic structure modeled as diatomic p ¼ 2 and triatomic p ¼ 3 sys-

tem, the governing equations can be reduced to
diatomic unit cell:
E1I1
@4wm

@x4
þ kðwm �wm�1Þ þ kðwm �wmþ1Þ ð15Þ

þ q1A1 þ
XM1

b¼1

Mbð1Þdðx� abð1ÞÞ
" #

@2wm

@t2
� q1I1

@4wm

@t2@x2
¼ f mðx; tÞ;

E2I2
@4wmþ1

@x4
þ kðwmþ1 �wmÞ þ kðwmþ1 �wmþ2Þ ð16Þ

þ q2A2 þ
XM2

b¼1

Mbð2Þdðx� abð2ÞÞ
" #

@2wmþ1

@t2
� q2I2

@4wmþ1

@t2@x2
¼ f mþ1ðx; tÞ;
triatomic unit cell:
E1I1
@4wm

@x4
þ kðwm �wm�1Þ þ kðwm �wmþ1Þ ð17Þ

þ q1A1 þ
XM1

b¼1

Mbð1Þdðx� abð1ÞÞ
" #

@2wm

@t2
� q1I1

@4wm

@t2@x2
¼ f mðx; tÞ;
6
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E2I2
@4wmþ1

@x4
þ kðwmþ1 �wmÞ þ kðwmþ1 �wmþ2Þþ ð18Þ

q2A2 þ
XM2

p¼1

Mbð2Þdðx� abð2ÞÞ
" #

@2wmþ1

@t2
� q2I2

@4wmþ1

@t2@x2
¼ f mþ1ðx; tÞ;

E3I3
@4wmþ2

@x4
þ kðwmþ2 �wmþ1Þ þ kðwmþ2 �wmþ3Þþ ð19Þ

q3A3 þ
XM3

p¼1

Mbð3Þdðx� abð3ÞÞ
" #

@2wmþ2

@t2
� q3I3

@4wmþ2

@t2@x2
¼ f mþ2ðx; tÞ:
3.2. Defining the eigenvalue problem

In order to analyse the free wave propagation through the periodic structure, the approach based on the Galerkin dis-
cretization and Floquet-Bloch theorem is applied for the chosen unit cell defined in the previous section. The main objective
is to determine the band structures by detecting stop and pass bands in order to demonstrate the applicability of the pre-
sented methodology. In the following, derivations are given for the diatomic chain system, which can be easily extended
to the triatomic case.

The first step is to discretize the motion equations of the unit cell by using the Galerkin approximation, which for the
i� th beam in the m� th unit cell is defined as
wiðx; tÞ ¼
XN
k¼1

qðiÞkðtÞ/kðxÞ; i ¼ 1; . . . ; p; ð20Þ
where qðiÞkðtÞ and /kðxÞ are the k� th generalized time function and assumed trial (mode shape) function of the i� th beam.
N is the number of terms in the Galerkin approximation series. Inserting Eq. (20) into the equations for unit cell Eq. (15)–(19)
yields
XN
k¼1

EiIiqðiÞk/
0000
k þ

XN
k¼1

2kqðiÞk/k þ
XN
k¼1

qiAi þ
XMi

b¼1

MbðiÞdðx� abðiÞÞ
" #

€qðiÞk/k�

�
XN
k¼1

qiIi€qðiÞk/
00
k �

XN
k¼1

kqði�1Þk/k �
XN
k¼1

kqðiþ1Þk/k � f iðx; tÞ ¼ ‘iðx; tÞ; i ¼ 1; . . . ;p;

ð21Þ
where ‘i is the i� th non-zero residue obtained from the introduced approximated solution. By multiplying the above
expression with the j� th trial function /j for j ¼ 1;2; . . . ;N and integrating over the beam’s length, the following system
of equations is obtained
XN

k¼1

EiIi
R L
0 /

0000
k /jdx

� �
qðiÞk þ

XN
k¼1

2k
R L
0 /k/jdx

� �
qðiÞkþ

þ
XN
k¼1

R L
0 qiAi þ

XMi

b¼1

MbðiÞdðx� abðiÞÞ
" #

/k/jdx

 !
€qðiÞk�

�
XN
k¼1

qiIi
R L
0 /

00
k/jdx

� �
€qðiÞk �

XN
k¼1

k
R L
0 /k/jdx

� �
qði�1Þk�

�
XN
k¼1

k
R L
0 /k/jdx

� �
qðiþ1Þk ¼

R L
0 f iðx; tÞ/jdx

� �
; i ¼ 1; . . . ;p:

ð22Þ
or in a more compact form as
XN
k¼1

MðiÞ
jk
€qðiÞk þ

XN
k¼1

KðiÞ
jk qðiÞk þ

XN
k¼1

BðiÞ
jk qðiþ1Þk þ

XN
k¼1

BðiÞ
jk qði�1Þk ¼ FðiÞ

j ; i ¼ 1; . . . ;p:; ð23Þ
where
MðiÞ
jk ¼ R L

0 qiAi þ
XMi

b¼1

MbðiÞdðx� abðiÞÞ
" #

/k/jdx

 !
� qiIi

R L
0 /

00
k/jdx

� �
;

KðiÞ
jk ¼ EiIi

R L
0 /

0000
k /jdx

� �
þ 2k

R L
0 /k/jdx

� �
;

BðiÞ
jk ¼ �k

R L
0 /k/jdx

� �
; FðiÞ

j ¼ R L
0 f iðx; tÞ/jdx; i ¼ 1; . . . ;p:

ð24Þ
7
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To apply the solution based on the Floquet-Bloch’s theorem, the expression given in Eq. (23) should be rewritten in the
matrix form that is more convenient for the following analysis. By assuming a harmonic solution for the generalized time
functions and neglecting the external load, the system of Eqs. Eq. (23) for m� th unit cell takes a new form
DmðxÞ~qm þ Kmþ1~qmþ1 þ Km�1~qm�1 ¼ 0; ð25Þ

where DmðxÞ is related to the dynamic stiffness matrix of the unit cell, and matrices Kmþ1 and Km�1 denote additional stiff-
ness defined for the triatomic chain model as
DmðxÞ ¼
K1 0 0
0 K2 0
0 0 K3

2
64

3
75�x2

M1 0 0
0 M2 0
0 0 M3

2
64

3
75

0
B@

1
CA; ð26Þ

Kmþ1 ¼ Km�1 ¼
B1 0 0
0 B2 0
0 0 B3

2
64

3
75;
and the vectors of generalized coordinates are
~qm ¼
qm

qmþ1

qmþ2

2
64

3
75; ~qm�1 ¼

qm�1

qm

qmþ1

2
64

3
75; ~qmþ1 ¼

qmþ1

qmþ2

qmþ3

2
64

3
75: ð27Þ
By inserting the solution Eq. (9) into the Eq. (25), the following eigenvalue problem is obtained
~DðxÞ~qðlÞejml ¼ 0; ð28Þ

where the dynamic stiffness matrix is derived as
~DðxÞ ¼ ~K�1e�jl þ ~K0 þ ~Kþ1eþjl �x2 ~M: ð29Þ

Solving the eigenvalue problem Eq. (28) for given values of propagation constant l, one can obtain the corresponding dis-

persion curves of the system. It can be noticed that the obtained eigenvalue problems are similar to the ones derived for
equivalent discrete models of diatomic and triatomic phononic crystals, having two and three different masses within the
unit cell, respectively. Similar conclusions are brought in [31], where topological pumping was studied in a similar system
of elastically coupled beams. In this study the main focus is put on the investigation of wave propagation in a heterogeneous
systems of elastically connected beams with unit cell configurations having two and three beams of different geometrical or
material properties.

4. Numerical study

In this section, the frequency band structures of a periodic system based on multiple elastically connected Raleigh beams
with concentrated masses is investigated by using the methodology elaborated in Section 3. Two different unit cell config-
urations, such as diatomic and triatomic chain systems, are adopted in the numerical study. The results obtained by the
Galerkin approximation and Floquet-Bloch theory are validated against the results from the finite element model and those
obtained by the frequency response function (FRF). The effects of coupling medium stiffness k and concentrated masses Mp

on the band structure of the system are examined in detail. Additionally, the influence of boundary conditions, number of
adopted terms in the Galerkin approximation and different unit cell configurations are studied and discussed. To achieve
the desired wave dispersion properties, the heterogeneity of the system is introduced by assuming beams in the unit cell
with different material or geometrical properties. Numerical simulations are performed for N ¼ 5 terms in the Galerkin
approximation. Moreover, in validation study, the finite element (FE) method is used to determine the frequency band struc-
ture and to compare the results obtained by the Galerkin approximation, where fine agreement is achieved. More details on
FE models of multiple beam systems can be found in [54,26]. In the presented study every beam in the unit cell is approx-
imated by considering nele ¼ 50 Rayleigh beam elements.

4.1. Validation

The presented FRF solution is obtained by taking the same number of terms in the Galerkin approximation as in the
Floquet-Bloch analysis, and a finite number of unit cells. The following material and geometrical parameters are used in sim-

ulations if not specified differently: the cross-sectional area A ¼ bh and the second moment of inertia I ¼ bh3

12 for the first beam
in the unit cell with height h ¼ 0:003ðmÞ and width b ¼ 0:02ðmÞ. Length of all beams in the system is adopted as L ¼ 0:8ðmÞ,
while mass density of the first beam is given as q ¼ 1190:0ðkg=m3Þ, elastic modulus as E ¼ 3:2 � 109ðPaÞ and the number of
concentrated masses per beam as M ¼ 3, each weighting one third of beam’s weight. The positions of attached point masses
8



D. Karličić, M. Cajić, S. Paunović et al. Mechanical Systems and Signal Processing 155 (2021) 107591
are identical for each beam in the system, where ab ¼ 1
3 ;

1
2 ;

2
3

� �
L. In order to analyse the harmonic response using FRF, the sys-

tem with ten connected unit cells is observed. The harmonic force is applied at the middle of the first beam for the simply
supported boundary conditions and at the free end of the beam for the clamped-free case. The response is measured at the
last beam in the periodic system, where the first beam is those where the coordinate system is placed. The stiffness of the
coupling Winkler’s type elastic medium is adopted as k ¼ 100ðN=m2Þ. Moreover, Table 1 shows properties of beam elements
within the unit cell of a periodic structure in four different configurations with simply supported (SS) and clamped-free (CF)
boundary conditions for diatomic and triatomic unit cell configurations. Here, all calculations are given for the normalized

frequency given as X ¼ x=x0, wherex0 ¼ p2

L2

ffiffiffiffiffiffiffiffi
E1 I1
q1A1

q
is the first natural frequency of the simply-supported beam. Fig. 3 shows

comparison of the band structures of systems with elastically connected beams and attached concentrated masses, given in
the diatomic and triatomic unit cell configurations, against FRF results of the equivalent system with a finite number of unit
cells. Simulations are performed for the five considered terms in the Galerkin approximation andmode shapes of simply sup-
ported beams adopted as admissible functions. One can notice similar stop-bands (colored in yellow) and transmission-
bands in both the dispersion and FRF diagrams. One can be observe five bandgaps starting from narrower and lower fre-
quency bandgaps and than going to wider and higher frequency bandgaps. In the case of the triatomic configuration given
in Fig. 3 b), a higher number of bandgaps can be identified. Here, eight bandgaps can be noticed in the given frequency range
in both the dispersion and FRF diagrams. Similar to the previous case, the narrowest bandgap is located at lower frequency
dispersion curves while the others are slightly wider. Moreover, in both configurations one can notice a very narrow bandgap
at the lowest possible frequency usually named zero-frequency bandgap, whose appearance can be attributed to the pres-
ence of the coupling Winkler type of elastic medium [12] or boundary conditions [49]. Additional validation is performed by
comparing the dispersion curves obtained via Galerkin approximation and those obtained via the FE model and Floquet-
Bloch solution that are marked as red circles in the figures. Comparison of the obtained dispersion characteristics using these
two approaches shows excellent agreement of the results.

In Fig. 4, dispersion curves are given for the diatomic and triatomic unit cell configurations of the periodic system of elas-
tically connected beams with five terms in the Galerkin approximation and mode shapes of clamped-free beams adopted as
trial functions. One can observe several stop and transmission bands in both diatomic and triatomic configurations and good
correspondence between the dispersion curves and FRF responses. It is obvious that lower frequency bandgaps are narrower
than those at higher frequency ranges. In the clamped-free case the lower bandgap is shifted to higher frequency than in the
simply supported case. The comparison of the Galerkin approximation results with the results from the FE model shows good
agreement. The validation demonstrated the applicability, accuracy and simplicity of the proposed approach in analysing the
band structure of the complex periodic system of elastically connected Rayleigh beams with concentrated masses that will
be used in the following parametric study. Moreover, one can also notice that the introduction of the clamped-free boundary
conditions on beams reduces the width of the initial zero-frequency bandgap.
4.2. Parametric study and discussion

The effects of beams’ material/geometrical properties and boundary conditions
The effects of different geometrical properties as well as boundary conditions of beams in the unit cell of the proposed

periodic system are investigated to reveal their influence on the frequency band structure. To see these effects, first periodic
Table 1
The values of parameters used in simulations of diatomic and triatomic unit cell configurations, whit results plotted in Figs. 3 and 4.

SS boundary conditions

diatomic UC triatomic UC

Beam 1 Beam 2 Beam 1 Beam 2 Beam 3

E1 ¼ E E2 ¼ E E1 ¼ E E2 ¼ 2E E3 ¼ 3E
q1 ¼ q q2 ¼ q q1 ¼ q q2 ¼ q q3 ¼ q

I1 ¼ bh3

12 I2 ¼ bð2hÞ3
12

I1 ¼ bh3

12 I2 ¼ bð2hÞ3
12

I3 ¼ bh3

12

A1 ¼ bh A2 ¼ 2bh A1 ¼ bh A2 ¼ 2bh A3 ¼ bh
Mb ¼ 1

3qAL Mb ¼ 1
3qAL Mb ¼ 1

2qAL Mb ¼ 1
2qAL Mb ¼ 1

2qAL

CF boundary conditions

diatomic UC triatomic UC

Beam 1 Beam 2 Beam 1 Beam 2 Beam 3

E1 ¼ E E2 ¼ 3E E1 ¼ E E2 ¼ 2E E3 ¼ 3E
q1 ¼ q q2 ¼ q q1 ¼ q q2 ¼ q q3 ¼ 1:5q

I1 ¼ bh3

12 I2 ¼ bð2hÞ3
12

I1 ¼ bh3

12 I2 ¼ bð2hÞ3
12

I3 ¼ bh3

12

A1 ¼ bh A2 ¼ 2bh A1 ¼ bh A2 ¼ 2bh A3 ¼ bh
Mb ¼ 1

3qAL Mb ¼ 1
3qAL Mb ¼ 1

2qAL Mb ¼ 1
2qAL Mb ¼ 1

2qAL
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Fig. 3. The frequency band structure of the diatomic and triatomic unit cell configurations of the periodic system of elastically connected Rayleigh beams
with simply supported boundary conditions and FRF diagrams of the equivalent periodic system with ten unit cells. Blue doted lines are dispersion curves
for the five terms in Galerkin approximation and red circles are results from the finite element model. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 4. The frequency band structure of the diatomic and triatomic unit cell configurations of the periodic system of elastically connected Rayleigh beams
with clamped-free boundary conditions and FRF diagrams of the equivalent periodic system with ten unit cells. Blue doted lines are dispersion curves for
the five terms in Galerkin approximation and red circles are results from the finite element model. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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systems with diatomic and triatomic unit cell configurations are considered having two and three elastically connected iden-
tical beams, respectively for simply-supported and clamped-free boundary conditions, Fig. 5. Here, the same values of
parameters as in the validation study are adopted except all the beams have the same cross sectional area, thus, having
the same material and geometrical characteristics. The number of adopted terms in the Galerkin approximation is N ¼ 5.
It can be observed that there are four bandgaps plus the zero-frequency bandgap for the simply-supported boundary con-
ditions case and only three bandgaps in the clamped-free boundary condition case. The reason for the lower number of vis-
ible dispersion curves is related to their overlapping due to identical beams in the unit cell having the same eigenfrequency
properties. This means that the proposed system with identical unit cells can be represented by a monoatomic unit cell con-
figuration with a single beam, which will generate the same band structure similar to discrete monoatomic chains. Lower
bandgaps are narrower compared to the one at higher frequency, whereas the lowest bandgap in the clamped-free case is
shifted to higher frequency compared to the simply supported case. In general, the case with identical beams exhibits a great
wave attenuation potential since wide bandgaps are achieved with a minimal number of transmission-bands in between.
10



Fig. 5. The frequency band structure of a periodic system with elastically connected beams and concentrated masses determined for five terms considered
in Galerkin approximation. The unit cell configurations are based on coupled two and three identical beams, for two types of boundary conditions (a)
simply-supported and (b) clamped-free.
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The next figure shows the effects of different geometrical (cross sectional area) properties and boundary conditions of
beams within the diatomic and tri atomic unit cell configurations on the frequency band structure diagrams. Fig. 6(a) shows
eight regular bandgaps and one very narrow zero-frequency bandgap in the diatomic unit cell configuration and nine regular
and one narrow zero-frequency bandgap in the triatomic case. The main difference between these two cases is in the number
of dispersion curves witch is greater for the triatomic case due to the additional beam introduced in the unit cell. Fig. 6(b)
shows the same unit cell models but for the clamped-free boundary conditions. It can be noticed that five bandgaps are
obtained in the diatomic configuration and six for the triatomic case. However, additional zero-frequency band gaps in both
cases are very narrow, almost invisible. Except for the additional bandgap at highest frequency there is no significant differ-
ence in width between other bandgaps. The first bandgap at the lowest frequency is the narrowest, which could be attributed
to the local resonance nature of certain bandgaps. Generally, the effect of clamped-free boundary conditions is reflected in
the vanishing of one bandgap at lower frequencies and the narrowing of other bandgaps. Different cross sectional areas of
beams in Fig. 6 results in their different eifenfrequency properties and consequently in different dispersion characteristics. In
this case, there is no overlapping of curves and higher number of dispersion branches can be detected compared to the case
with identical beams for the same frequency range.
Fig. 6. The frequency band structure of a periodic system with elastically connected beams and concentrated masses determined for five terms considered
in the Galerkin approximation. The diatomic and triatomic unit cell configurations are based on coupled two and three beams with different geometrical
properties, and for two types of boundary conditions (a) simply-supported and (b) clamped-free.
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4.3. The effect of the stiffness of Winkler’s coupling medium

Here, the influence of the stiffness of elastic medium on the band structure of the periodic system is investigated for the
diatomic and triatomic unit cell configurations and five terms considered in the Galerkin approximation. The values of
adopted parameters are the same as those in the validation study, except for the stiffness of the elastic medium. Fig. 7 shows
a cross section of the band structure 3D plot for simultaneous change of the propagation constant l and stiffness of the elas-
tic medium k given in the horizontal axis. One can observe nine bandgaps for lower values of the stiffness parameter (white
backgrounds). The first bandgap at the lowest frequency range is the narrowest while the widest one is located at the highest
frequency range. The number and width of bandgaps reduces for further increase of the stiffness parameter. From the phys-
ical point of view, increasing the stiffness of the Winkler elastic medium increases the overall stiffness of the system. Differ-
ent band structure can be observed in the case of triatomic unit cell configurations, where one can observe a larger number
of bandgaps but with similar behavior when increasing the stiffness parameter. Moreover, Fig. 8 shows equivalent periodic
systems but for the clamped-free boundary conditions on beams. This system is even more sensitive to variation of the stiff-
ness parameter whose increase can significantly reduce the number and width of bandgaps. In the triatomic configuration
case, there are initially more bangaps but their number is also reduced when increasing the stiffness parameter. Narrow and
lower frequency bandgaps can be easily eliminated by increasing the stiffness parameter. The overall characteristic of all pre-
sented examples is that transmission bands are very narrow at higher frequencies.

4.4. The effect of concentrated masses

The effect of concentrated masses on dispersion curves of the periodic system of elastically connected beams in diatomic
and triatomic unit cell configurations is investigated in this sub-section for five terms in Galerkin approximation. Beams in
the unit cell have different cross sectional areas like in the previous examples. The values of parameters are adopted the
same as in the validation study except for the values of concentrated masses. The main reason for introducing the concen-
trated masses is possibility to change the mass distribution and therefore the band structure of the periodic system without
changing its geometrical properties. In this analysis, figures are also obtained as a cross section i.e. dispersion surface of a 3D
plot obtained by changing the propagation constant l and values of the attached point masses Mp (horizontal axis).There-
fore, Fig. 9 shows the effect of change of concentrated masses on the band structure of the proposed periodic system for sim-
ply supported beams. One can observe nine bandgaps (white surfaces) for lower values of masses, including the zero-
frequency bandgap. Similar to the previous examples, lower frequency bandgaps are narrower, while those at higher fre-
quencies are wider. An increase of mass decreases the bandgaps’ width while the zero-frequency bandgap vanishes. In addi-
tion, all the remaining bandgaps are shifted towards lower frequencies due to the well known feature of beam-mass systems
that an increase of values of concentrated masses reduces the values of natural frequencies. Similar behaviour can be noticed
in both periodic systems with diatomic and the triatomic unit cell configurations, except the latter has greater number of
bandgaps. Furthermore, similar tendencies in the band structure behaviour can be observed in Fig. 10 for the same system
but with the cantilever beams. In the case of small values of concentrated masses there are six bandgaps including the zero-
frequency bandgap. The narrowest bandgap is at the lowest, while the widest is at the highest frequency. However, an
Fig. 7. The cross section of 3D frequency band structure diagrams for five terms in the Galerkin approximation and diatomic and triatomic unit cell
configurations with simply supported beams. The surfaces are obtained by solving the eigenvalue problem from Eq. (29) and by changing the propagation
constant l and the stiffness of elastic coupling medium k.
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Fig. 8. The cross section of 3D frequency band structure diagrams for five terms in the Galerkin approximation and diatomic and triatomic unit cell
configurations with clamped-free beams. The surfaces are obtained by solving the eigenvalue problem from Eq. (29) and by changing the propagation
constant l and the stiffness of elastic coupling medium k.

Fig. 9. The cross section of 3D frequency band structure diagrams for five terms in Galerkin approximation and diatomic and triatomic unit cell
configurations with simply supported beams. The surfaces are obtained by solving the eigenvalue problem from Eq. (29) and by changing the propagation
constant l and the stiffness of elastic coupling medium Mp .
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increase of the mass quickly eliminates the lowest frequency bandgaps, including the zero-frequency bandgap, and it also
narrows the others. One can also notice shifting of the bandgaps towards lower values of frequency. However, in the case
of triatomic configuration, the frequency ranges and the number of bandgaps for the same values of concentrated masses
are different. Moreover, a veering phenomenon can be noticed in frequency dispersion plots, which is known from the lit-
erature as a point where dispersion or frequency response curves are approaching each other without crossing and then sud-
denly diverge one from another. Appearance of this phenomenon strongly depends on the value of concentrated masses
attached to beams.

It can be outlined that the main characteristic of the proposed periodic system of elastically connected beams is that the
band structure properties can be easily changed by changing the stiffness of coupling medium and values of concentrated
masses attached to beams without changing the geometrical features of the system it self. The proposed model also shows
the existence of the zero-frequency bandgap, which is more pronounced for the simply supported boundary conditions and
certain values of concentrated masses than for the clamped-free case.
13



Fig. 10. The cross section of 3D frequency band structure diagrams for five terms in Galerkin approximation and diatomic and triatomic unit cell
configurations with clamped-free beams. The surfaces are obtained by solving the eigenvalue problem from Eq. (29) and by changing the propagation
constant l and the stiffness of elastic coupling medium Mp .
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5. Conclusions

In this work, Floquet-Bloch theorem and Galerkin approximation are suggested to study wave propagation in periodic
systems based on vertically aligned and elastically connected parallel slender structures. A particular attention is devoted
to the periodic system given as an array of elastically connected beams with concentrated masses and same boundary con-
ditions. Adjacent beams are coupled through the Winkler’s type of elastic medium given as uniformly distributed springs
along beam’s length. The eigenvalue problem is solved to determine the dispersion curves with the main assumption that
the elastic wave propagates along the array of periodically repeating structures i.e. in the direction normal to the length/-
surface of structural elements. The frequency band structure diagrams are validated by comparing them with the results
from the finite element model and the frequency response function determined for the full model of the periodic system.
Parametric study is performed to analyze the effects of different structural parameters on the frequency band structure.
The following conclusions can be drawn as a result of the presented study:

� Obtained frequency band structure of the presented periodic system of elastically connected beams reveals great poten-
tial for wave attenuation applications.

� Beams boundary conditions and different unit cell configurations have shown a significant influence on the band struc-
ture diagrams of the proposed system.

� Variation of elastic medium stiffness parameter and value of concentrated masses revealed that band structure properties
can be easily tuned without changing the geometrical properties of the system.

The proposed framework allows the study of more complex systems with elastically coupled structural elements
such as plates or membranes. This study shows potential of the proposed periodic systems to be utilized in vibration
mitigation and wave attenuation applications. Moreover, the presented model can be useful in future design of topo-
logical mechanical metamaterials based on coupled structures systems, which presents an intriguing direction for fur-
ther research.
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Appendix A. The mass and stiffness matrices

The mass and stiffness matrices determined in a general case are
Mm ¼

M1 0 0 0 . . . 0
0 M2 0 0 . . . 0
0 0 M3 0 . . . 0
. . . . . . . . . Mi . . . 0
0 0 0 0 . . . Mp

2
6666664

3
7777775

pN�pN

;

Km ¼

K1 0 0 0 . . . 0
0 K2 0 0 . . . 0
0 0 K3 0 . . . 0
. . . . . . . . . Ki . . . 0
0 0 0 0 . . . Kp

2
6666664

3
7777775

pN�pN

; ð30Þ

Km�1 ¼ Kmþ1 ¼

B1 0 0 0 . . . 0
0 B2 0 0 . . . 0
0 0 B3 0 . . . 0
. . . . . . . . . Bi . . . 0
0 0 0 0 . . . Bp

2
6666664

3
7777775

pN�pN

;

where p is the number of the structural elements in the unit cell. The size of the matrices ðMi;Ki;BiÞ inside of the global mass
and stiffness matrices are related to the number of adopted terms in the Galerkin approximation N, and defined in Eq. (6).
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a b s t r a c t

This article proposes the concept of anisotropy tailoring in multi-material lattices based on a
mechanics-based bottom-up framework. It is widely known that isotropy in a mono-material lattice
can be obtained when the microstructure has an isotropic geometry. For example, regular hexagonal
lattices with a unit cell comprised of six equal members and equal internal angle of 120o each, show
isotropy in the elastic properties. Such limited microstructural configuration space for having isotropy
severely restricts the scope of many multi-functional applications such as space filling in 3D printing.
We first demonstrate that there are multiple structural geometries in mono-material lattices that
could lead to isotropy. It is shown that the configuration space for isotropy can be expanded by
multiple folds when more than one intrinsic material is introduced in the unit cell of a lattice. We
explicitly demonstrate different degrees of anisotropy in regular geometrically isotropic lattices by
introducing the multi-material architecture. The contours of achieving minimum anisotropy, maximum
anisotropy and a fixed value of anisotropy are presented in the design space consisting of geometric
and multi-material parameters. Proposition of such multi-material microstructures could essentially
expand the multi-functional design scope significantly, offering a higher degree of flexibility to the
designer in terms of choosing (or identifying) the most suitable microstructural geometry. An explicit
theoretical characterization of the contours of anisotropy along with physical insights underpinning
the configuration space of multi-material and geometric parameters will accelerate the process of its
potential exploitation in various engineered multi-functional materials and structural systems across
different length-scales with the demand of any specific degree of anisotropy but limitation in the
micro-structural geometry.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Lattice based periodic material microstructures provide an
nprecedented opportunity to artificially engineer the global me-
hanical properties of materials based on multi-functional de-
ands of modern structural systems by identifying (or designing)

he intrinsic material distribution and structural geometry at
icro-scale. In such microstructured materials the tailorable ef-

ective macro-scale mechanical properties (such as equivalent
lastic moduli, deformation, buckling, energy absorption, vibra-
ion and wave propagation characteristics with modulation fea-
ures) are defined by the structural configuration along with
ntrinsic material properties of the constituent members. Even
hough a limited number of natural systems can show few un-
sual properties (for example, lightweight bone structures, and
uxeticity in various crystalline materials), the scope of having
ultiple desired mechanical properties to the optimum level

∗ Corresponding author.
E-mail address: tanmoy@iitk.ac.in (T. Mukhopadhyay).
ttps://doi.org/10.1016/j.eml.2020.100934
352-4316/© 2020 Elsevier Ltd. All rights reserved.
in a single natural material is rare. Most of the naturally oc-
curring materials cannot exhibit one or more of the fascinat-
ing multi-functional properties like negative Poisson’s ratio, ex-
tremely lightweight characteristics, negative stiffness, pentamode
material characteristics (meta-fluid), programmable constitutive
laws etc., which can be achieved by an intelligent and intu-
itive microstructural design [1–9]. For example, the conventional
positive effective Poisson’s ratio in a hexagonal lattice can be con-
verted to negative by considering the cell angle θ in Fig. 1 as nega-
tive (as indicated in figure 1(C–D) of the supplementary material),
or to a ‘zero’ value by intuitively designing the hexagonal unit
cell [10,11]. Recently buckling-induced instability has been uti-
lized to obtain and modulate unusual mechanical properties like
enhanced energy absorption capacity and strain rate dependent
constitutive behaviour [12–14]. Besides static properties, various
unusual and useful properties can be realized in metamaterials
under dynamic condition, such as negative bulk modulus [15],
negative mass density [16], negative Young’s modulus [17], neg-
ative shear modulus [18] and elastic cloaks [19]. These novel
class of artificially engineered materials with tailorable bespoke
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Fig. 1. Multi-material microstructure. (A) Mono-material hexagonal lattice where all the members in a unit cell are made of same material (B) Multi-material
exagonal lattice where the three constituting members in a unit cell are made of three different materials (as indicated by separate colours). The respective
nit cells with dimensions are shown using insets. Unit cell of a multi-material lattice has three different intrinsic material properties corresponding to the three
onstituting beam elements (E1 , E2 and E3). In case of unit cell of the mono-material lattice E1 = E2 = E3 = Es . In the mono-material and multi-material lattice
onfigurations shown here, if θ becomes negative, the lattice will become re-entrant that can show auxeticity i.e. negative Poisson’s ratio (refer to figure 1(C–D)
f the supplementary material). The fundamental mechanics of such lattices are normally scale-independent across micro to macro scales. From a multi-scale point
f view, even though there exists a lattice structure at microscale, the mechanical properties at macroscale could be idealized to have equivalent values of a bulk
ontinuum-like solid for further analysis. Therefore, for a structural analysis at macroscale, one only needs to consider the effective macroscale mechanical properties
ithout bothering about the microstructural geometry. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
f this article.)
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roperties have tremendous potential for applications in futuris-
ic multi-functional aerospace, mechanical, civil, electronics and
iomedical systems.
In lattice metamaterials two material properties are involved

t two different length-scales. One is the intrinsic material(s)
hich is actually the material of the constituting elements (such
s the connecting beam members shown in Fig. 1) at micro-
cale. These materials are either naturally occurring monolithic
aterials or their alloys and compounds. The intrinsic mechani-
al properties depend on the chemical composition, atomic and
olecular structure of that material. The second set of material
roperties correspond to the effective macro-scale behaviour of
he entire lattice. Such macro-scale properties depend on the
ntrinsic material properties as well as the microstructural ge-
metry of the lattice, the compound effect of which presents
s with a tremendous opportunity to achieve unprecedented
roperties that are not available in conventional monolithic ma-
erials. A unit cell based approach is often adopted to model
eriodic microstructures leading to a set of effective elastic mod-
li at macro-scale, equivalent to an idealized continuous solid
aterial [20–25]. The fundamental mechanics for lattices being
cale-independent in most cases, the research findings in this
ontext are normally applicable for a wide range of materials
nd structural forms. Two dimensional lattices of hexagonal form
an be found across nano to macro scale covering various natu-
al and artificial systems in abundance (such as nanostructures
f graphene, hBN etc., core of sandwich panels, microstructure
f multiple woods and bones, microstructure of metamaterials,
pace filling pattern for 3D printing etc.) [26–32,32–35]. In fact
exagonal tessellations can be proved to be the most efficient 2D
pace-filling pattern. Moreover, from a geometric view-point, it
an be noted that a hexagonal lattice can effectively be converted
o rectangular, rhombic and re-entrant configurations as special
ases. Such widespread relevance of hexagonal lattices has led to
ur current focus on this form of microstructure in the present
rticle while selecting a lattice configuration to demonstrate the
oncepts of anisotropy tailoring.
Most of the investigations for creating mechanical metama-

erials focus on the microstructural geometry for modulation of
hysical properties, rather than the constituent intrinsic mate-
ials. Thus, one single material, suitable for manufacturing and
2

aving adequate mechanical properties, are normally adopted
s the constituent material [36]. However, recent advances in
he area of multi-material additive manufacturing [37–39] have
ropelled the rationale for creation of a new class of metamaterial
icrostructures, where two or more intrinsic materials could
e used to form the unit cell. Such multi-material microstruc-
ures could essentially expand the multi-functional design scope
ignificantly, offering a higher degree of flexibility to the de-
igner in terms of choosing (or identifying) the most suitable
icrostructural geometry. The Majority of investigations related

o multi-functional metamaterials try an inverse identification
pproach to identify the intrinsic materials and their correspond-
ng volume fractions based on numerical algorithms [40–42].
ulti-material microstructures have shown to be a pathway for
chieving different unprecedented multi-physical properties like
ero and negative thermal expansion along with other necessary
echanical attributes [43,44]. However, physically insightful an-
lytical formulations of such systems leading to tailorable elastic
roperties are limited in the current literature. Anisotropy tai-
oring is an important design parameter for various mechanical
ystems under static and dynamic conditions, where different
tiffness components are necessary along different directions.
hus it is necessary to develop the capability of achieving dif-
erent degrees of anisotropy in microstructured materials with
ufficient options of microstructural configurations, from which a
esigner can choose the most suitable one based on various other
unctional demands and manufacturing constraints. Here we aim
o present a physics-based analytical framework for deriving
he theoretical contours of microstructures to achieve different
egrees of anisotropy in multi-material lattices.
It is widely known that isotropy in a mono-material hexagonal

attice can be obtained when the microstructure has an isotropic
eometry. For example, regular hexagonal lattices with a unit
ell comprised of six equal members and equal internal angle of
20◦ each, show isotropy in the elastic properties. Such limited

microstructural configuration space for having isotropy restricts
the scope of many multi-functional applications such as space
filling in 3D printing. In this article we first aim to demonstrate
that there could be multiple structural geometries in mono-
material lattices that could lead to isotropy. It will be shown that
the design space for isotropy can be expanded by multiple folds
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hen more than one intrinsic material is introduced in the unit
ell of a lattice. Further we will explore the possibility of having
ifferent degrees of anisotropy in regular geometrically isotropic
attices by introducing multi-material configurations. The the-
retical contours of achieving minimum anisotropy, maximum
nisotropy and any fixed value of anisotropy will be systemati-
ally presented in the design space consisting of geometric and
ulti-material parameters. In essence, we aim to decouple the

ong-standing conventional understanding between relationship
f effective (an)isotropy and (an)isotropic structural geometry by
howing that both isotropy and anisotropy (of certain specific
egree) can be achieved in a set of microstructural configura-
ions in multi-material lattices. Though we would concentrate on
exagonal lattices in this article, the basic concepts are general
nd it would be applicable to other two and three dimensional
attice geometries.

. Effective elastic moduli of multi-material lattices

In principle, multi-material lattices could have two different
orms. In the first form, the unit cell could have multiple intrinsic
aterials and it may be tessellated to construct a lattice. In the
econd form the lattice may be constructed of different unit cells
here two or more unit cells have different intrinsic material
roperties. The second form of lattice cannot be modelled using
he conventional unit cell based approach as it does not lead
o a periodic structure in the true sense. In the present article,
ur focus is on the first form of multi-material lattice where the
esirable periodicity can be achieved.
Effective elastic moduli of multi-material lattices would be

ifferent from the mono-material lattice with the same struc-
ural geometry. To present adequate insights concerning the
nisotropy tailoring in multi-material lattices, computational
odels for Young’s moduli of such lattices are required. On

he basis of a unit cell (consisting of three beam-like members
onnected at a single point, refer to Fig. 1) based approach,
losed-form analytical expressions for the effective Young’s mod-
li in two orthogonal directions are derived as a function of
he intrinsic material properties and structural geometry. In the
nalytical derivation, only bending deformation is considered,
hich is most predominant for thin-walled lattices with axially
igid members. In most of the advanced mechanical systems
ncluding space filling in 3D printing, thin-walled lattices are
referred due to the fact that it leads to a lightweight design.
In this section we will focus on the two effective Young’s

oduli Ē1 and Ē2 since they are functions of the multi-material
configuration (i.e. E1 and E2). It may be noted that the two in-
plane Poisson’s ratios are not dependent on the material proper-
ties even in case of multi-material lattices (note that the Poisson’s
ratio’s are reported to be not dependent on the intrinsic material
properties in case of mono-material lattices [20]). Expressions
of the two effective Young’s moduli for a multi-material lattice
(refer to the supplementary material for detailed derivation) can
be written as

Ē1 = 2Es (t/l)3
cos θ

(h/l + sin θ ) sin2 θ (1 + α)
(1)

Ē2 = Es (t/l)3
(h/l + sin θ )(1 + α)

2α cos3 θ
(2)

where, E1
E2

= α and E1 = αE2 = Es (E1 and E2 are the intrinsic
oung’s moduli of the two slant members, refer to Fig. 1). Here
e define degree of anisotropy as q =

Ē1
Ē2
. Note that Ē1 and

¯2 are macro-scale properties of the lattice, while E1 and E2 are
icro-scale properties of the intrinsic materials. It can be noticed

rom the above expressions that the effective in-plane elastic
3

roperties of a multi-material hexagonal lattice depend only on
he intrinsic Young’s modulus of the two slant members, whereas
aterial properties of the vertical member has no contribution.
his observation is similar to the case of mono-material hexag-
nal lattices [20]. Here t denotes thickness of the cell walls. The
ther geometric parameters involved in the expressions of Ē1 and
¯2 (such as h, l and θ ) are indicated in Fig. 1.

For α = 1, the expressions of elastic moduli for multi-
aterial lattice (refer to Eqs. (1) and (2)) reduce to the traditional
xpressions of mono-material lattice [20] as a special case. This
bservation provides an exact analytical validation of the de-
ived formulae. To validate the proposed expressions of Ē1 and
¯2 for different other values of α, we adopt a finite element
ased approach as discussed in section 2.3 of the supplementary
aterial. The finite element analysis results are presented in

igure 3 of the supplementary material along with the corre-
ponding analytical results (obtained based on Eqs. (1) and (2))
or different values of α. A good agreement between the results
f two forms of analysis can be noticed. It is also interesting
o note the increasing level of deviation between Ē1 and Ē2
for higher values of α, essentially corroborating the preliminary
vidence of the possibility of anisotropy tailoring based on multi-
aterial parameters. The exact analytical validation for α =

and finite element based numerical validation for different
alues of α generate necessary confidence to utilize the pro-
osed analytical formulae of Ē1 and Ē2 for demonstrating the
spect of anisotropy tailoring further. Three different cases will
e discussed systematically in the following sections leading to:
. isotropy (i.e. minimum anisotropy), II. maximum anisotropy
nd III. a fixed value of anisotropy. The theoretical contours in
he design space of multimaterial and geometrical parameters
f a unit cell will be presented considering all these three cases
ncluding insightful numerical results for demonstration. It can be
oted that we have used the term ‘contour’ in the context of the
urrent article to describe the microstructural configuration and
heir variations to achieve different degrees of (an)isotropy.

.1. Isotropy or minimum anisotropy

In the case of α ̸= 1, an interplay among h/l, θ and α may
ead to isotropy of the lattice. In literature, it is widely mentioned
hat Ē1 = Ē2 when h/l = 1, θ = 30◦, α = 1 [20]. The value
f Young’s modulus would be the same, not only in any two
rthogonal directions, but in all directions for an isotropic lattice.
ere we show the possibility of unexplored isotropy contours of
attice materials with multi-material as well as mono-material
i.e. α = 1) configurations. Using the condition of Ē1 = Ē2 based
n the Eqs. (1) and (2), we get[

4α
(1 + α)2

]
cos4 θ

sin2 θ
= (h/l + sin θ)2 (3)

From on the above equation, we investigate two possible cases
depending on the value of α.

First we consider the case of α = 1, that is, the lattice is made
f a single material. In such case Eq. (3) reduces to

cos4 θ

sin2 θ
= (h/l + sin θ )2 (4)

One of the solutions of Eq. (4) is

h/l + sin θ =
cos2 θ

sin θ
(5)

The above equation leads to

sin θ =
1
4

⎡⎣−

(
h
l

)
±

√(
h
l

)2

+ 8

⎤⎦ (6)
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Fig. 2. Minimum and maximum anisotropy in multi-material lattices. (A) The combination of the geometric parameters, namely, the cell angle θ and h
l resulting

n effective isotropy of a mono-material lattice at macro-scale. The classical case when h/l = 1, θ = 30◦ and α = 1 is shown by a star. (B) The combination of the cell
ngle θ and h

l resulting in effective isotropy of multi-material lattices with α =
E1
E2

varying from 0.5 to 5. (C) Isotropy contour of the cell angle θ for multi-material
lattices as a function of the multi-material parameter (α) and h

l . The point corresponding to the classical isotropic case when h/l = 1, θ = 30◦ and α = 1 is shown
by a star. (D) Maximum degree of effective anisotropy (corresponding to α = 1) as a function of the geometric parameters θ and h

l .
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q. (6) provides a set of solutions involving h/l and θ that will lead
o isotropy in mono-material hexagonal lattices (refer to Fig. 2A).
ut of this set, only one solution is widely acknowledged in the
cientific literature corresponding to the case of h/l = 1 and
= 30◦. It is important to note that the possibility of physical

tructural configuration of a honeycomb should always be kept
n mind. For example, the two solutions of Eq. (6) corresponding
o h/l = 1 are θ = 30◦ and θ = −90◦, among which the latter
ne is physically impossible.
The second solution of Eq. (4) is

/l + sin θ = −
cos2 θ

sin θ
(7)

The above equation leads to

sin θ = −
l
h

(8)

Here h and l are both positive; thus θ must be negative, i.e. the
solution corresponds to auxetic configurations. The possibility of
physical structural configuration of a honeycomb should be kept
in mind. For example, the following inequality must be satisfied
for an auxetic hexagonal configuration (θ ⩽ 0)

h ⩾ 2l sin θ (9)
 s

4

A closed-form solution for Young’s moduli can be readily obtained
corresponding to Eq. (8) as

Ē1 = Ē2 = −
Es

sin θ cos θ

(
t
l

)3

(10)

Note that θ is negative in the above equation (i.e. corresponding
to the auxetic configuration) and subsequently Ē1 and Ē2 are
ositive.
The issue of geometrically isotropic lattice requires further

xplanation to convey the thought of the authors with more
larity. By geometrically isotropic lattice, we refer to a partic-
lar microstructural geometry of mono-material lattices where
sotropy in the Young’s modulus can be achieved at macroscale.
n the context of hexagonal lattice microstructures, it is a general
isdom in the field of lattice metamaterials that such isotropy in
he elastic properties can be achieved when the cell angle θ = 30◦

nd h = l. Thus, for a hexagonal lattice, we refer to this particular
icrostructural configuration as the commonly known ‘geomet-

ically isotropic’ configuration. However, in the preceding para-
raphs, we have shown that there are multiple other solutions
or an isotropic lattice (including re-entrant microstructure) with
ono-material configuration besides the conventionally reported
olution corresponding to h/l = 1 and θ = 30◦. The domain of
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Fig. 3. Realization of fixed degree of anisotropy. (A) Anisotropy contour for q = 0.5. (B) Anisotropy contour for q = 1.5. (C) Anisotropy contour for q = 2. (D)
Anisotropy contour for q = 3. Here the fixed degree of anisotropy values (q =

Ē1
Ē2
) are realized as a function of the intrinsic multi-material parameter α =

E1
E2

and

geometric parameters θ and h
l . The contour lines in this figure show the values of the cell angle θ .
F

uch an isotropic solution can be increased by many folds if we
onsider multi-material configuration. In case of multi-material
attices, we rewrite Eq. (3) as

4α
(1 + α)2

=
1
K

(11)

here 1
K =

sin2 θ

cos4 θ

( h
l + sin θ

)2
is a function of only structural

eometry. The Eq. (11) leads to the condition of isotropy in
ulti-material lattices as

=
E1
E2

= −1 + 2K ± 2
√

−K + K 2 (12)

here, K 2
−K ⩾ 0 and the honeycomb structure should be physi-

ally achievable. The above equation provides a non-dimensional
easure of the multi-material parameters (α) in terms of the
icrostructural geometry. Fig. 2B and 2C show the isotropy con-

our in a restricted domain of the multi-material and geometric
arameters.

.2. Maximum anisotropy

In this section, we aim to maximize q =

(
Ē1
Ē2

)
and obtain the

relationship among the multi-material and geometric parameters
5

of the lattice. Based on Eqs. (1) and (2), we can write

q =

(
Ē1
Ē2

)
=

α

(1 + α)2
m (13)

Here m =
4 cos4 θ

(h/l+sin θ )2 sin2 θ
, which represents a purely microstruc-

tural geometric function. For maximizing the value of q, we solve
the differential equation dq

dα = 0 for α. The solution comes out to

be α = 1, which yields
(

d2q
dα2

⏐⏐⏐
α=1

< 0
)
, indicating maxima. Thus,

the condition of maximum isotropy can be obtained in the special
case of mono-material lattice (i.e. E1 = E2). The corresponding
value of maximum anisotropy is given by

(
qα
max

⏐⏐
α=1

)
=

cos4 θ(
h
l

+ sin θ

)2

sin2 θ

(14)

rom the above expression, it can be found that q is purely a
function of the geometric parameters, where it increases mono-
tonically as h and θ decrease (refer to Fig. 2D).
l
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.3. Fixed anisotropy

In this section we try to find out the ratio E1
E2

= α which will
ead to a desired degree of anisotropy q. Thus, for the condition
of Ē1

Ē2
= q, we can write (refer to Eq. (13))

α

(1 + α)2
=

q
m

(15)

he above equation leads to the solution in terms of multi-
aterial parameters as

=
E1
E2

=
1
2

[
−

(
2 −

q
m

)
±

√(
2 −

q
m

)2
− 4

]
(16)

onsidering that E1 and E2 are both positive, in addition to the
constraint of a physically achievable lattice structure, we get
the following two conditions for real solutions from the above
equation[

−

(
2 −

q
m

)
±

√(
2 −

q
m

)2
− 4

]
> 0 (17)(

2 −
q
m

)2
− 4 ⩾ 0 (18)

Fig. 3 shows the contours of θ for achieving different degrees
f anisotropy (q) in terms of the geometric and multi-material
arameters. It is interesting to note that the maximum value
f anisotropy occurs corresponding to α =

E1
E2

= 1, which
is in agreement with our findings corresponding to the case of
maximum isotropy as presented in the preceding section.

As explained in the introduction section, a hexagonal lattice
could show negative Poisson’s ratio when the cell angle θ be-
omes negative (refer to figure 1(C–D) of the supplementary
aterial). This fact is evident from the closed-form expressions
f Poisson’s ratios (refer to equations 17 and 20 of the supple-
entary material) and the physical geometric constraints of a
exagonal re-entrant structure. However, from the expressions it
s noted that the Poisson’s ratios are not dependent on the multi-
aterial parameters, which are the main focus of this study.
he current paper primarily deals with degree of anisotropy as
function of the two Young’s moduli. For this reason, we have
ot presented any numerical results specifically for the auxetic
onfigurations (i.e. negative cell angle). The closed form formulae
or effective Young’s moduli of multi-material lattices are valid
or any value of cell angle (positive, or negative), meaning that
he proposed concept of anisotropy tailoring can also be directly
pplied to auxetic configurations. In fact, we have shown a par-
icular family of structural configurations to achieve isotropy that
s only valid for auxetic structures (refer to (8)). It can be noted
n this context that the current analytical derivation and the
ollowing investigation are carried out in the linear regime of
lastic analysis.
In summary, we have discussed the aspect of anisotropy tai-

oring in this section through the introduction of multi-material
eriodic systems. We start by considering a special case of hexag-
nal lattice, wherein the results reveal that there are multi-
le structural geometries in mono-material configurations that
ould lead to isotropy besides the conventionally considered mi-
rostructure with h/l = 1, θ = 30◦, α = 1 for this purpose.
It is shown that the design space for isotropy can be expanded
by multiple folds when more than one intrinsic material is in-
troduced in the unit cell of a lattice. We explicitly demonstrate
different degrees of anisotropy in regular geometrically isotropic

lattices by introducing the multi-material architecture in the

6

design domain of geometric and material parameters. Notewor-
thy is that the physical models at industry-scale of such multi-
material lattices are viably manufacturable following the tremen-
dous recent advancements in additive manufacturing technol-
ogy. Though we have primarily concentrated on two dimensional
hexagonal lattices in this article, the concept of anisotropy tai-
loring using multiple intrinsic materials in the unit cell could po-
tentially be extended to other lattice forms and three dimensional
microstructures.

3. Conclusions and perspective

This article presents physics-based insights on the possibili-
ties of having anisotropy in geometrically isotropic lattices and
isotropy in geometrically anisotropic lattices. Novelty and impact
of the paper lie in both conceptual development and analytical
formulation. We have systematically demonstrated the aspect
of tailoring anisotropy in lattice microstructures by effectively
decoupling the existing knowledge on the relationship between
(an)isotropy and microstructural geometry. The theoretical con-
tours of having minimum anisotropy (i.e. isotropy), maximum
anisotropy and any fixed value of anisotropy are presented in
closed-form in terms of the geometric and multi-material param-
eters. The conventional wisdom of having limited microstructural
configuration space for obtaining isotropy (or a specific degree
of anisotropy) restricts the scope of many multi-functional ap-
plications such as space filling in 3D printing. Anisotropy tai-
loring is an important design parameter for various mechanical
systems under static and dynamic conditions, where different
stiffness components are necessary along different directions.
Thus, it is necessary to develop the capability of achieving differ-
ent degree of effective anisotropy in microstructured materials
with sufficient options of microstructural configurations, from
which a designer can choose the most suitable one based on
various functional demands along with geometrical design and
manufacturing constraints. The disseminated generic concepts of
this article on anisotropy tailoring would be crucial in innovat-
ing next-generation of multi-functional materials across different
length-scales without the constraint of fixed micro-structural
geometry.
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A B S T R A C T

Moire pattern arises from the lattice mismatch between two different nanosheets. The discovery of the Moire
pattern has resulted in breakthrough properties in 2D carbon-based nanostructures such as graphene. Here we
investigate the impact of a Moire pattern on mechanical properties of bi-layer 2D nanosheets. In particular,
buckling instability of 2D carbon-based nano hetero-structures is investigated using atomistic finite element
approaches. Nano hetero-structures considered are graphene-hBN (hexagonal Boron Nitride) and graphene-MoS2
(Molybdenum disulphide). Bilayer graphene has also been considered in the buckling analysis, by orienting the
individual sheets at moire angle. Atomistic simulation methodology uses elastic beams to represent intra-sheet
atomic bonds and elastic springs to represent inter-sheet atomic interactions. The influence of different boundary
conditions and sheet length on the buckling of nano hetero-structures has been investigated. The bridged nano
hetero-structures are found be displaying higher buckling strength as compared to cantilever sheets.

1. Introduction

Since the revolutionary discovery of graphene in 2004 [1], a pro-
gressively increasing interest by 2D nanomaterials has been observed
within scientific and engineering communities. Currently, various types
of 2D nanomaterials are under investigation in order to exploit their
extraordinary potential as the next generation of super materials with
remarkable physical properties. For instance, graphene shows great
buckling strength [2,3], hexagonal Boron Nitride (hBN) [4] possesses
outstanding spin-polarized states [5] and Molybdenum Disulphide
(MoS2) [6] offers exceptional electrical transport properties [7]. If dif-
ferent 2D nanomaterials are combined into one single nano hetero-
structure, all these properties can be harnessed. Such hetero-structures
are also referred to as van der Waals hetero-structures. The lattice
mismatch that occurs between the lattices of nanosheets within the van
der Waals hetero-structures leads to unique properties [8]. Similar
lattice mismatch has also been observed in multilayer graphene sheets
twisted at moire angles [9]. Such moire patterns in twisted bilayer
graphene, overlaid graphene-hBN and overlaid graphene-MoS2 are
shown in Fig. 1. The relevance of moire angles between offset layers of
different atoms lies in the fact that they produce changes in their
electrical properties, which can result in the synthesis of new materials
with potentially tailored properties. For instance, it has been found that
graphene turns superconducting when two stacked graphene layers
rotate by an angle of 1.1°, which represents an example of how

atomically thin materials can produce completely new electrical prop-
erties [10].

Recent advances in this area, worth mentioning are the references
[11–13]. Nika et al. [11] studied specific heat of twisted bilayer gra-
phene at an angle of 21.8 °, and compared its performance against that
of graphite and untwisted bilayer graphene. This article concluded that
the phonon specific heat is highly dependent on a twist angle under
low-temperature conditions. This means phonon engineering of thermal
properties of layered materials is possible by twisting the basal atomic
planes. Especially, the authors suggested that the specific heat of bi-
layer graphene can decrease by up to 15% when a twist angle is in-
troduced at a temperature of 1 K. Mortazavi et al. [12] performed a
mechanical analysis of a nano hetero-structure consisting of a single
layer MoTe2. This nanomaterial MoTe2 belong to the class of transition
metal dichalcogenides. These authors [12] quantified elastic modulus,
Poisson’s ratio, strain at the ultimate tensile strength point and the
ultimate tensile strength of MoTe2 under various atomic configurations,
with the aid of first-principles density functional theory. These authors
[12] suggested anisotropic mechanical properties, bandgap under ten-
sion, auxetic Poisson’s ratio and remarkable tensile strength, for MoTe2.
Vargas et al. [13] studied thermal and electrical transport in a poly-
crystalline graphene-hBN hetero-structure, with the aid of tight-binding
simulations and combined molecular dynamics-finite element simula-
tions. This study showed a significant influence of hBN content on the
thermal conductivity of the graphene-hBN hetero-structure.
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Furthermore, this study concluded that the graphene-hBN hetero-
structure could be a conductor or a semiconductor, depending on the
content of hBN.

In the present work, a new contribution is made in order to provide
further insight into the linear buckling of bilayer graphene sheets with
sheet alignment at a moire angle of 1.1°, and graphene-hBN and gra-
phene-MoS2 bilayer sheets. The isometric views of graphene-graphene,
graphene-hBN and graphene-MoS2 bilayer systems are shown in Fig. 2.
In this paper, we compute the critical buckling loads by means of a
finite element (FE) based lattice approach. This numerical strategy es-
tablishes a linkage between the actual atomistic system and an
equivalent mechanical model at the atomic bond level and provides a
way to capture the atomistic response by means of conventional FE
analyses and classical beam elements. Furthermore, we investigate the
influence of boundary conditions and lengths of nanosheets on their
buckling capacity by means of a detailed set of numerical experiments.
We must note that nonlinear buckling analyses on carbon-based na-
nostructures have been performed in the past [3,14], however, such
simulations are complex and computationally demanding and are
normally justified when a post-buckling response is investigated. At
present, we find it more convenient to perform linear simulations in
view of our interest in the eigenvalues and eigenvectors of the na-
nosheet configurations studied here.

The paper is organized as follows. Section 2 presents the description
of the equivalent mechanical model of nano hetero-structures by means
of the finite element method (FEM). The results and discussions of the
present work are given in Section 3. Finally, Section 4 summarizes our
main conclusions.

2. Atomistic FE models of nano hetero-structures using FEM

The atomistic models deployed here are based on the FE meth-
odologies developed by the authors to study graphene and its associated
nanostructures [2,15–18,3]. In this research work, the FE analysis tool
OPTISTRUCT has been used to model the dynamic behaviour of nano
hetero-structures. The covalent bonds are represented by equivalent 3D
Timoshenko FE beams and the atoms are represented by FE nodes.
Within OPTISTRUCT, the element type CBEAM has been used to re-
present beams. The diameter and Young’s modulus of the beam ele-
ments are computed by using the following equations of force constants
Kr and kθ shown below:

=K EA
L

, andr (1)

=K EI
L

.θ (2)

In the above equation, E is Young’s modulus of the beams, I is the area
moment of inertia of the beams, A is the cross-section of the beams and
L is the length of the beams. The above two equations are derived from
stretching and bending interatomic potentials [19,20]. The numerical
values of force constants Kr and Kθ for atomic interactions such as C–C,
B-N and Mo-S are available in the literature [19,20]. By substituting
these values in Eq. 1 and Eq. 2, essential parameters to model covalent
bond beams, such as beam diameter d and beam Young’s modulus E can
be calculated.

The equivalent axial force for a L-J potential between a pair of
atoms i and j belonging to different nanosheets can be defined as [21]

Fig. 1. Lattice mismatch in overlapped nanosheets leading to a moire pattern.
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where, r is the atomic displacement between i and j (layer-layer length).
As per Girifalco et al. [22], the force between the atoms i and j can also
be represented by
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where, = +y r δr δr,min is the atomic displacement along the length ij.
The rmin (in Å) is given by σ2

1
6 , with =σ A B( / )1/6. The B and A are

attractive and repulsive constants, respectively. In the current research
work, three different nanosheets have been considered, namely gra-
phene, hBN and MoS2. Hetero-structures of graphene-hBN and gra-
phene-MoS2 have been studied under buckling loads. These hetero-
structures lead to C-C,C-B,C-N,C-M and C-S interlayer atomic interac-
tions, where C, B, N, M and S are carbon, boron, nitrogen, molybdenum
and sulphide atoms, respectively. The values of σ and ∊ for each in-
dividual van der Waals atomic interactions are obtained from various
references [23–26]. In the atomistic FE models, we have used spring
elements to form a connection between two layers of the bilayer
structure representing L-J interactions. The force deflection curve for L-
J springs has been calculated by using the relation in Eq. 4. Within the
FE analysis tool OPTISTRUCT, the L-J springs of interlayer interactions
are modelled by the element type CBUSH and by using the curves of Eq.
4 as input properties.

2.1. Validity of atomistic models

The idea of performing atomistic simulations using the finite ele-
ment method has evolved since 2003 [20]. Deriving equivalent me-
chanical properties of atomic interactions using harmonic potentials (Kr
and Kθ) is a well established concept [27,28]. Such an approach will

establish near-perfect equivalence between molecular mechanics and
nanostructure mechanics. Furthermore, in such simulations, the most
important bond deformation modes such as bond stretching and angle
variations are accurately captured. The current authors have validated
the finite element approach of atomistic simulations against analytical
models [15,16], experimental observations [17] and also molecular
dynamic simulations [18]. The accuracy of the atomistic finite element
model is found to be as high as 3.8 % in the case of nanosheets and 5 %
in the case of nanocomposites. Furthermore, the results of finite ele-
ment based atomistic simulation are found to close to experimental
results with a very low margin difference (1.8 %). It is important to note
that the prediction of buckling strength of nanostructures such as
single-layer graphene, bilayer graphene, single-wall carbon nanotube,
and nanocomposites, using finite element based atomistic method by
current authors [2,3,14] has been widely accepted by the nanomaterials
research community. The current research involves applications of
same well established method [2,3,14] to explore the buckling char-
acteristics of nano hetero-structures. The current research work can
serve as a benchmark for researchers intending to introduce high fi-
delity into the buckling models of nano hetero-structures, in the future.

We must note that in the present FE modelling approach, an explicit
expression for a potential energy function is required in order to es-
tablish an equivalence between the mechanical and atomic bond en-
ergies. Such bonds can stretch, rotate or twist between neighbouring
atoms or molecules and eventually, produce a global deformation re-
sponse. However, the modelling of re-formed molecular bonds due to
chemical reactions is a challenging task of difficult implementation
within the present computational simulation framework. Some ex-
amples of these chemical reactions can be found in pyrolysis and
combustion of hydrocarbon systems where large molecules breakdown
into smaller molecules in the presence of heat. For the modelling of
such complex reactions, the use of reactive force-field such as ReaxFF
[29] is recommended, particularly when new bonds are chemically

Fig. 2. Isometric views of bilayer graphene, graphene-hBN and graphene-MoS2 sheets.
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generated. We remark that the present FE approach is more suitable to
capture the physical deformation process of atoms or molecules instead
of describing the chemical reaction kinetics of atomic systems.

2.2. Stability of nanosheets

In the Moire pattern of 2-dimensional multi-layered nanosheets, it is
a challenging task to keep an inter sheet angle without fixing the
system. Therefore, the sheets tend to re-rotate to the original positions,
when a boundary fixing is absent. However, in the current work, the
sheets have been placed at an angle of 1.1° against each other, before
the analysis is performed. Furthermore, in the numerical models of
nanosheets, stability is ensured due to the enforcement of mechanical
constraints in all six degrees of freedom, as shown in 3(a) and 4(a). It is
also important to note that the relevant works [30,11,31,32] did not
consider the issue of angular stability of the twisted sheets. Further-
more, Cao et al. [33] manually rotated individual sheets of bilayer
graphene at an angle higher than the magic angle but did not report the
issue of angular stability. Although, various types of interlayer inter-
actions are possible between individual sheets, including van der Waals,
covalent, part covalent, electrostatic(Columb), ionic and −π π . Only
van der Waals interactions modelled by LJ-potentials are found to be
effective in representing interlayer force transfer while calculating
structural properties of multi-layered nanosheets [2,15,21,22].

3. Results and discussions

As the buckling capacity of nanosheets is greatly influenced by their
boundary conditions, we investigate here the eigenvalues and eigen-
vectors of cantilevered and bridged nanosheets. The variation of the
aspect ratio by changing the length is also studied. The cantilever
boundary condition involves constraining all the degrees of freedom
located at one edge of the sheet (Fig. 3(a)). Bridged boundary condition
involves constraining all the degrees of freedom at two opposite edges
(Fig. 4(a)). The two-layer nanosheet structure undergoes buckling when
a unit compressive load is applied at opposite sides (Refer to Fig. 3(a)
and Fig. 4(a)). Buckling analysis has been performed using the atomistic
finite element approach explained in the previous section. The solution
process within the FE code OPTISTRUCT involves the generation of a
geometric stiffness matrix based on a unit force in the direction of
buckling, followed by the numerical prediction of the eigenvalues and
eigenvectors by means of a standard Lanczos solver. The buckling mode
shapes for nanosheets under cantilevered boundary conditions are
shown in Fig. 3(b), Fig. 3(c) and Fig. 3(d) for bilayer graphene, gra-
phene-hBN and graphene-MoS2, respectively. The buckling mode
shapes for nanosheets under bridged boundary conditions for bilayer
graphene, graphene-hBN and graphene-MoS2 are shown in Fig. 4(b),
Fig. 4(c) and Fig. 4(d), respectively. These buckling mode shapes for
double layer systems are found to be identical to those of single-layer
graphene (Figure not shown here).

Fig. 3. Cantilever boundary conditions and resulting buckling modes.
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3.1. Dependence of buckling loads on length

The variation of single layer critical buckling load with length is
shown in Fig. 5. In order to understand the influence of the lattice
mismatch on the buckling behaviour of nanosheets, Fig. 6 plots the
variation of the buckling capacity in double-layered nanostructures. We
can observe here that the critical buckling load decreases when the
sheet length increases. Such a variation is comparable with analytical

calculations reported for elastic plates [34,35]. For bridged single-layer
graphene with a length increasing from 2.3 nm to 20 nm, the critical
buckling load decreases from 6.2 N to 1.0 N. Within the same length
range, the bridged single-layer hBN shows a decreasing critical buckling
load from 4.7 N to 0.7 N. For bridged single-layer hBN, the critical
buckling load decreases from 3.4 N to 0.5 N. For bridged double-layer
graphene, the buckling load decreases from 179.3 N to 77.6 N. For
bridged graphene-hBN, the critical load decreases from 139.1 N to

Fig. 4. Bridged boundary conditions and resulting buckling modes.

Fig. 5. Variation of buckling loads with length for single layers of graphene, hBN and MoS2.
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60.2 N, and for bridged graphene-MoS2, the buckling load decreases
from 100.6 N to 43.6 N. From these observations, it can be concluded
that, at a given length and under buckling loads, a double layer is
stronger than the single-layer system by a factor of more than 30.
Among the three combinations considered here, namely graphene-
graphene, graphene-hBN and graphene-MoS2, the homogenous gra-
phene offers the highest buckling strength for a given length. For in-
stance, the buckling strength of the graphene combination is found to
be 79% higher than that of graphene-MoS2, for the sheet size
2.3 nm×9.4 nm. The quantitative data showing buckling strength at
various lengths, for each single and double layer type nanosheet is
shown in Table 1 and Table 2. The data listed in these two tables cor-
responds to the bridged boundary condition. As per Fig. 5 and Fig. 6,
the variation pattern of the critical buckling loads for double layer

systems is found to be dissimilar to that of single layer system. Such a
dissimilarity in the pattern is due to the involvement of the interlayer L-
J potential found in the double layer system.

3.2. Dependence of critical buckling load on boundary conditions

From all the plots shown in the present work, it can be observed that
the bridged nanostructures offer higher buckling strength than that of
cantilever nanostructures, irrespective of the number of layers. As per
the continuum mechanics of elastic plates [34,35], a bridged plate
structure offers higher stiffness as compared to a cantilever structure.
Therefore, a bridged elastic plate or sheet will be stronger under
buckling as compared to a cantilevered plate or sheet. A comparison
between the bridged and cantilevered nanosheets can be found in the
plots shown in Fig. 5. These plots indicate that by changing the
boundary condition from cantilever to bridge type the critical buckling
load increases up to about three times in the case of single-layer gra-
phene. A similar level of enhancement is also observed for single layers
of hBN and MoS2. For double layer systems (Fig. 6), the trend is similar.
For single-layer sheet models, the slope observed in the curves of can-
tilever and bridge sheets is found to be identical at lower lengths
(< 10 nm). Whereas for double-layer sheets, the slope of the curves of
cantilever sheets is found to be higher as compared to the slope of
bridged sheet curves, at lower lengths (< 10 nm). Such a discrepancy is
the result of the interlayer L-J potential present in the double layer
system.

3.3. Enhancement in buckling capacity of graphene sheet due to the addition
of another graphene, hBN or MoS2 sheet

The variation of the ratio between the critical buckling loads of the
double ( −PGraphene Graphene) and single-layer graphene (PGraphene) is given in
Fig. 7(a). The buckling load ratio between the combined graphene-hBN
sheet ( −PGraphene hBN) and the single-layer graphene (PGraphene) is given in
Fig. 7(b). For the combined graphene-MoS2 sheet ( −PGraphene MoS2) and
the single-layer graphene (PGraphene), the critical load ratio is given in
Fig. 7(c). Since the ratio remains higher than one in all the plots, it can
be concluded that the addition of another layer (of any of the three
nanomaterials studied here), always results in an increase in the
buckling strength of the graphene sheet. As per the plots (Fig. 7) and
sheet sizes considered in the current work, it is possible to observe that
the addition of a nanosheet on top of the graphene sheet, leading to a
lattice mismatch, results in a buckling strength increase up to 75 times.
Such a great enhancement is due to the additional graphene nanosheet.
If the additional sheet is of hBN or MoS2 type, then the enhancement in
buckling strength can be up to 59 times or 43 times, respectively.

Fig. 6. Variation of buckling loads with length for double layer nanosheets of graphene-graphene, graphene-hBN and graphene-MoS2.

Table 1
Buckling load capacities for single layer graphene, hBN and MoS2. The single
layer sheets considered here are bridged. Graphene offers higher buckling
strength among the three types of nanosheets considered.

Length (nm) PGraphene(N) PhBN (N) PMoS2 (N)

2.3 6.2 4.7 3.4
4.5 4.1 2.9 2.1
6.7 2.9 2.1 1.5
8.9 2.2 1.61 1.2
11.2 1.9 1.3 0.9
13.4 1.6 1.1 0.8
15.6 1.4 1.0 0.7
17.8 1.2 0.8 0.6
20.0 1.1 0.7 0.5

Table 2
Comparison of bilayer graphene buckling loads against graphene-hBN and
graphene-MoS2 buckling loads. The boundary condition considered here is the
bridged type. Graphene-graphene offers higher buckling strength among the
three different combinations of double layers.

Length (nm) −PGraphene Graphene (N) −PGraphene hBN (N) −PGraphene MoS2 (N)

2.3 179.3 139.1 100.6
4.5 127.4 98.8 71.5
6.7 99.9 77.5 56.1
8.9 86.9 67.4 48.8
11.2 81.8 63.1 46.9
13.4 79.7 61.9 44.8
15.6 79.3 61.5 44.5
17.8 78.1 60.6 43.8
20.0 77.6 60.2 43.6
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The addition of another layer of a nanosheet to a graphene sheet
results in higher buckling strength as compared to that of a graphene
sheet alone. In order to quantify such an enhancement, buckling
strength data are presented in Table 1 and Table 2. Table 1 shows va-
lues of buckling strength of single-layer of graphene, hBN and MoS2 for
various lengths, under bridged boundary conditions. As per this table,
single-layer graphene offers the highest buckling strength at a given
length, as compared to that of single layers of hBN and MoS2. Among
the three single-layer nanosheets considered, MoS2 offers the least
buckling strength. Table 2 shows values of buckling strength of gra-
phene-graphene, graphene-hBN and graphene-MoS2 double-layer na-
nosheets at various lengths and under bridged boundary conditions.
This table proves that for a graphene sheet, the addition of another
graphene sheet offers the highest buckling strength when compared to
the addition of hBN or MoS2 sheets. The inclusion of further layers
leading to a three- or four-layer system, further enhances the buckling
strength of the nanostructure. As compared to the bilayer graphene
presented in the literature [2], the current configuration with 1.1° in-
terlayer twist is found to be offering slightly lower ∼( 2%) buckling ca-
pacity at a given sheet length.

Table 1 and Table 2 indicate that the variation of the single layer
critical load is found to be identical with that of double layered sheets
(i.e. decreasing with length). However, there is an observable difference
in slopes. The slope for single layer graphene is found to be higher in
regards to single layer hBN and MoS2. The slope for double layer gra-
phene is found to be higher in regards to graphene-hBN and graphene-
MoS2.

4. Conclusions

The buckling strength of homogeneous and heterogenous carbon-
based nanostructures has been investigated by means of an atomistic
finite element approach. In particular, homogeneous graphene-gra-
phene along with heterogeneous graphene-hBN and graphene-MoS2
nanosheets have been studied. Lattice mismatch was present in all of
the double-layer configurations considered in the current study. Lattice
mismatch was attained in graphene-graphene sheets by aligning the
sheets at an angle of 1.1°. For the case of bilayer graphene, the in-
troduction of such a twist angle has led to a slight decrease in buckling
strength. This investigation confirmed that the bridged nanosheets offer
higher buckling strength as compared to that of cantilevered na-
nosheets. For all of the nanosheet types studied, the critical buckling
load reduced for a length increase. The addition of nanosheets such as
graphene, hBN and MoS2 on top of a single layer graphene sheet led to a
significant increase in buckling strength. Among the three types of
nanosheet, considered here as the addition, namely graphene, hBN and
MoS2, graphene showed the highest buckling strength. The current
analysis considered lattice-mismatched double layers of nanosheets. It
is estimated that the involvement of more layers can further enhance
the buckling strength.
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Abstract. Research on phononic and acoustic materials and structures
emerged in the recent decade as a result of switching from theoretical physics
to applications in various engineering fields. Periodicity is the main charac-
teristic of the phononic medium stemming from periodic material phases, ge-
ometry or the boundary condition with wave propagation properties analysed
through frequency band structure. To obtain these characteristics, the gener-
alized Bloch theorem is usually applied to obtain the dispersion relations of
viscously damped resonant metamaterials. Here we develop a novel analytical
approach to analyse the fractionally damped model of phononic crystals and
acoustic metamaterials introduced through the fractional-order Kelvin–Voigt
and Maxwell damping models. In the numerical study, the results obtained us-
ing the proposed models are compared against the elastic cases of the phononic
crystal and locally resonant acoustic metamaterial, where significant differ-
ences in dispersion curves are identified. We show that the fractional-order
Maxwell model is more suitable for describing the dissipation effect through-
out the spectrum due to the possibility of fitting both, the order of fractional
derivative and the damping parameter.

1. Introduction

Wave propagation analysis of different materials can provide us with impor-
tant information about their mechanical and dynamic properties or even existence
of defects and inclusions. Waves can be of different nature, such as mechanical,
electronic or electromagnetic, and they can encompass several length scales, from
atomic to macro scales, such as seismic waves. The propagation of elastic waves in
periodic heterogeneous materials, also known as phononic crystals, belongs to a spe-
cial class of problems [1], which has received considerable attention in the scientific
community in recent years [2–4]. From the physical viewpoint, periodicity in mate-
rial causes destructive interference of elastic waves by forbidding them to propagate
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within the structure in certain directions and frequency ranges called band gaps [5].
In the case of locally resonant acoustic metamaterials, internal resonators play a
major role in generating band gaps with associated wavelengths that are orders of
magnitude longer than the periodicity of the metamaterial. This enables one to
design small structures to absorb low frequency vibrations or sound. The concept
of band structure, providing the relationship between frequency and the wavenum-
ber, is well known in physics, but in mechanics it represents a dispersion relation
describing the free wave propagation in some medium. Therefore, examining the
band structure properties of periodic structures or metamaterials is significant from
the viewpoint of their application in acoustic wave attenuation, filters for mechan-
ical waves, noise and vibration isolation [6]. In addition, phononic crystals can be
used in waveguides to open band gaps for undesired excitation modes in ultrasonic
experiments [7].

The problem of wave propagation in viscoelastic materials was analysed in a
number of studies [8–10]. It was demonstrated experimentally and theoretically
that the presence of dissipation in PCs at lower frequencies widens the bandgaps
and decreases the initial forbidden frequency [11]. Since the modulus of viscoelas-
tic materials is frequency dependent, it is shown that the dispersion effect becomes
more evident at relatively higher frequencies. Periodic materials with low-frequency
bandgaps are usually made of polymers [12], which requires introduction of vis-
coelastic models to describe a strong damping effect in such materials. Hussein
and Fraizer [13] developed the methodology to analyse general damping in phononic
crystals and acoustic metamaterials by employing the generalized form of Bloch’s
theorem [14,15]. One of the aims was to design an acoustic metamaterial in such
a manner to achieve a high level of dissipation while keeping the high stiffness
properties. The authors’ main idea was to use the feature that damping is most
profound at resonance frequency, which is a well known fact from linear vibration
analysis in structural mechanics. They observed the frequency band structure to
reveal the effect of metadamping not only near resonant frequencies but for the
entire frequency-wavenumber spectrum. Chen et al. [16] applied a similar method-
ology to examine metadamping in a dissipative mass-in-mass lattice system with
multiple resonators. In [17] the authors demonstrated that the generalized linear
Maxwell model allows an accurate description of nonlinear frequency dependent
elastic properties as opposed to the classic Kelvin–Voigt model, and it is widely
applied to model the behaviour of many polymeric materials in a realistic manner.
Recently, Alamri et al. [18] introduced a Maxwell-type damper to study wave at-
tenuation in dissipative elastic metamaterials. Due to the band gaps merging effect
induced by the Maxwell-type damper, a significant improvement of stress wave mit-
igation in the proposed dissipative metamaterial was demonstrated in both time
and frequency domains. Application of the linear viscoelastic models and frequency
domain analysis to observe the dispersion characteristics implies linearity of the
system, which was justified in [17] based on the generalized Maxwell model. More-
over, in [19] the authors studied wave propagation in a two-dimensional phononic
crystal with viscoelasticity based on the fractional-order Kelvin–Voigt model and
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finite-difference-time-domain method. However, as discussed in [20], frequency do-
main analysis of the fractional-order Kelvin–Voigt model reveals unusual behaviour
of increased frequency for an increase in damping in the system, which cannot be
seen by the time domain analysis only. Thus, frequency domain analysis of linear
fractional-order derivative viscoelastic models is also required in order to achieve
reliable results for their dispersion characteristics.

Besides choosing the appropriate damping model, it is important to choose
whether the frequency or the wavenumber is set to be real or complex values.
Based on this, Frazier and Hussein [21] defined two classes of problems dealing
with damped phononic materials. If the frequencies are assumed to be real, the
damping effect is manifested in the form of complex wavenumbers defining one class
of problems. This case could be physically represented by the wave propagation
in a medium due to a sustained driving frequency and dissipation only in the
form of spatial attenuation, which results in a linear or a quadratic eigenvalue
problem. If the frequencies are permitted to be complex and wavenumbers are real,
the dissipation effect is represented in the form of temporal attenuation [22]. For
example, this class of problems can be physically represented by a free dissipative
wave motion in a medium due to impulse loading [21]. The problem considered
in this study belongs to the second class of the aforementioned problems with a
specified real wavenumber and complex frequency as a solution, where the real part
represents the damping factor and the imaginary part is the damped frequency.
Moreover, the solution to the fractional-order differential equations sought in the
frequency domain yields a characteristic polynomial with noninteger exponents,
which can be solved by using the methodology from [23].

The aim of this work is to provide the framework to study the complex-
eigenfrequency band structure of phononic crystals (PCs) and acoustic metama-
terials (AMs) using the fractional-order general damping models. In the developed
methodology, simple two-mass unit cell systems are employed for two different
fractional-order viscoelastic models. The first model is the fractional Kelvin–Voigt
model, and the second one is the fractional Maxwell model, both of which are
the fractional-order derivative counterparts of the well known models from the lin-
ear theory of viscoelasticity with classical derivatives. Such models can exhibit a
wide range of damping behaviours depending on the value of the considered retar-
dation/relaxation times and fractional-order derivative parameters. The solution
procedure for obtaining the corresponding dispersion relations is based on the tem-
poral Fourier transform and Bloch theory. The obtained results yield new insights
into the wave propagation behaviour of the aforementioned periodic structures de-
scribed via fractional-order damping models.

2. Analytical models

2.1. Fractional-order dissipative models of lattice systems. A one-
dimensional model of the fractionally damped diatomic phononic crystal (PC) can
be formulated by using the lumped masses connected through elements represented
by force-displacement relationships of the fractional-order Kelvin–Voigt or Maxwell
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Figure 1. Unit cells of periodic chains consisting of masses con-
nected with fractional-order elements a) phononic crystal b) acous-
tic metamaterial.

type phenomenological models (see Figure 1), which are analogous to the corre-
sponding fractional-order stress-strain constitutive equations [20, 24]. Similar to
this, fractional viscoelastic relationships can be used for the acoustic metamaterial
(AM). Both PC and AM models are represented by a unit cell that is periodically
repeated in both directions towards infinity. The equation of motion for the PC
unit cell can be written as:

(2.1) 𝑚1�̈�
𝑗
1 + 𝑓𝑃𝐶𝑗,𝑗−1 − 𝑓𝑃𝐶𝑗 = 0,

(2.2) 𝑚2�̈�
𝑗
2 + 𝑓𝑃𝐶𝑗 − 𝑓𝑃𝐶𝑗,𝑗+1 = 0,

and for the AM unit cell as:

(2.3) 𝑚1�̈�
𝑗
1 + 𝑓𝐴𝑀𝑗,𝑗−1 − 𝑓𝐴𝑀𝑗 + 𝑓𝐴𝑀𝑗,𝑗+1 = 0,

(2.4) 𝑚2�̈�
𝑗
2 + 𝑓𝐴𝑀𝑗 = 0,

with 𝑢𝑗𝛾 denoting the displacement of mass 𝑚𝛾 , 𝛾 = 1, 2, in an arbitrary unit-
cell. Forces due to viscoelastic coupling between masses and adjacent cells for the
fractional Kelvin–Voigt PC and AM models are defined as:

𝑓𝑃𝐶𝑗,𝑗+1 = 𝐸01[1 + 𝜏𝛼𝐷𝛼](𝑢𝑗+1
1 − 𝑢𝑗2), 𝑓𝑃𝐶𝑗 = 𝐸02[1 + 𝜏𝛽𝐷𝛽 ](𝑢𝑗2 − 𝑢𝑗1),

𝑓𝑃𝐶𝑗,𝑗−1 = 𝐸01[1 + 𝜏𝛼𝐷𝛼](𝑢𝑗1 − 𝑢𝑗−1
2 ), 𝑓𝐴𝑀𝑗,𝑗±1 = ±𝐸01[1 + 𝜏𝛼𝐷𝛼](𝑢𝑗±1

1 − 𝑢𝑗1),

𝑓𝐴𝑀𝑗 = 𝐸02[1 + 𝜏𝛽𝐷𝛽 ](𝑢𝑗2 − 𝑢𝑗1),

and for the fractional Maxwell PC and AM models as:

𝑓𝑃𝐶𝑗,𝑗+1 + 𝜏𝛼𝐷𝛼𝑓𝑃𝐶𝑗,𝑗+1 = 𝐸1[1 + 𝜏𝛼𝐷𝛼](𝑢𝑗+1
1 − 𝑢𝑗2),

𝑓𝑃𝐶𝑗 + 𝜏𝛽𝐷𝛽𝑓𝑃𝐶𝑗 = 𝐸2[1 + 𝜏𝛽𝐷𝛽 ](𝑢𝑗2 − 𝑢𝑗1),

𝑓𝑃𝐶𝑗,𝑗−1 + 𝜏𝛼𝐷𝛼𝑓𝑃𝐶𝑗,𝑗−1 = 𝐸1[1 + 𝜏𝛼𝐷𝛼](𝑢𝑗1 − 𝑢𝑗−1
2 ),

𝑓𝐴𝑀𝑗,𝑗±1 + 𝜏𝛼𝐷𝛼𝑓𝐴𝑀𝑗,𝑗±1 = ±𝐸1[1 + 𝜏𝛼𝐷𝛼](𝑢𝑗±1
1 − 𝑢𝑗1),

𝑓𝐴𝑀𝑗 + 𝜏𝛽𝐷𝛽𝑓𝐴𝑀𝑗 = 𝐸2[1 + 𝜏𝛽𝐷𝛽 ](𝑢𝑗2 − 𝑢𝑗1),
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where 𝐷𝛼, 𝐷𝛽 are the operators of the Riemann–Liouville derivative (see [25]), 𝜏
is the retardation/relaxation time and 𝐸0𝑖 and 𝐸𝑖 for 𝑖 = 1, 2 are prolonged and
instantaneous stiffness moduli of the fractional-order Kelvin–Voigt and Maxwell
models, respectively. Bearing in mind that the Fourier transform of a fractional
derivative is defined as 𝐹 [𝐷𝛼(𝑢(𝑡))] = (𝑖𝜔)𝛼𝑈(𝑖𝜔) for 𝑖 =

√
−1, one first needs to

perform the temporal Fourier transform [26] over force-displacement relationships
of the fractional Kelvin–Voigt model and Eqs. (2.1)–(2.4). After taking that 𝑝 = 𝑖𝜔,
one obtains the following equation for the fractional Kelvin–Voigt PC model:

(2.5) 𝑝2𝑢𝑗1 +
𝐸01

𝑚1
[1 + 𝜏𝛼𝑝𝛼](𝑢𝑗1 − 𝑢𝑗−1

2 )− 𝐸02

𝑚1
[1 + 𝜏𝛽𝑝𝛽 ](𝑢𝑗2 − 𝑢𝑗1) = 0,

(2.6) 𝑝2𝑢𝑗2 +
𝐸02

𝑚2
[1 + 𝜏𝛽𝑝𝛽 ](𝑢𝑗2 − 𝑢𝑗1)−

𝐸01

𝑚2
[1 + 𝜏𝛼𝑝𝛼](𝑢𝑗+1

1 − 𝑢𝑗2) = 0,

and for the fractional Kelvin–Voigt AM model:

(2.7) 𝑝2𝑢𝑗1 +
𝐸01

𝑚1
[1 + 𝜏𝛼𝑝𝛼](2𝑢𝑗1 − 𝑢𝑗−1

1 − 𝑢𝑗+1
1 ) +

𝐸02

𝑚1
[1 + 𝜏𝛽𝑝𝛽 ](𝑢𝑗1 − 𝑢𝑗2) = 0,

(2.8) 𝑝2𝑢𝑗2 +
𝐸02

𝑚2
[1 + 𝜏𝛽𝑝𝛽 ](𝑢𝑗2 − 𝑢𝑗1) = 0.

In [18], the authors introduced some additional degrees of freedom (and therefore
equations) and the principle of virtual work to derive the system’s equations and
obtain corresponding dispersion relations of the acoustic metamaterial. In this
study, there are no additional degrees of freedom since fractional force-displacement
relations can be used directly in motion equations after moving to the frequency
domain. After performing the temporal Fourier transform over the corresponding
force-displacement relations, they are substituted into Eqs. (2.1)–(2.4) for AM and
PC models. Therefore, the equation for the fractional Maxwell PC model in the
frequency domain is given as:

(2.9) 𝑝2𝑢𝑗1 +
𝐸1𝜏

𝛼𝑝𝛼(𝑢𝑗1 − 𝑢𝑗−1
2 )

𝑚1(1 + 𝜏𝛼𝑝𝛼)
− 𝐸2𝜏

𝛽𝑝𝛽(𝑢𝑗2 − 𝑢𝑗1)

𝑚1(1 + 𝜏𝛽𝑝𝛽)
= 0,

(2.10) 𝑝2𝑢𝑗2 +
𝐸2𝜏

𝛽𝑝𝛽(𝑢𝑗2 − 𝑢𝑗1)

𝑚2(1 + 𝜏𝛽𝑝𝛽)
− 𝐸1𝜏

𝛼𝑝𝛼(𝑢𝑗+1
1 − 𝑢𝑗2)

𝑚2(1 + 𝜏𝛼𝑝𝛼)
= 0,

and for the fractional Maxwell AM model as:

(2.11) 𝑝2𝑢𝑗1 +
𝐸1𝜏

𝛼𝑝𝛼

𝑚1(1 + 𝜏𝛼𝑝𝛼)
(2𝑢𝑗1 − 𝑢𝑗−1

1 − 𝑢𝑗+1
1 ) +

𝐸2𝜏
𝛽𝑝𝛽(𝑢𝑗1 − 𝑢𝑗2)

𝑚1(1 + 𝜏𝛽𝑝𝛽)
= 0,

(2.12) 𝑝2𝑢𝑗2 +
𝐸2𝜏

𝛽𝑝𝛽(𝑢𝑗2 − 𝑢𝑗1)

𝑚2(1 + 𝜏𝛽𝑝𝛽)
= 0.
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2.2. Dispersion relations using the Bloch solution. Let us assume the
solution to Eqs. (2.5)–(2.12) using the Bloch’s theorem [13] as:

(2.13) 𝑢𝑗+𝑛𝛾 = 𝑈𝛾𝑒
𝑖(𝜅𝑥𝑗

𝛾+𝑛𝜅𝐿), 𝛾 = 1, 2,

with 𝑢𝑗+𝑛𝛾 representing the displacement of mass 𝛾 in the (𝑗 + 𝑛)-th unit-cell of the
periodic chain (here 𝑛 = −1, 0, 1 denote the previous, present and subsequent unit
cells), 𝜅 is the wavenumber, 𝑈𝛾 is the complex wave amplitude, 𝐿 is the length of
the unit-cell and 𝑥𝑗𝛾 = 𝑗 + 𝐿 for the AM and 𝑥𝑗𝛾 = 𝑗 + 𝛾𝐿/2 for the PC model.
By substituting Eq. (2.13) in each of Eqs. (2.5)–(2.12) one obtains the system of
equations in the matrix form:

(2.14)

[︃
𝑆𝑃𝐶,𝐴𝑀11 𝑆𝑃𝐶,𝐴𝑀12

𝑆𝑃𝐶,𝐴𝑀21 𝑆𝑃𝐶,𝐴𝑀22

]︃{︃
𝑈𝑃𝐶,𝐴𝑀1

𝑈𝑃𝐶,𝐴𝑀2

}︃
= 0,

for both fractional Kelvin–Voigt and Maxwell models, where elements of matrices
𝑆𝑃𝐶,𝐴𝑀𝑖,𝑗 are given in the Appendix A. Here we prescribe the real wavenumbers
0 6 𝜅𝐿 6 𝜋 spanning the first irreducible Brillouin zone, which yields wavenumber-
dependent complex roots. These roots can be obtained from the characteristic
equation found by solving the determinant of matrix 𝑆𝑖𝑗 , which for the fractional
Kelvin–Voigt PC model is given as:

(2.15) 𝑝4 + 𝑝2
[︀
(𝜔2

11 + 𝜔2
12)(1 + 𝜏𝛼𝑝𝛼) + (𝜔2

21 + 𝜔2
22)(1 + 𝜏𝛽𝑝𝛽)

]︀
+ 2𝜔2

11𝜔
2
22(1− cos𝜅𝐿)(1 + 𝜏𝛽𝑝𝛽)(1 + 𝜏𝛼𝑝𝛼) = 0,

and for the fractional Kelvin–Voigt AM as

(2.16) 𝑝4 + 𝑝2
[︀
2𝜔2

11(1− cos𝜅𝐿)(1 + 𝜏𝛼𝑝𝛼) + (𝜔2
21 + 𝜔2

22)(1 + 𝜏𝛽𝑝𝛽)
]︀

+ 2𝜔2
11𝜔

2
22(1− cos𝜅𝐿)(1 + 𝜏𝛽𝑝𝛽)(1 + 𝜏𝛼𝑝𝛼) = 0.

Further, for the fractional Maxwell PC model we have

(2.17) 𝑝4 + 𝑝2
[︁ (�̃�2

11 + �̃�2
12)𝜏

𝛼𝑝𝛼

(1 + 𝜏𝛼𝑝𝛼)
+

(�̃�2
21 + �̃�2

22)𝜏
𝛽𝑝𝛽

(1 + 𝜏𝛽𝑝𝛽)

]︁
+

2�̃�2
11�̃�

2
22(1− cos𝜅𝐿)(𝜏𝑝)𝛼+𝛽

(1 + 𝜏𝛼𝑝𝛼)(1 + 𝜏𝛽𝑝𝛽)
= 0,

and for the fractional Maxwell AM model as

(2.18) 𝑝4 + 𝑝2
[︁2�̃�2

11𝜏
𝛼𝑝𝛼(1− cos𝜅𝐿)

(1 + 𝜏𝛼𝑝𝛼)
+

(�̃�2
21 + �̃�2

22)𝜏
𝛽𝑝𝛽

(1 + 𝜏𝛽𝑝𝛽)

]︁
+

2�̃�2
11�̃�

2
22(1− cos𝜅𝐿)(𝜏𝑝)𝛼+𝛽

(1 + 𝜏𝛼𝑝𝛼)(1 + 𝜏𝛽𝑝𝛽)
= 0,

where 𝜔2
11 = 𝐸01/𝑚1, 𝜔2

12 = 𝐸01/𝑚2, 𝜔2
21 = 𝐸02/𝑚1, 𝜔2

22 = 𝐸02/𝑚2, for the
fractional Kelvin–Voigt model while for the Maxwell it is given as �̃�2

11 = 𝐸1/𝑚1,
�̃�2
12 = 𝐸1/𝑚2, �̃�2

21 = 𝐸2/𝑚1, �̃�2
22 = 𝐸2/𝑚2. In comparison to the work by Hussein

and Frazier [13], where characteristic equations are fourth-order polynomials, one
can notice that in this work the characteristic equations have noninteger exponents
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due to the introduced fractional-order damping terms. The solutions cannot be ob-
tained in the classical manner and some other techniques from the literature need
to be adopted. The above characteristic equations have two pairs of complex con-
jugate roots that can be obtained in a manner similar to [23]. A detailed procedure
of obtaining the roots of the characteristic equation is given in the Appendix B,
where one first introduces the replacement 𝑝 = 𝑟𝑒𝑖𝜓 and separates the real and
imaginary parts. After some algebra one can obtain corresponding transcenden-
tal equations having two zeros for some fixed value of angle 𝜓 given in the range
𝜋/2 < 𝜓 < 𝜋, while there are no stable roots in the range 0 6 𝜓 6 𝜋/2. After
finding the unknown 𝑟, two pairs of complex conjugate roots of the characteristic
equation can be obtained as

(2.19) 𝑝𝑠 = 𝑟𝑠𝑒
±𝑖𝜓 = 𝛿𝑠 ± Ω𝑠𝑖, 𝑠 = 1, 2,

representing the complex frequency function of the presented fraction-order system,
thus permitting the wave attenuation in time. In the above equation, the imaginary
part of the complex conjugate roots Ω𝑠 represents the damped frequency and the
real part 𝛿𝑠 is the damping factor. Therefore, the imaginary part of the complex
root obtained in terms of the wavenumber represents the dispersion relation of
the observed PC or AM structure with fractional-order damping. The limiting
case with no damping, where the frequency of the fractionally damped system is
approaching the one corresponding to the equivalent elastic system, occurs for the
values 𝜓 → 𝜋/2. One should state that fractional derivative viscoelastic models
undergo certain limitations in the values of fractional-order parameters coming
from the second law of thermodynamics. However, these limitations do not apply
to the fractional Maxwell and Kelvin–Voigt models since they belong to groups of
diffusion-wave and diffusion type rheological models, respectively.

3. Numerical results

In the numerical study, we perform the parametric study and compare the re-
sults obtained by the herein presented fractional viscoelastic models of phononic
crystal and acoustic metamaterial against those for the elastic case. For this reason,
in the following numerical experiment we adopted the values of ratios of elastic
coefficients and masses the same as in the paper by Hussein et al. [13] i.e. we
adopted the ratios of prolonged elasticity coefficients given in the fractional deriv-
ative model and masses as 𝜔2

11 = (250000)1/2, 𝜔2
12 = 𝐸01/𝑚2 = (50000)1/2, 𝜔2

21 =
(50000)1/2, 𝜔2

22 = 100, and similar for the Maxwell model as �̃�2
11 = (250000)1/2,

�̃�2
12 = (50000)1/2, �̃�2

21 = (50000)1/2, �̃�2
22 = 100, with the length of unit cells

𝐿 = 1. We should note that the parameters in this work can be read in any
consistent system of physical units. For the numerical study we adopted the val-
ues of fractional parameters in the range 0 < 𝛼, 𝛽 < 1 while instead of choosing
the retardation/relaxation times we used fixed values of angle 𝜓 > 𝜋/2 (since no
stable roots are available for 𝜓 < 𝜋/2), which, after solving the transcendent equa-
tion numerically, yields two roots 𝑋1 and 𝑋2. Introducing these two roots into
the equations for 𝑟 and Eq. (2.19) gives two pairs of complex conjugate poles of
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Figure 2. Dispersion curves of the elastic system (green lines)
with the corresponding gap (gray colored square) and fractional-
order viscoelastic Kelvin–Voigt phononic crystal for varying model
parameters and fixed values of a) 𝜓 = 𝜋/2 + 0.2 and 𝛽 = 0.9,
b)𝜓 = 𝜋/2 + 0.2 and 𝛼 = 0.9, c) 𝛼 = 0.9 and 𝛽 = 0.5,d) 𝛼 = 0.5
and 𝛽 = 0.9

the system as roots of the characteristic equation i.e. damped frequency Ω𝑠 and
damping factor 𝛿𝑠.

Figure 2 shows the dispersion curves of the fractional PC Kelvin–Voigt model
for different values of fractional-order derivative parameters, and damping param-
eters corresponding to angle 𝜓. In all figures one can notice two sets of disper-
sion curves where the upper ones belong to optical and the lower ones to acoustic
branches. One can notice an obvious frequency shift due to the change of damp-
ing parameter and orders of fractional derivatives, which is more obvious in the
optical branch. The dispersion curves of the equivalent elastic phononic structure
are represented by the green lines while the corresponding band gaps are marked
by squares coloured in grey. One can notice significantly higher frequencies in the
optical branches for lower values of the fractional derivative order. This effect is
more pronounced for changes of fractional parameter 𝛼. This is also noticed for
the changes of the damping parameter (by changes of angle 𝜓), which yields higher
frequencies and band gaps for an increase in damping and fixed values of fractional-
order derivatives. Therefore, elastic waves cannot propagate through the system
within the obtained frequency band gap region. The results for the fractional-order
Kelvin–Voigt model lack physical interpretation since frequency increases with an
increase in the damping parameter at lower values of the fractional derivative order.
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Figure 3. Dispersion curves of the elastic system (green lines)
with the corresponding band gap (gray colored square) and
fractional-order viscoelastic Maxwell phononic crystal for varying
model parameters and fixed values of a) 𝜓 = 𝜋/2+0.2 and 𝛽 = 0.9,
b)𝜓 = 𝜋/2 + 0.2 and 𝛼 = 0.9, c) 𝛼 = 0.9 and 𝛽 = 0.5,d) 𝛼 = 0.5
and 𝛽 = 0.9

This feature of the fractional Kelvin–Voigt model is attributed to its diffusion type
nature and instability and sensitivity to small variations in the damping parameter
as discussed in [20].

Figure 3 shows the dispersion curves for the phononic crystal fractional Maxwell
model. One can observe lower values of frequency, especially in the optical branch,
and narrower band gaps for lower values of the fractional-order parameter compared
to the elastic case (green line). This effect is more pronounced for the changes of
fractional parameter 𝛼 while a decrease in 𝛽 is more visible in the acoustic branch
together with the overall shift of the band gap. However, as expected for dissipation
models, in the increase of damping parameter (through an increase in the angle
𝜓) causes a decrease in frequency. This effect is more pronounced for the case
when 𝛼 < 𝛽.

In the following, the dispersion curves for the acoustic metamaterials with the
fractional Kelvin–Voigt and Maxwell damping models are given in Figures 4 and 5,
respectively. In Figure 4 one can observe much different dispersion curves of acous-
tic metamaterials compared to the phononic crystals in both acoustic and optical
branches. The obtained band gaps are at lower frequencies and narrower than for
the phononic crystals. However, for lower values of fractional parameter 𝛽 one
can notice an increase in frequency and band gap widening. Similar behaviour
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Figure 4. Dispersion curves of the elastic system (green lines)
with the corresponding band gap (gray colored square) and
fractional-order viscoelastic Kelvin–Voigt acoustic metamaterial
for varying model parameters and fixed values of a) 𝜓 = 𝜋/2+ 0.2
and 𝛽 = 0.9, b)𝜓 = 𝜋/2 + 0.2 and 𝛼 = 0.9, c) 𝛼 = 0.9 and
𝛽 = 0.5,d) 𝛼 = 0.5 and 𝛽 = 0.9

can be noticed for an increase in the damping parameter in Figure 4 c) and d).
However, this behaviour lacks physical interpretation since in this case we use the
diffusion type fractional Kelvin–Voigt model as mentioned before. In addition, Fig-
ure 5 shows the dispersion curves for the acoustic metamaterial fractional Maxwell
model. It can be noticed that the band gap is narrower at lower values of fractional
parameter 𝛽. However, changes of dispersion curves are more pronounced in the
optical branch where frequency decreases with an increase in the damping param-
eter (angle 𝜓). One can observe that the main dissipation effect occurs outside
the band gap, where frequency in the optical branch is significantly damped com-
pared to the elastic case. Consequently, dissipation models show that damping can
affect the band gap width but the main dissipation is outside this region. Poten-
tial application of acoustic metamaterials is in the blast wave mitigation and wave
isolation. This was demonstrated in [18] based on the classical Maxwell damping
model of acoustic metamaterial, where broadband acoustic wave attenuation was
achieved based on the system with several resonators. Since the relationship be-
tween the damping ratio, frequency and damping factor cannot be established in
the classical sense, we have omitted the analyses of real parts (damping factors)
of complex roots for the fractional viscoelastic models. An advantage of fractional
viscoelastic models lies in the fact that they have been proven in the literature as
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superior to the conventional models in fitting the damping behaviour of variety
of materials. However, for wave attenuation in a broader frequency spectrum it
would be necessary to introduce more resonators or hierarchical design [28] of the
metamaterial structure.

Figure 5. Dispersion curves of the elastic system (green lines)
with the corresponding band gap (gray colored square) and
fractional-order viscoelastic Maxwell acoustic metamaterial for
varying model parameters and fixed values of a) 𝜓 = 𝜋/2 + 0.2
and 𝛽 = 0.9, b)𝜓 = 𝜋/2 + 0.2 and 𝛼 = 0.9, c) 𝛼 = 0.9 and
𝛽 = 0.5,d) 𝛼 = 0.5 and 𝛽 = 0.9

4. Conclusions

In this communication, we studied general fractional-order derivative models
of a two-mass phononic crystal and acoustic metamaterial. The fractional Kelvin–
Voigt and Maxwell viscoelasticity models are introduced through corresponding
force-displacement relationships to account for the dissipation effects due to tem-
poral attenuation of waves. It was demonstrated that the proposed models exhibit
different dissipation behaviour from the conventional viscoelastic and elastic mod-
els. In the case of the fractional Kelvin–Voigt model, anomalous behaviour of
increased frequency for an increase in the damping parameter was revealed in the
dispersion curves at lower values of fractional parameters. However, the fractional
Maxwell model exhibited larger dissipation for AMs and band gap narrowing for
PCs in the entire spectrum. In conclusion, we can state that the fractional-order
dissipation models of PCs and AMs can simulate a wide range of behaviours and
dissipation in the entire frequency-wavenumber spectrum, which can fit some of the
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possible behaviours of real-world phononic structures and acoustic metamaterials.
The presented methodology can be extended to study metamaterials with a more
complex unit cell hierarchy.

Appendix A. Matrix elements

Elements of matrix 𝑆𝑃𝐶𝑖𝑗 for the fractional Kelvin–Voigt PC model are given as

𝑆𝑃𝐶11 = 𝑝2 +
𝐸01

𝑚1
(1 + 𝜏𝛼𝑝𝛼) +

𝐸02

𝑚1
(1 + 𝜏𝛽𝑝𝛽),

𝑆𝑃𝐶12 = −𝐸01

𝑚1
(1 + 𝜏𝛼𝑝𝛼)𝑒−𝑖𝜅𝐿 − 𝐸02

𝑚1
(1 + 𝜏𝛽𝑝𝛽),

𝑆𝑃𝐶21 = −𝐸01

𝑚2
(1 + 𝜏𝛼𝑝𝛼)𝑒𝑖𝜅𝐿 − 𝐸02

𝑚2
(1 + 𝜏𝛽𝑝𝛽),

𝑆𝑃𝐶22 = 𝑝2 +
𝐸01

𝑚2
(1 + 𝜏𝛼𝑝𝛼) +

𝐸02

𝑚2
(1 + 𝜏𝛽𝑝𝛽).

Elements of matrix 𝑆𝑃𝐶𝑖𝑗 for the fractional Kelvin-Voigt PC model are given as

𝑆𝑃𝐶11 = 𝑝2 +
𝐸01

𝑚1
(1 + 𝜏𝛼𝑝𝛼) +

𝐸02

𝑚1
(1 + 𝜏𝛽𝑝𝛽),

𝑆𝑃𝐶12 = −𝐸01

𝑚1
(1 + 𝜏𝛼𝑝𝛼)𝑒−𝑖𝜅𝐿 − 𝐸02

𝑚1
(1 + 𝜏𝛽𝑝𝛽),

𝑆𝑃𝐶21 = −𝐸01

𝑚2
(1 + 𝜏𝛼𝑝𝛼)𝑒𝑖𝜅𝐿 − 𝐸02

𝑚2
(1 + 𝜏𝛽𝑝𝛽),

𝑆𝑃𝐶22 = 𝑝2 +
𝐸01

𝑚2
(1 + 𝜏𝛼𝑝𝛼) +

𝐸02

𝑚2
(1 + 𝜏𝛽𝑝𝛽).

Similarly, by substituting the Eq. (2.13) in each of the Eqs. (2.7)–(2.12) one can
obtain elements of matrix 𝑆𝑃𝐶𝑖𝑗 for the Maxwell model and elements of matrices
𝑆𝐴𝑀𝑖𝑗 for both, fractional-order Kelvin–Voigt and Maxwell models.

Appendix B. Roots of the characteristic equations

Here, the procedure for obtaining the roots of polynomials with noninteger
exponents in an analytical manner is presented. After using the following replace-
ment 𝑝 = 𝑟𝑒𝑖𝜓 in Eqs. (2.5)–(2.8) and separating the real and imaginary parts, one
obtains the following relations for the fractional Kelvin–Voigt PC model:

(B.1) 𝑟4 cos 4𝜓 + (𝜔2
11 + 𝜔2

12)𝑟
2𝑅𝛼 cos (2𝜓 + 𝜑𝛼) + (𝜔2

21 + 𝜔2
22)𝑟

2𝑅𝛽 cos (2𝜓 + 𝜑𝛽)

+ 2𝜔2
11𝜔

2
22(1− cos𝜅𝐿)𝑅𝛼𝑅𝛽 cos (𝜑𝛼 + 𝜑𝛽) = 0

(B.2) 𝑟4 sin 4𝜓 + (𝜔2
11 + 𝜔2

12)𝑟
2𝑅𝛼 sin (2𝜓 + 𝜑𝛼) + (𝜔2

21 + 𝜔2
22)𝑟

2𝑅𝛽 sin (2𝜓 + 𝜑𝛽)

+ 2𝜔2
11𝜔

2
22(1− cos𝜅𝐿)𝑅𝛼𝑅𝛽 sin (𝜑𝛼 + 𝜑𝛽) = 0,
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and for the fractional Kelvin–Voigt AM model as:

(B.3) 𝑟4 cos 4𝜓 + 2𝜔2
11𝑟

2𝑅𝛼(1− cos𝜅𝐿) cos (2𝜓 + 𝜑𝛼)

+ (𝜔2
21 + 𝜔2

22)𝑟
2𝑅𝛽 cos (2𝜓 + 𝜑𝛽)

+ 2𝜔2
11𝜔

2
22(1− cos𝜅𝐿)𝑅𝛼𝑅𝛽 cos (𝜑𝛼 + 𝜑𝛽) = 0,

(B.4) 𝑟4 sin 4𝜓 + 2𝜔2
11𝑟

2𝑅𝛼(1− cos𝜅𝐿) sin (2𝜓 + 𝜑𝛼)

+ (𝜔2
21 + 𝜔2

22)𝑟
2𝑅𝛽 sin (2𝜓 + 𝜑𝛽)

+ 2𝜔2
11𝜔

2
22(1− cos𝜅𝐿)𝑅𝛼𝑅𝛽 sin (𝜑𝛼 + 𝜑𝛽) = 0,

where 𝑅𝛼, 𝑅𝛽 , 𝜑𝛼 and 𝜑𝛽 are polar coordinates for bracket terms in (2.5)–(2.8)
given as:

𝑅𝛼 =
√︀
1 +𝑋𝛼 +𝑋2𝛼, 𝑅𝛽 =

√︀
1 +𝑋𝛽 +𝑋2𝛽 ,

tan𝜑𝛼 =
𝑋𝛼 sin𝛼𝜓

1 +𝑋𝛼 cos𝛼𝜓
, tan𝜑𝛽 =

𝑋𝛽 sin𝛽𝜓

1 +𝑋𝛽 cos𝛽𝜓
,

where the replacement 𝑋 = 𝑟𝜏 is used. First, one should multiply Eqs. (B.1) and
(B.2) with sin 4𝜓 and cos 4𝜓, respectively, and subtracting one from another elimi-
nate the term 𝑟4. The same equations should be multiplied again with sin𝜑𝛼 + 𝜑𝛽
and cos𝜑𝛼 + 𝜑𝛽 and then subtracted one from another to eliminate the last terms
in equations. After taking into account some trigonometric identities, for the frac-
tional Kelvin–Voigt PC model one can obtain two equations in terms of 𝑟2 as:

𝑟2 = − 2𝜔2
11𝜔

2
22(1− cos𝜅𝐿)𝑅𝛼𝑅𝛽 sin (𝛾𝛼 + 𝛾𝛽)

(𝜔2
11 + 𝜔2

12)𝑅𝛼 sin 𝛾𝛼 + (𝜔2
21 + 𝜔2

22)𝑅𝛽 sin 𝛾𝛽
,

𝑟2 = − (𝜔2
11 + 𝜔2

12)𝑅𝛼 sin 𝛾𝛽 + (𝜔2
21 + 𝜔2

22)𝑅𝛽 sin 𝛾𝛼
sin (𝛾𝛼 + 𝛾𝛽)

,

where 𝛾𝛼 = 𝜑𝛼 − 2𝜓 and 𝛾𝛽 = 𝜑𝛽 − 2𝜓. Using the same procedure over Eqs. (B.3)
and (B.4) the following equations in terms of 𝑟2 can be obtained for the fractional
Kelvin–Voigt AM model:

𝑟2 = − 2𝜔2
11𝜔

2
22(1− cos𝜅𝐿)𝑅𝛼𝑅𝛽 sin (𝛾𝛼 + 𝛾𝛽)

2𝜔2
11𝑅𝛼(1− cos𝜅𝐿) sin 𝛾𝛼 + (𝜔2

21 + 𝜔2
22)𝑅𝛽 sin 𝛾𝛽

,

𝑟2 = −2𝜔2
11𝑅𝛼(1− cos𝜅𝐿) sin 𝛾𝛽 + (𝜔2

21 + 𝜔2
22)𝑅𝛽 sin 𝛾𝛼

sin (𝛾𝛼 + 𝛾𝛽)
.

By equating the equations for 𝑟2 obtained for the fractional Kelvin–Voigt PC or
AM models one can obtain the corresponding transcendent equation with two zeros
defining the unknown 𝑋 for the fixed values of angle 𝜓, which are denoted as 𝑋𝑠,
𝑠 = 1, 2. Further, by substituting 𝑋𝑠 in any of the equations for 𝑟 and then in
Eq. (2.19), one can find four roots of the characteristic polynomial with fractional
exponents.

After using the same replacement 𝑝 = 𝑟𝑒𝑖𝜓 in Eqs. (2.9)–(2.12) and separating
real and imaginary parts, for the Maxwell PC model one obtains:



94 CAJIĆ, KARLIČIĆ, PAUNOVIĆ, AND ADHIKARI

(B.5) 𝑟4 cos 4𝜓 + (𝜔2
11 + 𝜔2

12)𝑟
2𝑅−1

𝛼 𝑋𝛼 cos (2𝜓 − 𝜑𝛼 + 𝛼𝜓)

+ 2𝜔2
11𝜔

2
22𝑅

−1
𝛼 𝑅−1

𝛽 𝑋𝛼+𝛽(1− cos𝜅𝐿) cos (𝜓𝛼+ 𝜓𝛽 − 𝜑𝛼 − 𝜑𝛽)

+ (𝜔2
21 + 𝜔2

22)𝑟
2𝑅−1

𝛽 𝑋𝛽 cos (2𝜓 − 𝜑𝛽 + 𝛽𝜓) = 0,

(B.6) 𝑟4 sin 4𝜓 + (𝜔2
11 + 𝜔2

12)𝑟
2𝑅−1

𝛼 𝑋𝛼 sin (2𝜓 − 𝜑𝛼 + 𝛼𝜓)

+ 2𝜔2
11𝜔

2
22𝑅

−1
𝛼 𝑅−1

𝛽 𝑋𝛼+𝛽(1− cos𝜅𝐿) sin (𝜓𝛼+ 𝜓𝛽 − 𝜑𝛼 − 𝜑𝛽)

+ (𝜔2
21 + 𝜔2

22)𝑟
2𝑅−1

𝛽 𝑋𝛽 sin (2𝜓 − 𝜑𝛽 + 𝛽𝜓) = 0,

and for the Maxwell AM model as:

(B.7) 𝑟4 cos 4𝜓 + 2𝜔2
11𝑟

2𝑅−1
𝛼 𝑋𝛼(1− cos𝜅𝐿) cos (2𝜓 − 𝜑𝛼 + 𝛼𝜓)

+ 2𝜔2
11𝜔

2
22𝑅

−1
𝛼 𝑅−1

𝛽 𝑋𝛼+𝛽(1− cos𝜅𝐿) cos (𝜓𝛼+ 𝜓𝛽 − 𝜑𝛼 − 𝜑𝛽)

+ (𝜔2
21 + 𝜔2

22)𝑟
2𝑅−1

𝛽 𝑋𝛽 cos (2𝜓 − 𝜑𝛽 + 𝛽𝜓) = 0,

(B.8) 𝑟4 sin 4𝜓 + 2𝜔2
11𝑟

2𝑅−1
𝛼 𝑋𝛼(1− cos𝜅𝐿) sin (2𝜓 − 𝜑𝛼 + 𝛼𝜓)

+ 2𝜔2
11𝜔

2
22𝑅

−1
𝛼 𝑅−1

𝛽 𝑋𝛼+𝛽(1− cos𝜅𝐿) sin (𝜓𝛼+ 𝜓𝛽 − 𝜑𝛼 − 𝜑𝛽)

+ (𝜔2
21 + 𝜔2

22)𝑟
2𝑅−1

𝛽 𝑋𝛽 sin (2𝜓 − 𝜑𝛽 + 𝛽𝜓) = 0,

where replacements for 𝑋, 𝑅𝛼, 𝑅𝛽 , 𝜑𝛼 and 𝜑𝛽 are the same as for the fractional
Kelvin–Voigt model. One should now multiply Eqs. (B.5) and (B.6) with sin 4𝜓 and
cos 4𝜓, respectively, and subtract one from another to eliminate the term with 𝑟4.
Then the same equations should be multiplied again with sin−𝜑𝛼 − 𝜑𝛽 + 𝛼𝜓 + 𝛽𝜓
and sin−𝜑𝛼 − 𝜑𝛽 + 𝛼𝜓 + 𝛽𝜓 and subtracted one from another to eliminate the
last terms in equations. The same procedure is repeated for Eqs. (B.7) and (B.8).
After taking into account some trigonometric identities, one obtains two equations
in terms of 𝑟2 for the Maxwell PC model as:

𝑟2 = −
2𝜔2

11𝜔
2
22(1− cos𝜅𝐿)𝑅−1

𝛼 𝑅−1
𝛽 𝑋𝛼+𝛽 sin (𝜃𝛼 + 𝜃𝛽)

(𝜔2
11 + 𝜔2

12)𝑅
−1
𝛼 𝑋𝛼 sin 𝜃𝛼 + (𝜔2

21 + 𝜔2
22)𝑅

−1
𝛽 𝑋𝛽 sin 𝜃𝛽

𝑟2 = −
(𝜔2

11 + 𝜔2
12)𝑅

−1
𝛼 𝑋𝛼 sin 𝜃𝛽 + (𝜔2

21 + 𝜔2
22)𝑅

−1
𝛽 𝑋𝛽 sin 𝜃𝛼

sin (𝜃𝛼 + 𝜃𝛽)

and for the Maxwell AM model as

𝑟2 = −
2𝜔2

11𝜔
2
22(1− cos𝜅𝐿)𝑅−1

𝛼 𝑅−1
𝛽 𝑋𝛼+𝛽 sin (𝜃𝛼 + 𝜃𝛽)

2𝜔2
11𝑅

−1
𝛼 𝑋𝛼(1− cos𝜅𝐿) sin 𝜃𝛼 + (𝜔2

21 + 𝜔2
22)𝑅

−1
𝛽 𝑋𝛽 sin 𝜃𝛽

,

𝑟2 = −
2𝜔2

11𝑅
−1
𝛼 𝑋𝛼(1− cos𝜅𝐿) sin 𝜃𝛽 + (𝜔2

21 + 𝜔2
22)𝑅

−1
𝛽 𝑋𝛽 sin 𝜃𝛼

sin (𝜃𝛼 + 𝜃𝛽)
,

where 𝜃𝛼 = 𝜑𝛼 − 𝛼𝜓 + 2𝜓 and 𝜃𝛽 = 𝜑𝛽 − 𝛽𝜓 + 2𝜓. In the same manner as above,
by equating the equations for 𝑟2 of the fractional Maxwell PC or AM models, one
can obtain the corresponding transcendent equation with two zeros defining the
unknown 𝑋 for fixed values of angle 𝜓, which are denoted as 𝑋𝑠, 𝑠 = 1, 2.
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ПРИСТУП БАЗИРАН НА ФРАКЦИОНОМ РАЧУНУ ЗА
ОПИСИВАЊЕ МЕТА-ПРИГУШЕЊА У ФОНОНСКИМ

КРИСТАЛИМА И АКУСТИЧНИМ МЕТАМАТЕРИJАЛИМА

Резиме. У последњоj децениjи, истраживања на тему фононских и аку-
стичних материjала и структура су у успону као резултат примене резултата
истраживања из теориjске физике у разним областима инжењерства. Глав-
на карактеристика фононског медиjума jе периодичност коjа произилази из
периодичности материjалних фаза, геометриjе или граничних услова са осо-
бинама пропагациjе таласа анализираним преко зонске структуре (подручjа
забрањених и допуштених фреквенциjа пропагациjе таласа). За добиjање на-
ведених карактеристика и дисперзних релациjа резонантих метаматериjала са
вискозним пригушењем у литертури се наjчешће примењуjе Блохова теорема.
У овом раду предложен jе нов приступ за теориjску анализу модела фононских
кристала и акустичних метаматериjала са фракционим пригушењем уведеним
преко фракционог Келвин-Воjтовог и Максвеловог модела. У нумеричкоj ана-
лизи, резултати добиjени за предложене моделе са пригушењем су упоређени
са резултатима добиjеним за еквивалентне еластичне моделе фононских кри-
стала и локално резонантних акустичних метаматериjала и показана jе знатна
разлика у вредностима дисперзних криви у ова два случаjа. Показано jе да jе
фракциони Максвелов модел погодниjи за описивање ефекта пригушења због
могућности фитовања два параметра, реда фракционог извода и параметра
пригушења.
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