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Cellular structure in a dynamic environment

(a) Typical representation of a hexagonal lattice (b) The unit cell considered in this
paper. Dimensions of the three-beam element are shown in the figure (c) The out of

plane cross-section of each beam element.
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Element stiffness matrix of a beam

A beam element with six degrees of freedom and two nodes is shown.
The degrees of freedom in each node corresponds to the axial,
transverse and rotational deformation.
The static stiffness matrix using the Euler-Bernoulli beam theory is given
by

Ks =



EA
L 0 0 −EAL 0 0
0 12EI

L3
6EI
L2 0 − 12EI

L3
6EI
L2

0 6EI
L2

4EI
L 0 − 6EI

L2
2EI
L

−EAL 0 0 EA
L 0 0

0 − 12EI
L3 − 6EI

L2 0 12EI
L3 − 6EI

L2

0 6EI
L2

2EI
L 0 − 6EI

L2
4EI
L

 (1)
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Dynamic stiffness of a beam

The mass distribution of the element is treated in an exact manner in
deriving the element dynamic stiffness matrix.
The dynamic stiffness matrix of one-dimensional structural elements,
taking into account the effects of flexure, torsion, axial and shear
deformation, and damping, is exactly determinable, which, in turn,
enables the exact vibration analysis by an inversion of the global dynamic
stiffness matrix.
The method does not employ eigenfunction expansions and,
consequently, a major step of the traditional finite element analysis,
namely, the determination of natural frequencies and mode shapes, is
eliminated which automatically avoids the errors due to series truncation.
The damping within the system can be incorporated in a rigorous manner
using complex algebra.
The method is essentially a frequency-domain approach suitable for
steady state harmonic or stationary random excitation problems.
The static stiffness matrix and the consistent mass matrix appear as the
first two terms in the Taylor expansion of the dynamic stiffness matrix in
the frequency parameter.
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Dynamic stiffness: axial motion

The equation governing axial motion of a beam is

EA

(
1 + ζk

∂

∂t

)
∂2u

∂x2
− ρA∂

2u

∂t2
− ca

∂u

∂t
= 0 (2)

and the axial force boundary condition is

N(x) = EA (1 + ζk∂/∂t) ∂u/∂x (3)

Here EA is the stiffness for axial deformation, ρA is mass per unit length,
ζk is the stiffness proportional damping factor, ca is the
velocity-dependent viscous damping coefficient.
By introducing the non-dimensional length ξ = x/L and harmonic
vibration assumption u(x, t) = U(x)eiωt, one has the characteristic
equation

d2U

dξ2
+ k2

aU = 0 (4)

where

k2
a =

(
ρAω2 − iωca

)
L2

EA (1 + iωζk)
=
mω2L2 (1− iζma/ω)

E (1 + iωζk)
(5)

and ζma = ca/(ρA) is the mass proportional damping factor.
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Dynamic stiffness: axial motion

The exact shape function can be derived

U(ξ) = c1 cos (kaξ) + c2 sin (kaξ) (6)

Therefore, the displacement boundary conditions for a beam element can
be written in the matrix form as[

U1

U2

]
=

[
U(ξ = 0)
U(ξ = 1)

]
=

[
1 0

cos (ka) sin (ka)

] [
c1
c2

]
(7)

whereas the force boundary conditions can be given as[
N1

N2

]
=

[
−N(ξ = 0)
N(ξ = 1)

]
=

EA (1 + iωζk) ka
L

[
0 −1

− sin (ka) cos (ka)

] [
c1
c2

]
(8)
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Dynamic stiffness: axial motion

Eliminating the unknowns c1, c2 leads to the dynamic stiffness formulation
for the axial vibration of a beam element[

N1

N2

]
=

[
a1 a2

a2 a1

]
︸ ︷︷ ︸

Ka(ω)

[
U1

U2

]
(9)

where

a1 = EA (1 + iωζk) ka cot(ka)/L (10)
a2 = −EA (1 + iωζk) ka csc(ka)/L . (11)
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Dynamic stiffness: bending motion

The governing differential equation for bending vibration based on
Euler-Bernoulli beam theory is given as follows

EI

(
1 + ζk

∂

∂t

)
∂4w

∂x4
+ ρA

∂2w

∂t2
+ cb

∂w

∂t
= 0 (12)

The natural boundary conditions are given as

M(x) = EI

(
1 + ζk

∂

∂t

)
∂2w

∂x2

V (x) = −EI
(

1 + ζk
∂

∂t

)
∂3w

∂x3

(13)

where cb is the velocity-dependent viscous damping coefficient for
bending deformation, EI is the bending stiffness of the beam, I is the
inertia moment of the beam cross section.
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Dynamic stiffness: bending motion

By introducing the harmonic vibration assumption w(x, t) = W (x)eiωt, we
have the following characteristic equation(

D4 − k4
b

)
W = 0 (14)

where D = d/dξ = Ld/dx and

k4
b =

(
ρAω2 − iωcb

)
L4

EI (1 + iωζk)
=
ρAω2L4 (1− iζmb/ω)

EI (1 + iωζk)
=

12ρω2L4 (1− iζmb/ω)

Et2 (1 + iωζk)
(15)

Therefore, the general solutions are of the form

W (ξ) = c1 sin (kbξ) + c2 cos (kbξ) + c3 sinh (kbξ) + c4 cosh (kbξ)

Θ(ξ) = c1kb cos (kbξ)− c2kb sin (kbξ) + c3kb cosh (kbξ) + c4kb sinh (kbξ)
(16)
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Dynamic stiffness: bending motion

By eliminating the unknowns c1, c2, c3 and c4, we have the dynamic
stiffness matrix for a Euler-Bernoulli beam element

V1

M1

V2

M2

 =


d1 d2 d4 d5

d3 −d5 d6

d1 −d2

sym d3


︸ ︷︷ ︸

Kb(ω)


W1

Θ1

W2

Θ2

 (17)

Here the complex frequency-dependent functions

d1 = R3 (cS + sC) /δ
d2 = R2sS/δ
d3 = R1 (sC − cS) /δ
d4 = −R3 (s+ S) /δ
d5 = R2 (C − c) /δ
d6 = R1 (S − s) /δ

(18)

and
δ = 1− cC, Rj = EI (kb/L)

j
j = 1, 2, 3

s = sin kb, c = cos kb, S = sinh kb, C = cosh kb
(19)
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The complete dynamic stiffness matrix

Combining the axial and bending vibration cases, the elemental matrix of
a beam element can be written as

K(ω) =


a1 0 0 a2 0 0
0 d1 d2 0 d4 d5

0 d2 d3 0 −d5 d6

a2 0 0 a1 0 0
0 d4 −d5 0 d1 −d2

0 d5 d6 0 −d2 d3

 (20)

The above equation is obtained using the shape functions exactly
satisfying the equation of dynamic motion.
All the non-zero elements are function of frequency and complex values
due to the presence of damping.
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Derivation of effective dynamic properties

Dynamic behaviour of the overall lattice structure depends on the
frequency-dependent deformation characteristics of the constituent
individual beams.
The vibrating beams undergo deformation under applied external
harmonic loads. The rule of deformation in such cases would be different
from the static condition.
It will be shown that this leads to a different value of effective elastic
moduli of the lattice material from conventional static values.
Our objective is to express equivalent in-plane elastic moduli of the lattice
in terms of the stiffness matrix elements of the beams using the unit cell
approach.
For the sake of generality, we consider the dynamic equilibrium of the unit
cell under different stress conditions. The general frequency-dependent
stiffness matrix K(ω) derived before is employed here.
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Equivalent Young’s modulus E1 and the Poisson’s ratio ν12

Dynamic equilibrium and deformation patterns of the unit cell under the
application of a harmonic stress field σ̄1 = σ1(ω)eiωt applied in the 1-direction.
This configuration is used for the derivation of the longitudinal Young’s modulus
E1(ω) and the Poisson’s ratio ν12(ω).
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Equivalent Young’s modulus E1 and the Poisson’s ratio ν12

The deformation of the unit cell is symmetric about the OC line. The
amplitude of the force P acting on point A for a given frequency ω is given
by

P (ω) = σ1(ω)b(h+ l sin θ) (21)

Considering ηA(ω) and γA(ω) as deformations transverse and along the
inclined member AO, we have

ηA(ω) =
P (ω) sin θ

K55(ω)
and γA(ω) =

P (ω) cos θ

K66(ω)
(22)

Here K55(ω) and K66(ω) are elements of the stiffness matrix of the
inclined member AO of length l. Due to the presence of damping, K55(ω)
and K66(ω) are in general complex valued functions of the frequency
parameter ω. As a result, the deformations ηA(ω) and γA(ω) are complex
valued functions of ω.
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Equivalent Young’s modulus E1 and the Poisson’s ratio ν12

The total dynamic deflection in the 1-direction is therefore

δ1(ω) = ηA(ω) sin θ + γA(ω) cos θ = P (ω)

(
sin2 θ

K55(ω)
+

cos2 θ

K66(ω)

)
=
P sin2 θ

K55(ω)

(
1 + cot2 θ

K55(ω)

K66(ω)

) (23)

The strain the 1-direction is obtained as

ε1(ω) =
δ1(ω)

l cos θ
=
σ1(ω)b(h/l + sin θ) sin2 θ

K55(ω) cos θ

(
1 + cot2 θ

K55(ω)

K66(ω)

)
(24)

Using this, the Young’s modulus in 1-direction is obtained in terms of the
elements of the stiffness matrix as

E1(ω) =
σ1(ω)

ε1(ω)
=

K55(ω) cos θ

b(h/l + sin θ) sin2 θ
(

1 + cot2 θK55(ω)
K66(ω)

) (25)
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Equivalent Young’s modulus E1 and the Poisson’s ratio ν12

To obtain the Poisson’s ratio ν12, we need to obtain the strain in the
direction 2 for applied stress in the 1-direction. Using the expressions of
the deformations in Eq. (22), we obtain total deflection in the 2-direction
as

− δ2(ω) = ηA(ω) cos θ − γA(ω) sin θ = P (ω)

(
sin θ cos θ

K55(ω)
− sin θ cos θ

K66(ω)

)
=
P (ω) sin θ cos θ

K55(ω)

(
1− K55(ω)

K66(ω)

)
(26)

The total strain in the 2-direction is

− ε2(ω) =
δ2(ω)

h+ l sin θ
=
σ1(ω)b sin θ cos θ

K55(ω)

(
1− K55(ω)

K66(ω)

)
(27)

Using the expressions of the strains in directions 1 and 2 given by Eqs.
(24) and (27), we obtain the Poisson’s ratio ν12

ν12(ω) = −ε2(ω)

ε1(ω)
=

cos2 θ
(

1− K55(ω)
K66(ω)

)
(h/l + sin θ) sin θ

(
1 + cot2 θK55(ω)

K66(ω)

) (28)
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Equivalent Young’s modulus E2 and the Poisson’s ratio ν21

Dynamic equilibrium and deformation patterns of the unit cell under application of
a harmonic stress field σ̄2 = σ2(ω)eiωt applied in the 2-direction. This
configuration is used for the derivation of the transverse Young’s modulus E2(ω)

and the Poisson’s ratio ν21(ω).
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Equivalent Young’s modulus E2 and the Poisson’s ratio ν21

For deriving the expression of transverse Young’s modulus and Poisson’s
ratio ν21, a uniform harmonic stress σ̄2 = σ2(ω)eiωt is applied to the unit
cell in direction-2.
From the free-body diagram depicting the dynamic equilibrium at the
steady state condition, we deduce that the the deformation of the unit cell
is symmetric about the OC line.
It addition, the point O has no deflection in the 1-direction. Therefore, it is
sufficient to consider the deflection of point A or B with respect to point C
under the applied stress.
Considering point A, the harmonic stress results in a harmonic vertical
force W̄ = W (ω)eiωt for a given frequency ω. The amplitude of this
vertical force is given by

W (ω) = σ2(ω)bl cos θ (29)

Considering ηA and γA as deformations transverse and along the inclined
member AO, we have

ηA(ω) =
W (ω) cos θ

K55(ω)
and γA(ω) =

W (ω) sin θ

K66(ω)
(30)

Here K55 and K66 are elements of the stiffness matrix of the member AO.
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Equivalent Young’s modulus E2 and the Poisson’s ratio ν21

The deflection in the 2-direction is therefore

δ2AO
(ω) = ηA(ω) cos θ + γA(ω) sin θ = W (ω)

(
cos2 θ

K55(ω)
+

sin2 θ

K66(ω)

)
=
W (ω) cos2 θ

K55(ω)

(
1 + tan2 θ

K55(ω)

K66(ω)

) (31)

The total force acting in the 2-direction at point O is 2W . Therefore, the
displacement of point O in the 2-direction arising from the axial
deformation of the vertical member OC is

δ2O
(ω) =

2W (ω)

K
(h)
66 (ω)

(32)

Here (•)(h) corresponds to the properties arising from the vertical
member OC of length h. The total deflection in the 2-direction is therefore

δ2(ω) = δ2AO(ω)+δ2O(ω) =
W (ω) cos2 θ

K55(ω)

(
1 + tan2 θ

K55(ω)

K66(ω)
+ 2 sec2 θ

K55(ω)

K
(h)
66 (ω)

)
(33)
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Equivalent Young’s modulus E2 and the Poisson’s ratio ν21

The strain the 2-direction is obtained as

ε2(ω) =
δ2(ω)

h+ l sin θ
=

σ2(ω)b cos3 θ

K55(ω)(h/l + sin θ)

(
1 + tan2 θ

K55(ω)

K66(ω)
+ 2 sec2 θ

K55(ω)

K
(h)
66 (ω)

)
(34)

Using this, the Young’s modulus in 1-direction is obtained in terms of the
elements of the stiffness matrix as

E2(ω) =
σ2(ω)

ε2(ω)
=

K55(ω)(h/l + sin θ)

b cos3 θ

(
1 + tan2 θK55(ω)

K66(ω) + 2 sec2 θ K55(ω)

K
(h)
66 (ω)

) (35)
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Equivalent Young’s modulus E2 and the Poisson’s ratio ν21

To obtain the Poisson’s ratio ν21, we need to obtain the strain in the
direction 1 due to the applied stress in the 2-direction as

δ1(ω) = γA(ω) cos θ − ηA(ω) sin θ = −W (ω)

(
sin θ cos θ

K55(ω)
− sin θ cos θ

K66(ω)

)
= −W (ω) sin θ cos θ

K55(ω)

(
1− K55(ω)

K66(ω)

)
(36)

The total strain in the 1-direction is

ε1(ω) =
δ1(ω)

l cos θ
= −σ2(ω)b sin θ

lK55(ω)

(
1− K55(ω)

K66(ω)

)
(37)

Using the expressions of the strains in directions 1 and 2 given by Eqs.
(24) and (27), we obtain the Poisson’s ratio ν21

ν21(ω) = −ε1(ω)

ε2(ω)
=

(h/l + sin θ) sin θ
(

1− K55(ω)
K66(ω)

)
cos2 θ

(
1 + tan2 θK55(ω)

K66(ω) + 2 sec2 θ K55(ω)

K
(h)
66 (ω)

) (38)
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Summary of the results so far

From equations (25) and (28), it can be observed that only two
coefficients of the 6× 6 element stiffness matrix of the inclined member,
namely, K55(ω) and K66(ω), contribute towards the value of E1 and ν12,
which In general are complex valued functions of the frequency ω due to
the presence of damping.
From equations (35) and (28), it can be observed that only two
coefficients of the 6× 6 element stiffness matrix of the inclined member
and one coefficients of the 6× 6 element stiffness matrix of vertical
member, namely, K55(ω), K66(ω) and K(h)

66 (ω), contribute towards the
value of E2 and ν21.
The proposed expressions of the general frequency dependent elastic
moduli also conform the reciprocal theorem

E1(ω)ν21(ω) = E2(ω)ν12(ω) =

K55(ω)

b sin θ
(

1 + cot2 θK55(ω)
K66(ω)

)
(

1− K55(ω)
K66(ω)

)
cos θ

(
1 + tan2 θK55(ω)

K66(ω) + 2 sec2 θ K55(ω)

K
(h)
66 (ω)

) (39)
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Shear modulus G21

Dynamic equilibrium and patterns patters of the unit cell under the
application of the harmonic shear stress field τ̄ = τ(ω)eiωt. Shear strain
due to bending and axial deformation are shown.
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Shear modulus G21

Following a procedure similar to what outlined before, we obtain

G12(ω) =
(h/l + sin θ)

b cos θ
1− h2

2lK65(ω) +
4K

(h/2)
66 (ω)(

K
(h/2)
55 (ω)K

(h/2)
66 (ω)−

(
K

(h/2)
56 (ω)

)2
) + (cos θ+(h/l+sin θ) tan θ)2

K66(ω)


(40)

We observed that in total five elements of two different stiffness matrices
contribute to the shear modulus. They include two coefficients of the
6× 6 element stiffness matrix of the inclined member, namely, K65(ω),
K66(ω). Additionally three elements of the stiffness matrix of the vertical
member with half the length, namely, K(h/2)

55 (ω), K(h/2)
56 (ω) and K(h/2)

66 (ω)
contribute to the shear modulus. Like the Youngs moduli, in general the
shear modulus is a complex valued function of the frequency ω due to the
presence of damping.

Adhikari (Swansea) Analysis of Mechanical Metamaterials: L2-B March 2021, IIT Kanpur 25



Analytical expressions

We introduce geometric non-dimensional ratios α and β as

α =
t

l
(41)

and β =
h

l
(42)

The moment of inertia and the cross-sectional area are given by

I =
1

12
bt3 (43)

and A = bt (44)

The frequency parameter corresponding to the bending vibration ω0 is
given by

ω0 =
1

l2

√
EI

ρA
=
α

2l

√
E

3ρ
(45)
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Analytical expressions

The stiffness coefficients are given by

K55(ω) =
ĒIk3

b

l3
(cS + sC) /δ = Ēbα3 1

12
k3
b (cS + sC) /δ︸ ︷︷ ︸

Γ1(ω)

K66(ω) = a1 =
ĒA

l
ka cot(ka) = Ēbα ka cot(ka)︸ ︷︷ ︸

Γ2(ω)

and K
(h)
66 (ω) =

ĒA

h
k(h)
a cot(k(h)

a ) =
Ēbα

β
k(h)
a cot(k(h)

a ) =
Ēbα

β
βka cotβka︸ ︷︷ ︸

Γ3(ω)

(46)

In the above equations we have

Ē = E(1 + iωck)

k4
b =

ρAω2L4 (1− icm/ω)

ĒI
=
ω2

ω2
0

(1− icm/ω)

(1 + iωck)

k2
a =

α2

12
k4
b and k(h)2

a = β2k2
a

(47)
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Analytical expressions

Upon some algebraic simplifications, we obtain the closed-form
expressions

E1(ω) =
Ēα3k3

b (sC + cS) cos θ

(β + sin θ)
(

12δ sin2 θ + α2 cos2 θ
k3b(sC+cS)

ka cot ka

) (48)

E2(ω) =
Ēα3k3

b (sC + cS) (β + sin θ)

12δ cos3 θ + α2(sin2 θ + 2 cot ka/ cotβka) cos θ
k3b(sC+cS)

ka cot ka

(49)

ν12(ω) =
cos2 θ

(
12δka cot ka − α2k3

b (sC + cS)
)

(β + sin θ) sin θ
(
12δka cot ka + α2k3

b (sC + cS) cot2 θ
) (50)

ν21(ω) =
(β + sin θ) sin θ

(
12δka cot ka − α2k3

b (sC + cS)
)

12δ cos2 θ + α2(sin2 θ + 2 cot ka/ cotβka)
k3b(sC+cS)

ka cot ka

(51)

Here the frequency-dependent complex quantities are given by

δ = 1− cC
and s = sin kb, c = cos kb, S = sinh kb, C = cosh kb

(52)
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Young’s modulus E1(ω)
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Young’s modulus E2(ω)

0 20 40 60 80 100

/
0

10-2

100

102
|E

2
(

)|
/E

2
G

A

=15°

=30°

=45°

=60°

α = t/l = 0.1, β = h/l = 2 and the damping constants are cm = 10−2 and
ck = 10−5 (values normalised with corresponding classical static values).

Adhikari (Swansea) Analysis of Mechanical Metamaterials: L2-B March 2021, IIT Kanpur 30



Poisson’s ratio ν12(omega)
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Poisson’s ratio ν21(omega)
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ck = 10−5 (values normalised with corresponding classical static values).
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Simplified expressions

For analytical simplification, we consider the elemental beams are axially
rigid.
For this case, the Poisson’s ratio reduces to the classical case and they
don’t change with respect to frequency.
Simplified elastic moduli become:

Simplified E1(ω)

E1(ω) =
K55(ω)l cos θ

(h+ l sin θ)b̄ sin2 θ

=
Et3l cos θb3(cos(bl) sinh(bl) + cosh(bl) sin(bl))

12(h+ l sin θ) sin2 θ(1− cos(bl) cosh(bl))

(53)

where

b4 =
mω2 (1− iζm/ω)

EI (1 + iωζk)
(54)
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Frequency-dependent elastic moduli

Simplified E2(ω)

E2(ω) =
K55(ω)(h+ l sin θ)

lb̄ cos3 θ

=
Et3(h+ l sin θ)b3 (cos(bl) sinh(bl) + cosh(bl) sin(bl))

12l cos3 θ(1− cos(bl) cosh(bl))

(55)

Simplified G12(ω)

G12(ω) =
(h+ l sin θ)

2lb̄ cos θ

1− h2

4lDs
65

+ 2(
Dv

55−
(Dv

56)2

Dv
66

)


=
Et3(h+ l sin θ)b3 sin(bl) sinh(bl) (1 + cos(bh/2) cosh(bh/2))

6l cos θ
[
h2b (1− cos(bl) cosh(bl)) (1 + cos(bh/2) cosh(bh/2))

+8l sin(bl) sinh(bl) (cosh(bh/2) sin(bh/2)− sinh(bh/2) cos(bh/2))]
(56)
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The static limit of the elastic moduli

Considering the static case, that is, when the the frequency ω → 0, we
have

lim
ω→0

K55(ω) = 12
EI

l3
= 12

(
1

12
Eb̄t3

)
1

l3
= Eb̄

(
t

l

)3

(57)

Substituting this in the expressions of E1(ω) and E2(ω) in equations (53)
and (55) we have

lim
ω→0

E1(ω) =
l cos θ

(h+ l sin θ)b̄ sin2 θ
lim
ω→0

K55(ω) (58)

= E

(
t

l

)3
l cos θ

(h+ l sin θ) sin2 θ

and lim
ω→0

E2(ω) =
(h+ l sin θ)

lb̄ cos3 θ
lim
ω→0

K55(ω) = E

(
t

l

)3
(h+ l sin θ)

l cos3 θ
(59)

The above expressions match exactly with the original classical
expressions of E1 and E2.
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The static limit of the elastic moduli

The shear modulus G12(ω) given in (56) is a function of four dynamic
stiffness coefficients. In the limiting case they become

lim
ω→0

Ds
65 = −6

EI

l2
, lim
ω→0

Dv
55 = 96

EI

h3
, lim
ω→0

Dv
56 = −24

EI

h2
, lim
ω→0

Dv
66 = 8

EI

h
(60)

Substituting these in (56) we have

lim
ω→0

G12(ω) =
(h+ l sin θ)

2lb̄ cos θ
lim
ω→0

1− h2

4lDs
65

+ 2(
Dv

55−
(Dv

56)2

Dv
66

)


=
(h+ l sin θ)

2lb̄ cos θ

1

(1/24) h
2l
EI + (1/12) h3

EI

= E

(
t

l

)3 (
h
l + sin θ

)(
h
l

)2
(1 + 2hl ) cos θ

(61)

This shows that the shear modulus G12(ω) also reduces to the classical
equation in the static limit.
These expressions should be viewed as the dynamic generalisation of the
conventional equivalent elastic moduli of the hexagonal cellular material.
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The undamped limit and the negative moduli

The expressions of E1 and E2 are proportional to K55(ω), which is a
complex frequency-dependent coefficient. Therefore, we study it’s
behaviour in the undamped limit to understand the the real part of E1 and
E2.
Assuming no damping in the system, the parameter b in equation (54)
becomes

b4 =
mω2

EI
(62)

Substituting this in the expression of K55(ω) and expanding the
expression by a Taylor series in the frequency parameter ω we have

K55(ω) = 12
EI

l3
− 13

35
mlω2 − 59

161700

l5m2ω4

EI
− 551

794593800

l9m3ω6

EI2 + · · ·
(63)

Note that coefficients of some higher order terms of ω are negative. We
observe that K55(ω) appears as a multiplicative term in the expressions
of E1(ω) and E2(ω) in equations (53) and (55) and the other terms are
positive.
Therefore, near the vicinity of ω ≈ 0, there exist some frequency beyond
which the effective elastic moduli of honeycomb will be negative.
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The undamped limit and the negative moduli

Retaining up to terms of order ω4 in equation (64), the critical value of ω
can be obtained by setting K55(ω) = 0 as

Negative E1, E2

K55(ω) ≈ 12
EI

l3
− 13

35
mlω2 − 59

161700

l5m2ω4

EI
= 0

or ω∗E1,E2
= 5.598

1

l2

√
EI

m

(64)

For lightly damped systems, beyond this frequency value, the equivalent
Young’s moduli E1 and E2 will be negative.
Since the discovery of the Young’s modulus over three centuries ago, it
has been generally recognised as a positive quantity. When a dynamic
equilibrium is considered, our results show that fore cellular
metamaterials the Young’s moduli can be negative, contradicting notions
established for centuries.
Similar observation has been made in the context of acoustics
metamaterials with sub-wavelength scale oscillators.
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The undamped limit and the negative moduli

For the shear modulus, it is also possible to expand the frequency dependent
expression (56) to expand in a Taylor series in ω about ω = 0 as

G12(ω) =
(h+ l sin θ)

2lb̄ cos θ

[
24

EI

h2 (2h+ l)
− 11

420

m
(
9h5 + 8l5

)
ω2

h2 (2h+ l)2

− 1

46569600

m2
(
55461h9l − 191664h5l5 + 198912l9h+ 3111h10 + 14272l10

)
ω4

EIh2 (2h+ l)3
· · ·

]
(65)

Considering only up to the second-order terms, we obtain the following
fundamental inequality regarding the frequency for negative value of G12

Negative G12

120√
160 + 75 (h/l)4

1

l2

√
EI

m
< ω∗

G12
< 30.2715

√
1 + 2(h/l)

8 + 9(h/l)5
1

l2

√
EI

m
(66)

Unlike the equivalent expression for the Young’s moduli E1 and E2 in (64), for the
minimum frequency above which G12 becomes negative depends on the h/l ratio.

Adhikari (Swansea) Analysis of Mechanical Metamaterials: L2-B March 2021, IIT Kanpur 39



Negative E1 and E2
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Negative G12

The real and imaginary parts and the amplitude of the normalised value of G12 as a function of frequency for four different values of h/l.
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3D printed lattice metamaterials under a vibrating environment

Lattice metamaterials under a vibrating environment. (a) Deformed shape of an equivalent continuum under uniaxial static (/quasi-static)
deformation (b) Schematic representation of a hexagonal lattice microstructure under dynamic environment (for example, lattice microstructure as
part of a larger host structure under wave propagation, vibration etc.).The curved arrows in this figure are symbolic representation of propagating
wave. (c) Unit cell under a dynamic environment (d - e) Additively manufactured non-auxetic and auxetic samples of hexagonal lattice structures
with intrinsic material as Titanium alloy Ti-6Al-4V (f) Equivalent continuum representation of the test specimen
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Additive manufacturing of the honeycomb

The Ti-6Al-4V lattice materials were additively manufactured on a
Renishaw RenAM 500M, which is a Laser Powder Bed Fusion (L-PBF)
process. The RenAM 500M system uses a 500W Ytterbium fibre laser to
melt Ti-6Al-4V gas atomised powder onto a 250mm × 250mm build plate,
on a layer by layer basis, up to a maximum built height of 280mm.
In this instance the Ti-6Al-4V powder was ELI grade and supplied by
LPW. The parameters used in these builds were a power of 400W, a layer
thickness of 60µm, a point distance of 80µm, an exposure time of 60µs,
and a hatch spacing of 100µm. Both the non-auxetic lattice in figure 1(d)
and the auxetic lattice in figure 1(e) were built directly onto the base plate
without any support structure, but with an additional 1mm sacrificial layer.
The lattices were then removed from the base plate using Electric
Discharge Machining (EDM) so that the thickness was 15mm.
The final dimension of the lattices in XY plane come to 215 mm × 115
mm. Residual stress is known to affect mechanical properties, however,
no stress relieving post-build heat treatments were used in this instance,
which resulted in a small spring-back deformation in the build direction
after removal from the plate.
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The testing setup

The additively manufactured honeycomb structure is tested using an
impact hammer. This is achieved with the aid of DataPhysics software
and the 901 Series dynamic signal analyser to return the Frequency
Response Functions (FRFs) between the force sensor in the hammer tip
and the accelerometers.
After some initial testings, a frequency bandwidth of 6400Hz is used for
the sample. Due to the higher natural frequencies, a stiff tip is used on
the hammer in order to create a shorter pulse duration and increase the
frequency range generated, and an exponential window was used to
ameliorate the potential problem of leakage and improve the signal to
noise ratio by reducing the influence of the noise long after the impact
To obtain the in-plane axial response, the impact of the hammer is applied
to the top of the honeycomb structure, as centrally as can be practically
achieved. Using the accelerometers, accelerance (acceleration per unit
force) frequency response functions (FRF) are produced. These are
evaluated, determining the response to excitation vibration and thus the
modal response at resonance. In total five channels of data have been
stored. They include four accelerometers and the impact hammer.
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The testing setup

The real and imaginary parts of the frequency response for all the five
channels have been stored for all the frequency points. The relative
deformation of the lattice is obtained by subtracting the accelerometer
reading of the opposite edges and dividing the resulting complex vector
by frequency-square (note A = −ω2X, where A is the acceleration and
X is the displacement).
The effective dynamic strain is therefore obtained by dividing this quantity
by the overall length of the lattice. The measured frequency dependent
force is divided by the surface area of the top of the lattice to obtain the
applied stress. The ratio of the effective stress and stain calculated this
way gives the measured Young’s modulus and is plotted in subfigure (c)
by separating the real and imaginary parts.
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Experimental results: Onset of negative Young’s moduli
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Experimental results: Onset of negative Young’s moduli

Onset of negative Young’s moduli. (a) Description of the experimental
setup
(b) Dimensions (in c.m.) of a unit cell considered for the experimental
investigation
(c) Experimental results for variation of Young’s modulus with frequency
(real and imaginary components of E2 are plotted as a function of
frequency)
(d) Dependence of the onset of negative Young’s moduli on
microstructural geometry and intrinsic material properties (Here the
critical frequency for the onset of negative Young’s moduli is plotted as a
function of the geometric and material properties. These parameters are
plotted along the abscissa in a normalized form with respect to the
respective nominal values considered in the experimental investigations)
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Conclusions

An augmented dynamic stiffness approach based generic analytical framework is
presented for analysing the elastic moduli of lattice materials under steady-state
vibration conditions.

Using the principle of dynamic equilibrium on a unit cell with a homogenisation
technique, closed-form expressions have been obtained for E1, E2, ν12, ν21 and
G12. These expressions are complex valued and functions of the frequency.

The new results reduce to classical formulae of Gibson and Ashby for the special
case in the static limit.

Experimental results on 3D printed lattice show the onset of negative effective
Young’s moduli for the first time.

Closed-form expressions for the critical frequency leading to negative effective
Young’s moduli have been derived.

This analytical framework leading to the development of closed-form expressions
for the frequency-dependent elastic moduli provides a computationally efficient
and physically insightful approach for investigating the global lattice behaviour
under dynamic conditions.
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Summary of the main equivalent elastic properties

E1(ω) =
K55(ω) cos θ

b(h/l + sin θ) sin2 θ
(

1 + cot2 θK55(ω)
K66(ω)

) (67)

E2(ω) =
K55(ω)(h/l + sin θ)

b cos3 θ

(
1 + tan2 θK55(ω)

K66(ω)
+ 2 sec2 θ K55(ω)

K
(h)
66 (ω)

) (68)

ν12(ω) =
cos2 θ

(
1 − K55(ω)

K66(ω)

)
(h/l + sin θ) sin θ

(
1 + cot2 θK55(ω)

K66(ω)

) (69)

ν21(ω) =
(h/l + sin θ) sin θ

(
1 − K55(ω)

K66(ω)

)
cos2 θ

(
1 + tan2 θK55(ω)

K66(ω)
+ 2 sec2 θ K55(ω)

K
(h)
66 (ω)

) (70)

G12(ω) =
(h/l + sin θ)

b cos θ
1(

− h2

2lK65(ω)
+

4K
(h/2)
66 (ω)(

K
(h/2)
55 (ω)K

(h/2)
66 (ω)−

(
K

(h/2)
56 (ω)

)2
) + (cos θ+(h/l+sin θ) tan θ)2

K66(ω)

) (71)
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