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My research interests

Development of fundamental computational methods for structural

dynamics and uncertainty quantification

A. Dynamics of complex systems

B. Inverse problems for linear and non-linear dynamics

C. Uncertainty quantification in computational mechanics

Applications of computational mechanics to emerging multidisciplinary

research areas

D. Vibration energy harvesting / dynamics of wind turbines
E. Computational nanomechanics

S. Adhikari (Swansea) Nonlocal dynamics of nanoscale structures January 18, 2016 4



Text book for the course

The main text book for the course is:

Karlic̆ić, D. Murmu, T., Adhikari, S. and McCarthy, M., Non-local

Structural Mechanics, Wiley-ISTE, 2015 (Hardback 354 pp., ISBN:
1848215223).

S. Adhikari (Swansea) Nonlocal dynamics of nanoscale structures January 18, 2016 5



Outline of this talk

1 Introduction
2 Overview of nonlocal continuum mechanics
3 Non-local dynamics of elastic rods
4 Non-local dynamics of elastic beams
5 Non-local dynamics of elastic plates
6 Finite element modelling of nonlocal dynamic systems

Axial vibration of nanorods
Bending vibration of nanobeams

Transverse vibration of nanoplates
7 Modal analysis of nonlocal dynamical systems

Conditions for classical normal modes

Nonlocal normal modes

Approximate nonlocal normal modes
8 Dynamics of damped nonlocal systems
9 Numerical illustrations

Axial vibration of a single-walled carbon nanotube

Bending vibration of a double-walled carbon nanotube
Transverse vibration of a single-layer graphene sheet

10 Conclusions
S. Adhikari (Swansea) Nonlocal dynamics of nanoscale structures January 18, 2016 6



Introduction

Nanoscale systems

Nanoscale systems have length-scale in the order of O(10−9)m.

Nanoscale systems, such as those fabricated from simple and complex
nanorods, nanobeams [1] and nanoplates have attracted keen interest

among scientists and engineers.

Examples of one-dimensional nanoscale objects include (nanorod and
nanobeam) carbon nanotubes [2], zinc oxide (ZnO) nanowires and boron

nitride (BN) nanotubes, while two-dimensional nanoscale objects include

graphene sheets [3] and BN nanosheets [4].

These nanostructures are found to have exciting mechanical, chemical,
electrical, optical and electronic properties.

Nanostructures are being used in the field of nanoelectronics,

nanodevices, nanosensors, nano-oscillators, nano-actuators,
nanobearings, and micromechanical resonators, transporter of drugs,

hydrogen storage, electrical batteries, solar cells, nanocomposites and
nanooptomechanical systems (NOMS).

Understanding the dynamics of nanostructures is crucial for the

development of future generation applications in these areas.
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Introduction

Nanoscale systems

(a) DNA

(b) Zinc Oxide ( ZnO) nanowire

(c) Boron Nitride nanotube  (BNNT )
(d) Protein
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Introduction

General approaches for studying nanostructures
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Introduction

Simulation methods
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Introduction

Continuum mechanics at the nanoscale

Experiments at the nanoscale are generally difficult at this point of time.

On the other hand, atomistic computation methods such as molecular

dynamic (MD) simulations [5] are computationally prohibitive for

nanostructures with large numbers of atoms.

Continuum mechanics can be an important tool for modelling,

understanding and predicting physical behaviour of nanostructures.

Although continuum models based on classical elasticity are able to

predict the general behaviour of nanostructures, they often lack the

accountability of effects arising from the small-scale.

To address this, size-dependent continuum based methods [6–9] are

gaining in popularity in the modelling of small sized structures as they
offer much faster solutions than molecular dynamic simulations for

various nano engineering problems.

Currently research efforts are undergoing to bring in the size-effects

within the formulation by modifying the traditional classical mechanics.
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Overview of nonlocal continuum mechanics

Nonlocal continuum mechanics

One popularly used size-dependant theory is the nonlocal elasticity

theory pioneered by Eringen [10], and has been applied to
nanotechnology.

Nonlocal continuum mechanics is being increasingly used for efficient

analysis of nanostructures viz. nanorods [11, 12], nanobeams [13],
nanoplates [14, 15], nanorings [16], carbon nanotubes [17, 18],

graphenes [19, 20], nanoswitches [21] and microtubules [22]. Nonlocal
elasticity accounts for the small-scale effects at the atomistic level.

In the nonlocal elasticity theory, according to Eringen [10], the small-scale

effects are captured by assuming that the stress at a point as a function
of the strains at all points in the domain.

Nonlocal theory considers long-range inter-atomic interactions and yields
results dependent on the size of a body.

Some of the drawbacks of the classical continuum theory could be

efficiently avoided and size-dependent phenomena can be explained by
the nonlocal elasticity theory.
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Overview of nonlocal continuum mechanics

Nonlocal continuum mechanics

The basic equations for nonlocal anisotropic linear homogenous nonlocal
elastic body neglecting the body force can be expresses as

σij,j = 0,

σij(x) =

∫

V

φ(|x − x′|, α)tijdV(x′), ∀x ∈ V

tij = Hijklǫkl ,

ǫij = 1/2(ui,j + uj,i

(1)

The terms σij , tij , ǫkl and Hijkl are the nonlocal stress, classical stress,
classical strain and fourth order elasticity tensors respectively. The

volume integral is over the region V occupied by the body. Equation (1)

couples the stress due to nonlocal elasticity and the stress due to
classical elasticity.

The kernel function φ(|x − x′|, α) is the nonlocal modulus. The nonlocal

modulus acts as an attenuation function incorporating into constitutive

equations the nonlocal effects at the reference point x produced by local
strain at the source x′.
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Overview of nonlocal continuum mechanics

Nonlocal continuum mechanics

The term |x − x′| represents the distance in the Euclidean form and α is a
material constant that depends on the internal (e.g. lattice parameter,

granular size, distance between the C-C bonds) and external

characteristics lengths (e.g. crack length, wave length).

Material constant α is defined as α = (e0a)l Here e0 is a constant for

calibrating the model with experimental results and other validated

models. The parameter e0 is estimated such that the relations of the
nonlocal elasticity model could provide satisfactory approximation to the

atomic dispersion curves of the plane waves with those obtained from the
atomistic lattice dynamics.

The terms a and l are the internal (e.g. lattice parameter, granular size,

distance between C-C bonds) and external characteristics lengths (e.g.
crack length, wave length) of the nanostructure. Equation (1) effectively

shows that in nonlocal theory, the stress at a point is a function of the
strains at all points in the domain. The classical elasticity can be viewed

as a special cade when the kernel function becomes a Dirac delta

function.
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Overview of nonlocal continuum mechanics

Nonlocal continuum mechanics

The direct use of equation (1) in boundary value problems results in
integro-partial differential equations and they are generally difficult to

solve analytically.

For this reason, a differential form of nonlocal elasticity equation is often

beneficial. According to Eringen [10], this can be achieved for a special

case of the kernel function given by

φ(|x − x ′|, α) = (2πℓ2α2)K0(
√

x • x/ℓα) (2)

Here K0 is the modified Bessel function. The equation of motion in terms

of nonlocal elasticity can be expressed as

σij,j + fi = ρüi (3)

where fi , ρ and ui are the components of the body forces, mass density,

and the displacement vector, respectively.
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Overview of nonlocal continuum mechanics

Nonlocal continuum mechanics

The terms i, j takes up the symbols x , y , and z. The operator (•̈) denotes

double derivative with respect to time. Assuming the kernel function φ as
the Green’s function, Eringen [10] proposed a differential form of the

nonlocal constitutive relation as

σij,j + L(fi − ρüi) = 0 (4)

where

L(•) = [1 − (e0a)2∇2](•) (5)

and ∇2 is the Laplacian.

Using this equation the nonlocal constitutive stress-strain relation can be

simplified as
(1 − α2l2∇2)σij = tij (6)

One can use this relationship and derive the equation of motion using
conventional variational principle. In the next subsections we consider the

dynamics of nonlocal road, beam and plate using this approach.
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Overview of nonlocal continuum mechanics

Nonlocal continuum mechanics

Values of nonlocal parameters used in literature.
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Non-local dynamics of elastic rods

One-dimensional nanostructures

Recently, various one-dimensional nanostructures have been realized.

They include nanodots, nanorods, nanowires, nanobelts, nanotubes,
nanobridges and nanonails, nanowalls, nanohelixes, seamless nanorings.

Among them, one-dimensional nanostructures such as nanotubes,
nanorods and nanowires are widely studied. The main reason for this is

their simple material formation and device application.

Nanorods are one-dimensional nanostructures whose lengths are in the
range of 1 to 3000 nm.

These miniscule structures in the form of nanorods or nanowires can be
grown using various methods. The popular methods include (i) vapour

phase synthesis, (ii) metal-organic chemical vapour deposition, (iii)

hydrothermal synthesis.

Nanorods have found applications in a variety of nanodevices. These

include ultraviolet photodetectors, nanosensors, transistors, diodes, LED
arrays, etc.
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Non-local dynamics of elastic rods

Example: Zinc Oxide (ZnO) nano wires

A collection of vertically grown ZnO NWs.
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Non-local dynamics of elastic rods

Example: Zinc Oxide (ZnO) nano wires

A collection of vertically grown ZnO NWs - close up view.
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Non-local dynamics of elastic rods

Example: Zinc Oxide (ZnO) nano wires

(a) The SEM image of a collection of ZnO NW show-
ing hexagonal cross sectional area.

(b) The atomic structure of the cross sec-
tion of a ZnO NW (the red is O2 and the
grey is Zn atom)
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Non-local dynamics of elastic rods

Axial vibration of nanorods

We will analyze the longitudinal vibration behavior of a single nanorod,
based on the nonlocal elasticity theory.

By using the D? Alembert?s principle, the governing equation of motion is
derived and then solved by using the method of separation of variables.

Two types of boundary conditions are considered for the nanorod,
Clamped-Clamped and Clamped?Free.

The solutions for natural frequencies are obtained analytically in the exact

form.
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Non-local dynamics of elastic rods

Governing equation of motion of a nanorod

Consider the equilibrium of an infinitesimal element of the length dx . On

the left side of the differential element, we take that the axial force N is
the resultant of the normal stress σxx acting internally on the cross

sectional area A.

On the right end of the differential element, we have the force N + dN.

(a) Mechanical model of the longitudinal vibration of a nanorod; b) differential

element with corresponding axial stress resultants.

S. Adhikari (Swansea) Nonlocal dynamics of nanoscale structures January 18, 2016 23



Non-local dynamics of elastic rods

Governing equation of motion of a nanorod

By applying the D’Alembert’s principle, the sum of all forces with respect

to x -axes yields

−N + (N + dN) + f (x , t)dx = ρA dx
∂2u

∂t2
(7)

where dN = ∂N
∂x

dx is the differential part of the axial stress resultant N,
u = u(x , t) is the axial displacement in the x -direction.

After some transformations of the above equation, the equilibrium

equations are given in the form

dN

dx
+ f (x , t) = ρA

∂2u

∂t2
(8)

in which N is the stress resultant defined as

N =

∫

A

σxx dA (9)

where term σxx represents the normal stress in the infinitesimal element

of a nanorod.
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Non-local dynamics of elastic rods

Governing equation of motion of a nanorod

According to the nonlocal elasticity theory for one-dimensional case, we

get the constitutive relation for a nonlocal elastic body in the differential

form as

σxx − (e0a)2 ∂
2σxx

∂x2
= Eǫxx (10)

where the term (e0a) denotes the nonlocal parameter and ǫxx = ∂u
∂x

denotes the axial strain. The term E is the conventional Young’s modulus

of the nanostructure component.

Combining the two preceding equations, the axial stress resultant for the
nonlocal theory is obtained as

N − (e0a)2 ∂
2N

∂x2
= EA

∂u

∂x
(11)

where A is the cross-section defined as A =
∫

A
dA
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Non-local dynamics of elastic rods

Governing equation of motion of a nanorod

The governing equation of motion can be expressed in terms of the axial

displacement for the nonlocal elastic constitutive relation. Introducing Eq.

(8) into Eq. (15) we obtain the following equation of motion

ρA
∂2u

∂t2
− f (x , t)− EA

∂2u

∂x2
= (e0a)2 ∂

2

∂x2

(
ρA
∂2u

∂t2
− f (x , t)

)
(12)

We utilise Eq. (12) for the development of a mathematical model for the
free longitudinal vibration of a nonlocal nanorod. For free vibration,

external load is considered to be 0

Two types of boundary conditions are employed,
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Non-local dynamics of elastic rods

Boundary conditions

Clamped-Clamped:
u(0, t) = u(L, t) = 0 (13)

Clamped-Free:

u(0, t) = N(L, t) = 0 (14)

where is the nonlocal axial force at the end of a nanorod. From (8) and

Eq. (15) we get

N(x , t) = (e0a)2 ∂
2N

∂x2
+ EA

∂u

∂x
(15)

Boundary conditions for the longitudinal vibration of a nanorod, a)
Clamped-Clamped and b) Clamped-Free.
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Non-local dynamics of elastic rods

Free vibration of nano-rods

Assuming the harmonic motion and applying the method of separation of
variables, the solution of Eq. (12) takes the form

u(x , t) =

∞∑

n=1

Xn(x)Tn(t) (16)

where TN(t) = exp(iωnt) is the time function and Xn(x) is the
corresponding mode shape function, which depends on the boundary

conditions of the system.
Introducing this solution into Eq. (12) and neglecting the load, one gets

the ordinary differential equation for the corresponding mode shape

function of the nanorod

d2Xn(x)

dx2
+ α2

nXn(x) = 0 (17)

Here αn denotes the characteristic values determined from the
corresponding boundary conditions as

α2
n =

ω2
n

E/ρ− (e0a)2ω2
n

(18)
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Non-local dynamics of elastic rods

Free vibration of nano-rods

General solution of the mode shapes can be expressed as

Xn(x) = An sinαnx + Bn cosαnx (19)

where the unknown the constants An, Bn should be obtained using the

boundary conditions.

For the Clamped-Clamped boundary conditions

sinαnL = 0 (20)

the roots are

αnL = nπ, n = 1, 2, 3, · · · ,∞ (21)

with the corresponding mode shape function as

Xn(x) = An sinαnx = An sin
nπ

L
x (22)
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Non-local dynamics of elastic rods

Free vibration of nano-rods

For the Clamped-Free boundary conditions

cosαnL = 0 (23)

the roots are

αnL =
(2n − 1)π

2
, n = 1, 2, 3, · · · ,∞ (24)

with the corresponding mode shape function as

Xn(x) = An sinαnx = An sin
(2n − 1)π

2L
x (25)

We can obtain nonlocal natural frequencies for the longitudinal vibration

of a nanorod from expression and corresponding boundary conditions as

ωn = αn

√
E

ρ
(
1 + (e0a)2α2

n

) (26)

where αn is already defined for the Clamped-Clamped and Clamped-Free

boundary conditions.
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Non-local dynamics of elastic rods

Numerical results

Single-walled carbon nanotube (SWCNT) (5, 5): The following

dimensions and values of parameters are used to obtain the results
ρ =9517 [kg/m3 ] E =6.85 [TPa] L =12.2 [mn] n =1

The results are obtained for clamped-free boundary conditions and

different values of (e0a) and compared with the results for the natural
resonant frequency obtained by the molecular dynamics simulation in:

‘Cao, G., Chen, X., Kysar, J. W. (2006). Thermal vibration and apparent thermal

contraction of single-walled carbon nanotubes,Journal of the Mechanics and

Physics of Solids, 54(6), 1206-1236.’

Comparison of the lower nonlocal natural frequency f = ω1/2π of a nanorod
model given in (THz) with the MD simulation for the armchair SWCNT (5, 5).
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Non-local dynamics of elastic rods

Numerical results

Single-walled carbon nanotube (SWCNT) armchair (8, 8): The following
dimensions and values of parameters are used to obtain the results

ρ =2300 [kg/m3 ] E =1.1 [TPa] h =0.34 [mn] n =1

The results are obtained for both the boundary conditions and different

values of the length L.

Fundamental natural frequencies for the longitudinal vibration of a nanorod; a)

Clamped-Clamped BC, and b) Clamped-Free BC.
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Non-local dynamics of elastic beams

Nonlocal Euler-Bernoulli beam theory

Euler-Bernoulli is the simplest beam theory for bending vibration

We consider a beam with axial load P, external distributed applied load

q(x , t), density ρ, Young’s modulus E , area A, moment of inertia I

The equation of motion is given by

ρA
∂2w

∂t2
+ P

∂2w

∂x2
− q(x , t) + EI

∂4w

∂x4
=

(e0a)2 ∂
2

∂x2

(
ρA
∂2w

∂t2
+ P

∂2w

∂x2
− q(x , t)

)
(27)

Single-walled carbon nanotube (SWCNT) with externally attached biological
particles: a) Physical model and b) Mechanical model.
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Non-local dynamics of elastic beams

Simply supported boundary conditions

The boundary conditions for simply supported nonlocal Euler-Bernoulli?s

nanobeam of the length L assumes that the deflections and bending
moments at the ends of the nanobeam are equal to zero.

At x = 0

w(0, t) = 0

Mf =

[
(e0a)2 ∂

2

∂x2

(
ρA
∂2w

∂t2
+ P

∂2w

∂x2
− q(x , t)

)
− EI

∂2w

∂x2

]

x=0

= 0

(28)

At x = L

w(L, t) = 0

Mf =

[
(e0a)2 ∂

2

∂x2

(
ρA
∂2w

∂t2
+ P

∂2w

∂x2
− q(x , t)

)
− EI

∂2w

∂x2

]

x=L

= 0

(29)
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Non-local dynamics of elastic beams

Free vibration of nonlocal Euler-Bernoulli beams

For the free vibration, ignoring transverse load q and the axial load P, we

have the governing equation

ρA
∂2w

∂t2
+ EI

∂4w

∂x4
= (e0a)2 ∂

2

∂x2

(
ρA
∂2w

∂t2

)
(30)

Supposing the harmonic motion of the nanobeam, we assume the
solution for transverse displacements as

w(x , t) =

∞∑

n=1

Wn sin(αnx)eiωnt (31)

where i =
√
−1, αn = nπ/L, Wn are the amplitudes and ωn is the natural

frequency with n denoting the mode number.

Substituting this in the equation of motion, the closed-from expression of
the natural frequencies are given by

ωn =

√
EI

ρA

α2
n√

1 + α2
n(e0a)2

, n = 1, 2, 3, · · · (32)
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Non-local dynamics of elastic plates

Nonlocal plate for graphene sheets

The carbon atoms of graphene at small-scale is considered to be
nonlocal in nature. Stress at a point not only depends on the strain at that

point but on the strains of all the points in the body. By using this concept,
the discrete graphene sheets can be modeled as continuum nonlocal

elastic plate.
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Non-local dynamics of elastic plates

Equation of motion of nonlocal plate

Equation of motion for free vibration

D∇4w(x , y , t) + ρh
(
1 − (e0a)2∇2

){∂2w(x , y , t)

∂t2

}
= 0 (33)

In the above equation ∇2 =
(

∂2

∂x2 + ∂2

∂y2

)
is the differential operator,

D = Eh3

12(1−ν2)
is the bending rigidity, h is the thickness, ν is the Poisson’s

ratio, ρ is the density, e0a is the nonlocal parameter and w(x , y , t) is the

transverse displacement.
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Non-local dynamics of elastic plates

Free vibration of simply-supported nonlocal plates

The boundary conditions for a simply supported nano-plate (L × W ) are

considered as w(0, y) = w(L, y) = w(x , 0) = w(x ,W ) = 0 and nonlocal

moment M(0, y) = M(L, y) = M(x , 0) = M(x ,W ) = 0.

For simply supported boundary conditions, the local and nonlocal

boundary conditions are generally equivalent. However for other arbitrary

boundary conditions local and nonlocal boundary condition would be
different.

We assume the solution as

w(x , y , t) =

∞∑

m=1

∞∑

n=1

Wmn sin(mπx/L) sin(nπy/W )yeiωmn t (34)

where ωmn are the natural frequencies.

Substituting this in Eq. (33), we can obtain the natural frequencies as

ωmn =

√
D

ρh

ψ2
mn√

1 + ψ2
mn(e0a)2

, ψmn =

√
(mπ/L)

2
+ (mπ/W )

2
,

m, n = 1, 2, 3, · · · (35)
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Finite element modelling of nonlocal dynamic systems

Nonlocal finite element method

Significant research efforts have taken place in the analysis of nano

structures modelled as a continuum.

While the results have given significant insights, the analysis is normally
restricted to single-structure (e.g, a beam or a plate) with simple

boundary conditions and no damping.

In the future complex nanoscale structures will be used for next

generation nano electro mechanical systems.

Therefore, it is necessary to have the ability for design and analysis of

damped built-up structures.

The finite element approach for nanoscale structures can provide this
generality.

Work on nonlocal finite elements is in its infancy stage.
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Finite element modelling of nonlocal dynamic systems

FEM for nonlocal dynamic systems

The majority of the reported works on nonlocal finite element analysis
consider free vibration studies where the effect of non-locality on the

undamped eigensolutions has been studied.

Damped nonlocal systems and forced vibration response analysis have

received little attention.

On the other hand, significant body of literature is available [23–25] on
finite element analysis of local dynamical systems.

It is necessary to extend the ideas of local modal analysis to nonlocal
systems to gain qualitative as well as quantitative understanding.

This way, the dynamic behaviour of general nonlocal discretised systems
can be explained in the light of well known established theories of

discrete local systems.
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Finite element modelling of nonlocal dynamic systems Axial vibration of nanorods

Axial vibration of nanorods

Figure: Axial vibration of a zigzag (7, 0) single-walled carbon nanotube (SWCNT) with

clamped-free boundary condition.
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Finite element modelling of nonlocal dynamic systems Axial vibration of nanorods

Axial vibration of nanorods

The equation of motion of axial vibration for a damped nonlocal rod can
be expressed as

EA
∂2U(x , t)

∂x2
+ ĉ1

∂3U(x , t)

∂x2∂t

= ĉ2
∂U(x , t)

∂t
+

(
1 − (e0a)2 ∂

2

∂x2

){
m
∂2U(x , t)

∂t2
+ F (x , t)

}
(36)

In the above equation EA is the axial rigidity, m is mass per unit length,

e0a is the nonlocal parameter [10], U(x , t) is the axial displacement,

F (x , t) is the applied force, x is the spatial variable and t is the time.

The constant ĉ1 is the strain-rate-dependent viscous damping coefficient

and ĉ2 is the velocity-dependent viscous damping coefficient.
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Finite element modelling of nonlocal dynamic systems Axial vibration of nanorods

Nonlocal element matrices

We consider an element of length ℓe with axial stiffness EA and mass per

unit length m.

1 2

l
e

Figure: A nonlocal element for the axially vibrating rod with two nodes. It has two

degrees of freedom and the displacement field within the element is expressed by

linear shape functions.

This element has two degrees of freedom and there are two shape
functions N1(x) and N2(x). The shape function matrix for the axial

deformation [25] can be given by

N(x) = [N1(x),N2(x)]
T = [1 − x/ℓe, x/ℓe]

T
(37)
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Nonlocal element matrices

Using this the stiffness matrix can be obtained using the conventional

variational formulation as

Ke = EA

∫ ℓe

0

dN(x)

dx

dNT (x)

dx
dx =

EA

ℓe

[
1 −1

−1 1

]
(38)

The mass matrix for the nonlocal element can be obtained as

Me = m

∫ ℓe

0

N(x)NT (x)dx + m(e0a)2

∫ ℓe

0

dN(x)

dx

dNT (x)

dx
dx

=
mℓe

6

[
2 1

1 2

]
+

(
e0a

ℓe

)2

mℓe

[
1 −1

−1 1

] (39)

For the special case when the rod is local, the mass matrix derived above

reduces to the classical mass matrix[25, 26] as e0a = 0 . Therefore for a
nonlocal rod, the element stiffness matrix is identical to that of a classical

local rod but the element mass has an additive term which is dependent

on the nonlocal parameter.
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Bending vibration of nanobeams

Figure: Bending vibration of an armchair (5, 5), (8, 8) double-walled carbon nanotube

(DWCNT) with pinned-pinned boundary condition.
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Bending vibration of nanobeams

For the bending vibration of a nonlocal damped beam, the equation of

motion can be expressed by

EI
∂4V (x , t)

∂x4
+ m

(
1 − (e0a)2 ∂

2

∂x2

){
∂2V (x , t)

∂t2

}

+ ĉ1
∂5V (x , t)

∂x4∂t
+ ĉ2

∂V (x , t)

∂t
=

(
1 − (e0a)2 ∂

2

∂x2

)
{F (x , t)} (40)

In the above equation EI is the bending rigidity, m is mass per unit length,

e0a is the nonlocal parameter, V (x , t) is the transverse displacement and

F (x , t) is the applied force.

The constant ĉ1 is the strain-rate-dependent viscous damping coefficient

and ĉ2 is the velocity-dependent viscous damping coefficient.
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Finite element modelling of nonlocal dynamic systems Bending vibration of nanobeams

Nonlocal element matrices

We consider an element of length ℓe with bending stiffness EI and mass
per unit length m.

1 2
l
e

Figure: A nonlocal element for the bending vibration of a beam. It has two nodes

and four degrees of freedom. The displacement field within the element is

expressed by cubic shape functions.

This element has four degrees of freedom and there are four shape

functions.
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Finite element modelling of nonlocal dynamic systems Bending vibration of nanobeams

Nonlocal element matrices

The shape function matrix for the bending deformation [25] can be given
by

N(x) = [N1(x),N2(x),N3(x),N4(x)]
T

(41)

where

N1(x) = 1 − 3
x2

ℓ2
e

+ 2
x3

ℓ3
e

, N2(x) = x − 2
x2

ℓe
+

x3

ℓ2
e

,

N3(x) = 3
x2

ℓ2
e

− 2
x3

ℓ3
e

, N4(x) = −x2

ℓe
+

x3

ℓ2
e

(42)

Using this, the stiffness matrix can be obtained using the conventional

variational formulation [26] as

Ke = EI

∫ ℓe

0

d2N(x)

dx2

d2NT (x)

dx2
dx =

EI

ℓ3
e




12 6ℓe −12 6ℓe

6ℓe 4ℓ2
e −6ℓe 2ℓ2

e

−12 −6ℓe 12 −6ℓ2
e

6ℓe 2ℓ2
e −6ℓe 4ℓ2

e




(43)
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Nonlocal element matrices

The mass matrix for the nonlocal element can be obtained as

Me = m

∫ ℓe

0

N(x)NT (x)dx + m(e0a)2

∫ ℓe

0

dN(x)

dx

dNT (x)

dx
dx

=
mℓe

420




156 22ℓe 54 −13ℓe

22ℓe 4ℓ2
e 13ℓe −3ℓ2

e

54 13ℓe 156 −22ℓe

−13ℓe −3ℓ2
e −22ℓe 4ℓ2

e




+

(
e0a

ℓe

)2
mℓe

30




36 3ℓe −36 3ℓe

3ℓe 4ℓ2
e −3ℓe −ℓ2

e

−36 −3ℓe 36 −3ℓe

3ℓe −ℓ2
e −3ℓe 4ℓ2

e




(44)

For the special case when the beam is local, the mass matrix derived

above reduces to the classical mass matrix [25, 26] as e0a = 0.

S. Adhikari (Swansea) Nonlocal dynamics of nanoscale structures January 18, 2016 49
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Transverse vibration of nanoplates

Figure: Transverse vibration of a rectangular (L=20nm, W =15nm) single-layer
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Finite element modelling of nonlocal dynamic systems Transverse vibration of nanoplates

Transverse vibration of nanoplates

For the transverse bending vibration of a nonlocal damped thin plate, the

equation of motion can be expressed by

D∇4V (x , y , t) + m
(
1 − (e0a)2∇2

){∂2V (x , y , t)

∂t2

}
+ ĉ1∇4 ∂V (x , y , t)

∂t

+ ĉ2
∂V (x , y , t)

∂t
=
(
1 − (e0a)2∇2

)
{F (x , y , t)} (45)

In the above equation ∇2 =
(

∂2

∂x2 + ∂2

∂y2

)
is the differential operator,

D = Eh3

12(1−ν2)
is the bending rigidity, h is the thickness, ν is the Poisson’s

ratio, m is mass per unit area, e0a is the nonlocal parameter, V (x , y , t) is

the transverse displacement and F (x , y , t) is the applied force.

The constant ĉ1 is the strain-rate-dependent viscous damping coefficient

and ĉ2 is the velocity-dependent viscous damping coefficient.
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Finite element modelling of nonlocal dynamic systems Transverse vibration of nanoplates

Nonlocal element matrices

We consider an element of dimension 2c × 2b with bending stiffness D
and mass per unit area m.

x

y

(-c,-b)

(-c,b)

(c,-b)

(c,b)
12

3 4

Figure: A nonlocal element for the bending vibration of a plate. It has four nodes

and twelve degrees of freedom. The displacement field within the element is

expressed by cubic shape functions in both directions.
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Finite element modelling of nonlocal dynamic systems Transverse vibration of nanoplates

Nonlocal element matrices

The shape function matrix for the bending deformation is a 12 × 1 vector
[26] and can be expressed as

N(x , y) = C
−1
e α(x , y) (46)

Here the vector of polynomials is given by

α(x , y) =
[

1 x y x2 xy y2 x3 x2y xy2 y3 x3y xy3
]T
(47)

The 12 × 12 coefficient matrix can be obtained in closed-form.
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Finite element modelling of nonlocal dynamic systems Transverse vibration of nanoplates

Nonlocal element matrices

Using the shape functions in Eq. (46), the stiffness matrix can be

obtained using the conventional variational formulation [26] as

Ke =

∫

Ae

BT EBdAe (48)

In the preceding equation B is the strain-displacement matrix, and the
matrix E is given by

E = D




1 ν 0
ν 1 0

0 0 1−ν
2


 (49)

Evaluating the integral in Eq. (48), we can obtain the element stiffness
matrix in closed-form as

Ke =
Eh3

12(1 − ν2)
C

−1T
keC

−1
(50)

The 12 × 12 coefficient matrix ke can be obtained in closed-form.
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Finite element modelling of nonlocal dynamic systems Transverse vibration of nanoplates

Nonlocal element matrices

The mass matrix for the nonlocal element can be obtained as

Me = ρh

∫

Ae

{
N(x , y)NT (x , y)

+(e0a)2

(
∂N(x , y)

∂x

dNT (x , y)

dx
+
∂N(x , y)

∂x

dNT (x , y)

dx

)}
dAe

= M0e
+
(e0a

c

)2

Mxe
+
(e0a

b

)2

Mye

(51)

The three matrices appearing in the above expression can be obtained in
closed-form.
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Finite element modelling of nonlocal dynamic systems Transverse vibration of nanoplates

Nonlocal element matrices

Mxe =
ρhcb

630
×













































276 66b 42c −276 −66b 42c −102 39b 21c 102 −39b 21c

66b 24b2 0 −66b −24b2 0 −39b 18b2 0 39b −18b2 0

42c 0 112c2
−42c 0 −28c2

−21c 0 −14c2 21c 0 56c2

−276 −66b −42c 276 66b −42c 102 −39b −21c −102 39b −21c

−66b −24b2 0 66b 24b2 0 39b −18b2 0 −39b 18b2 0

42c 0 −28c2
−42c 0 112c2

−21c 0 56c2 21c 0 −14c2

−102 −39b −21c 102 39b −21c 276 −66b −42c −276 66b −42c

39b 18b2 0 −39b −18b2 0 −66b 24b2 0 66b −24b2 0

21c 0 −14c2
−21c 0 56c2

−42c 0 112c2 42c 0 −28c2

102 39b 21c −102 −39b 21c −276 66b 42c 276 −66b 42c

−39b −18b2 0 39b 18b2 0 66b −24b2 0 −66b 24b2 0

21c 0 56c2
−21c 0 −14c2

−42c 0 −28c2 42c 0 112c2













































(52)

Mye =
ρhcb

630
×













































276 42b 66c 102 21b −39c −102 21b 39c −276 42b −66c

42b 112b2 0 21b 56b2 0 −21b −14b2 0 −42b −28b2 0

66c 0 24c2 39c 0 −18c2
−39c 0 18c2

−66c 0 −24c2

102 21b 39c 276 42b −66c −276 42b 66c −102 21b −39c

21b 56b2 0 42b 112b2 0 −42b −28b2 0 −21b −14b2 0

−39c 0 −18c2
−66c 0 24c2 66c 0 −24c2 39c 0 18c2

−102 −21b −39c −276 −42b 66c 276 −42b −66c 102 −21b 39c

21b −14b2 0 42b −28b2 0 −42b 112b2 0 −21b 56b2 0

39c 0 18c2 66c 0 −24c2
−66c 0 24c2

−39c 0 −18c2

−276 −42b −66c −102 −21b 39c 102 −21b −39c 276 −42b 66c

42b −28b2 0 21b −14b2 0 −21b 56b2 0 −42b 112b2 0

−66c 0 −24c2
−39c 0 18c2 39c 0 −18c2 66c 0 24c2













































(53)
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Finite element modelling of nonlocal dynamic systems Transverse vibration of nanoplates

Nonlocal element matrices: Summary

Based on the discussions for all the three systems considered here, in
general the element mass matrix of a nonlocal dynamic system can be

expressed as

Me = M0e
+Mµe

(54)

Here M0e
is the element stiffness matrix corresponding to the underlying

local system and Mµe
is the additional term arising due to the nonlocal

effect.

The element stiffness matrix remains unchanged.
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Modal analysis of nonlocal dynamical systems

Global system matrices

Using the finite element formulation, the stiffness matrix of the local and

nonlocal system turns out to be identical to each other.

The mass matrix of the nonlocal system is however different from its

equivalent local counterpart.

Assembling the element matrices and applying the boundary conditions,

following the usual procedure of the finite element method one obtains

the global mass matrix as
M = M0+Mµ (55)

In the above equation M0 is the usual global mass matrix arising in the
conventional local system and Mµ is matrix arising due to nonlocal nature

of the systems:

Mµ =
(e0a

L

)2

M̂µ (56)

Here M̂µ is a nonnegative definite matrix. The matrix Mµ is therefore, a

scale-dependent matrix and its influence reduces if the length of the
system L is large compared to the parameter e0a.
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Nonlocal modal analysis

Majority of the current finite element software and other computational

tools do not explicitly consider the nonlocal part of the mass matrix. For
the design and analysis of future generation of nano electromechanical

systems it is vitally important to consider the nonlocal influence.

We are interested in understanding the impact of the difference in the
mass matrix on the dynamic characteristics of the system. In particular

the following questions of fundamental interest have been addressed:

Under what condition a nonlocal system possess classical local normal

modes?

How the vibration modes and frequencies of a nonlocal system can be

understood in the light of the results from classical local systems?

By addressing these questions, it would be possible to extend

conventional ‘local’ elasticity based finite element software to analyse
nonlocal systems arising in the modelling of complex nanoscale built-up

structures.
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Modal analysis of nonlocal dynamical systems Conditions for classical normal modes

Conditions for classical normal modes

The equation of motion of a discretised nonlocal damped system with n

degrees of freedom can be expressed as

[M0 + Mµ] ü(t) + Cu̇(t) + Ku(t) = f(t) (57)

Here u(t) ∈ R
n is the displacement vector, f(t) ∈ R

n is the forcing vector,

K,C ∈ R
n×n are respectively the global stiffness and the viscous damping

matrix.

In general M0 and Mµ are positive definite symmetric matrices, C and K
are non-negative definite symmetric matrices. The equation of motion of

corresponding local system is given by

M0ü0(t) + Cu̇0(t) + Ku0(t) = f(t) (58)

where u0(t) ∈ R
n is the local displacement vector.

The natural frequencies (ωj ∈ R) and the mode shapes (xj ∈ R
n) of the

corresponding undamped local system can be obtained by solving the

matrix eigenvalue problem [23] as

Kxj = ω2
j M0xj , ∀ j = 1, 2, . . . , n (59)
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Dynamics of the local system

The undamped local eigenvectors satisfy an orthogonality relationship
over the local mass and stiffness matrices, that is

xT
k M0xj = δkj (60)

and xT
k Kxj = ω2

j δkj , ∀ k , j = 1, 2, . . . , n (61)

where δkj is the Kroneker delta function. We construct the local modal

matrix
X = [x1, x2, . . . , xn] ∈ R

n (62)

The local modal matrix can be used to diagonalize the local system (58)

provided the damping matrix C is simultaneously diagonalizable with M0

and K.

This condition, known as the proportional damping, originally introduced
by Lord Rayleigh [27] in 1877, is still in wide use today.

The mathematical condition for proportional damping can be obtained

from the commutitative behaviour of the system matrices [28]. This can
be expressed as

CM−1
0 K = KM−1

0 C (63)

or equivalently C = M0f (M−1
0 K) as shown in [29].
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Modal analysis of nonlocal dynamical systems Conditions for classical normal modes

Conditions for classical normal modes

Considering undamped nonlocal system and premultiplying the equation

by M−1
0 we have

(
In + M−1

0 Mµ

)
ü(t) +

(
M−1

0 K
)

u(t) = M−1
0 f(t) (64)

This system can be diagonalized by a similarity transformation which also

diagonalise
(

M−1
0 K

)
provided the matrices

(
M−1

0 Mµ

)
and

(
M−1

0 K
)

commute. This implies that the condition for existence of classical local
normal modes is

(
M−1

0 K
)(

M−1
0 Mµ

)
=
(

M−1
0 Mµ

)(
M−1

0 K
)

(65)

or KM−1
0 Mµ = MµM−1

0 K (66)

If the above condition is satisfied, then a nonlocal undamped system can
be diagonalised by the classical local normal modes. However, it is also

possible to have nonlocal normal modes which can diagonalize the
nonlocal undamped system as discussed next.
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Modal analysis of nonlocal dynamical systems Nonlocal normal modes

Nonlocal normal modes

Nonlocal normal modes can be obtained by the undamped nonlocal

eigenvalue problem

Kuj = λ2
j [M0 + Mµ]uj , ∀ j = 1, 2, . . . , n (67)

Here λj and uj are the nonlocal natural frequencies and nonlocal normal

modes of the system. We can define a nonlocal modal matrix

U = [u1,u2, . . . ,un] ∈ R
n (68)

which will unconditionally diagonalize the nonlocal undamped system. It

should be remembered that in general nonlocal normal modes and
frequencies will be different from their local counterparts.
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Modal analysis of nonlocal dynamical systems Nonlocal normal modes

Nonlocal normal modes: Damped systems

Under certain restrictive condition it may be possible to diagonalise the
damped nonlocal system using classical normal modes.

Premultiplying the equation of motion (57) by M−1
0 , the required condition

is that
(

M−1
0 Mµ

)
,
(

M−1
0 C

)
and

(
M−1

0 K
)

must commute pairwise. This

implies that in addition to the two conditions given by Eqs. (63) and (66),

we also need a third condition

CM−1
0 Mµ = MµM−1

0 C (69)

If we consider the diagonalization of the nonlocal system by the nonlocal
modal matrix in (68), then the concept of proportional damping can be

applied similar to that of the local system. One can obtain the required

condition similar to Caughey’s condition [28] as in Eq. (63) by replacing
the mass matrix with M0 + Mµ. If this condition is satisfied, then the

equation of motion can be diagonalised by the nonlocal normal modes

and in general not by the classical normal modes.
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Approximate nonlocal normal modes

Majority of the existing finite element software calculate the classical

normal modes.

However, it was shown that only under certain restrictive condition, the

classical normal modes can be used to diagonalise the system.

In general one need to use nonlocal normal modes to diagonalise the

equation of motion (57), which is necessary for efficient dynamic analysis

and physical understanding of the system.

We aim to express nonlocal normal modes in terms of classical normal

modes.

Since the classical normal modes are well understood, this approach will

allow us to develop physical understanding of the nonlocal normal modes.
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Modal analysis of nonlocal dynamical systems Approximate nonlocal normal modes

Projection in the space of undamped classical modes

For distinct undamped eigenvalues (ω2
l ), local eigenvectors

xl , ∀ l = 1, . . . , n, form a complete set of vectors. For this reason each

nonlocal normal mode uj can be expanded as a linear combination of xl :

uj =

n∑

l=1

α
(j)
l xl (70)

Without any loss of generality, we can assume that α
(j)
j = 1

(normalization) which leaves us to determine α
(j)
l , ∀l 6= j.

Substituting the expansion of uj into the eigenvalue equation (67), one
obtains

[
−λ2

j (M0 + Mµ) + K
] n∑

l=1

α
(j)
l xl = 0 (71)

For the case when α
(j)
l are approximate, the error involving the projection

in Eq. (70) can be expressed as

εj =

n∑

l=1

[
−λ2

j (M0 + Mµ) + K
]
α
(j)
l xl (72)
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Modal analysis of nonlocal dynamical systems Approximate nonlocal normal modes

Nonlocal natural frequencies

We use a Galerkin approach to minimise this error by viewing the

expansion as a projection in the basis functions xl ∈ R
n, ∀l = 1, 2, . . . n.

Therefore, making the error orthogonal to the basis functions one has

εj ⊥ xl or xT
k εj = 0 ∀ k = 1, 2, . . . , n (73)

Using the orthogonality property of the undamped local modes

n∑

l=1

[
−λ2

j

(
δkl + M ′

µkl

)
+ ω2

kδkl

]
α
(j)
l = 0 (74)

where M ′
µkl

= xT
k Mµxl are the elements of the nonlocal part of the modal

mass matrix.

Assuming the off-diagonal terms of the nonlocal part of the modal mass

matrix are small and α
(j)
l ≪ 1, ∀l 6= j, approximate nonlocal natural

frequencies can be obtained as

λj ≈
ωj√

1 + M ′
µjj

(75)
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Modal analysis of nonlocal dynamical systems Approximate nonlocal normal modes

Nonlocal mode shapes

When k 6= j, from Eq. (74) we have

[
−λ2

j

(
1 + M ′

µkk

)
+ ω2

k

]
α
(j)
k − λ2

j

n∑

l 6=k

(
M ′

µkl

)
α
(j)
l = 0 (76)

Recalling that α
(j)
j = 1, this equation can be expressed as

[
−λ2

j

(
1 + M ′

µkk

)
+ ω2

k

]
α
(j)
k = λ2

j


M ′

µkj
+

n∑

l 6=k 6=j

M ′
µkl
α
(j)
l


 (77)

Solving for α
(j)
k , the nonlocal normal modes can be expressed in terms of

the classical normal modes as

uj ≈ xj +

n∑

k 6=j

λ2
j(

λ2
k − λ2

j

)
M ′

µkj(
1 + M ′

µkk

)xk (78)
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Modal analysis of nonlocal dynamical systems Approximate nonlocal normal modes

Nonlocal normal modes

Equations (75) and (78) completely defines the nonlocal natural frequencies

and mode shapes in terms of the local natural frequencies and mode shapes.
The following insights about the nonlocal normal modes can be deduced

Each nonlocal mode can be viewed as a sum of two principal

components. One of them is parallel to the corresponding local mode and
the other is orthogonal to it as all xk are orthogonal to xj for j 6= k .

Due to the term
(
λ2

k − λ2
j

)
in the denominator, for a given nonlocal mode,

only few adjacent local modes contributes to the orthogonal component.

For systems with well separated natural frequencies, the contribution of
the orthogonal component becomes smaller compared to the parallel

component.
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Dynamics of damped nonlocal systems

Frequency response of nonlocal systems

Taking the Fourier transformation of the equation of motion (57) we have

D(iω)ū(iω) = f̄(iω) (79)

where the nonlocal dynamic stiffness matrix is given by

D(iω) = −ω2 [M0 + Mµ] + iωC + K (80)

In Eq. (79) ū(iω) and f̄(iω) are respectively the Fourier transformations of

the response and the forcing vectors.

Using the local modal matrix (62), the dynamic stiffness matrix can be
transformed to the modal coordinate as

D′(iω) = XT D(iω)X = −ω2
[
I + M′

µ

]
+ iωC

′ +Ω
2 (81)

where I is a n-dimensional identity matrix, Ω2 is a diagonal matrix

containing the squared local natural frequencies and (•)′ denotes that the
quantity is in the modal coordinates.
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Dynamics of damped nonlocal systems

Frequency response of nonlocal systems

We separate the diagonal and off-diagonal terms as

D′(iω) = −ω2
[
I + M

′

µ

]
+ iωC

′
+Ω

2

︸ ︷︷ ︸
diagonal

+
(
−ω2∆M′

µ + iω∆C
′
)

︸ ︷︷ ︸
off-diagonal

(82)

= D
′
(iω) + ∆D′(iω) (83)

The dynamic response of the system can be obtained as

ū(iω) = H(iω)f̄(iω) =
[
XD

′−1

(iω)XT
]

f̄(iω) (84)

where the matrix H(iω) is known as the transfer function matrix.

From the expression of the modal dynamic stiffness matrix we have

D
′−1

(iω) =

[
D

′
(iω)

(
I + D

′−1

(iω)∆D′(iω)

)]−1

(85)

≈ D
′−1

(iω)− D
′−1

(iω)∆D′(iω)D
′−1

(iω) (86)
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Dynamics of damped nonlocal systems

Frequency response of nonlocal systems

Substituting the approximate expression of D
′−1

(iω) from Eq. (86) into the
expression of the transfer function matrix in Eq. (84) we have

H(iω) =
[
XD

′−1

(iω)XT
]
≈ H

′
(iω)−∆H′(iω) (87)

where

H
′
(iω) = XD

′
(iω)XT =

n∑

k=1

xk xT
k

−ω2
(
1 + M ′

µkk

)
+ 2iωωkζk + ω2

k

(88)

and ∆H′(iω) = XD
′−1

(iω)∆D′(iω)D
′−1

(iω)XT (89)

Equation (87) therefore completely defines the transfer function of the
damped nonlocal system in terms of the classical normal modes. This

can be useful in practice as all the quantities arise in this expression can

be obtained from a conventional finite element software. One only needs
the nonlocal part of the mass matrix as derived in 6.
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Dynamics of damped nonlocal systems

Nonlocal transfer function

Some notable features of the expression of the transfer function matrix are

For lightly damped systems, the transfer function will have peaks around

the nonlocal natural frequencies derived previously.

The error in the transfer function depends on two components. They

include the off-diagonal part of the of the modal nonlocal mass matrix

∆M′
µ and the off-diagonal part of the of the modal damping matrix ∆C

′
.

While the error in in the damping term is present for non proportionally

damped local systems, the error due to the nonlocal modal mass matrix

in unique to the nonlocal system.

For a proportionally damped system ∆C
′ = O. For this case error in the

transfer function only depends on ∆M′
µ.

In general, error in the transfer function is expected to be higher for

higher frequencies as both ∆C
′
and ∆M′

µ are weighted by frequency ω.

The expressions of the nonlocal natural frequencies (75), nonlocal normal

modes (78) and the nonlocal transfer function matrix (87) allow us to

understand the dynamic characteristic of a nonlocal system in a qualitative
and quantitative manner in the light of equivalent local systems.
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Numerical illustrations Axial vibration of a single-walled carbon nanotube

Axial vibration of a single-walled carbon nanotube

Figure: Axial vibration of a zigzag (7, 0) single-walled carbon nanotube (SWCNT) with

clamped-free boundary condition.
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Numerical illustrations Axial vibration of a single-walled carbon nanotube

Axial vibration of a single-walled carbon nanotube

A single-walled carbon nanotube (SWCNT) is considered.

A zigzag (7, 0) SWCNT with Young’s modulus E = 6.85 TPa, L = 25nm,
density ρ = 9.517 × 103 kg/m3 and thickness t = 0.08nm is used

For a carbon nanotube with chirality (ni ,mi), the diameter can be given by

di =
r

π

√
n2

i + m2
i + nimi (90)

where r = 0.246nm. The diameter of the SWCNT shown in 7 is 0.55nm.

A constant modal damping factor of 1% for all the modes is assumed.

We consider clamped-free boundary condition for the SWCNT.

Undamped nonlocal natural frequencies can be obtained as

λj =

√
EA

m

σj√
1 + σ2

j (e0a)2
, where σj =

(2j − 1)π

2L
, j = 1, 2, · · · (91)

EA is the axial rigidity and m is the mass per unit length of the SWCNT.

For the finite element analysis the SWCNT is divided into 200 elements.
The dimension of each of the system matrices become 200 × 200, that is

n = 200.
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Numerical illustrations Axial vibration of a single-walled carbon nanotube

Nonlocal axial natural frequencies of SWCNT
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Numerical illustrations Axial vibration of a single-walled carbon nanotube

Nonlocal axial mode shapes of SWCNT
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Figure: Four selected mode shapes for the axial vibration of SWCNT. Exact finite

element results are compared with the approximate analysis based on local

eigensolutions. In each subplot four different values of e0a, namely 0.5, 1.0, 1.5 and

2.0nm have been used.
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Numerical illustrations Axial vibration of a single-walled carbon nanotube

Nonlocal frequency response of SWCNT
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(b) e0a = 1.0nm
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(c) e0a = 1.5nm
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Figure: Amplitude of the normalised frequency response of the SWCNT at the tip for

different values of e0a. Exact finite element results are compared with the approximate

analysis based on local eigensolutions.
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Numerical illustrations Bending vibration of a double-walled carbon nanotube

Bending vibration of a double-walled carbon nanotube

Figure: Bending vibration of an armchair (5, 5), (8, 8) double-walled carbon nanotube

(DWCNT) with pinned-pinned boundary condition.
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Numerical illustrations Bending vibration of a double-walled carbon nanotube

Bending vibration of a double-walled carbon nanotube

A double-walled carbon nanotube (DWCNT) is considered.

An armchair (5, 5), (8, 8) DWCNT with Young’s modulus E = 1.0 TPa,

L = 30nm, density ρ = 2.3 × 103 kg/m3 and thickness t = 0.35nm is used

The inner and the outer diameters of the DWCNT are respectively

0.68nm and 1.1nm.

A constant modal damping factor of 1% for all the modes is assumed.

We consider pinned-pinned boundary condition for the DWCNT.

Undamped nonlocal natural frequencies can be obtained [11] as

λj =

√
EI

m

β2
j√

1 + β2
j (e0a)2

where βj = jπ/L, j = 1, 2, · · · (92)

For the finite element analysis the DWCNT is divided into 100 elements.

The dimension of each of the system matrices become 200 × 200, that is
n = 200.
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Numerical illustrations Bending vibration of a double-walled carbon nanotube

Nonlocal bending natural frequencies of DWCNT
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Numerical illustrations Bending vibration of a double-walled carbon nanotube

Nonlocal bending mode shapes of DWCNT
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Figure: Four selected mode shapes for the bending vibration of DWCNT. Exact finite

element results are compared with the approximate analysis based on local

eigensolutions. In each subplot four different values of e0a, namely 0.5, 1.0, 1.5 and

2.0nm have been used (see subplot d).
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Numerical illustrations Bending vibration of a double-walled carbon nanotube

Nonlocal frequency response of DWCNT
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(b) e0a = 1.0nm
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(c) e0a = 1.5nm
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Figure: Amplitude of the normalised frequency response of the DWCNT Hij(ω) for

i = 6, j = 8 for different values of e0a. Exact finite element results are compared with

the approximate analysis based on local eigensolutions.
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Numerical illustrations Transverse vibration of a single-layer graphene sheet

Transverse vibration of a single-layer graphene sheet

Figure: Transverse vibration of a rectangular (L=20nm, W =15nm) single-layer
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Numerical illustrations Transverse vibration of a single-layer graphene sheet

Transverse vibration of a single-layer graphene sheet

A rectangular single-layer graphene sheet (SLGS) is considered to

examine the transverse vibration characteristics of nanoplates.

The graphene sheet is of dimension L=20nm, W=15nm and Young’s

modulus E = 1.0 TPa, density ρ = 2.25 × 103 kg/m3, Poisson’s ratio
ν = 0.3 and thickness h = 0.34nm is considered

We consider simply supported boundary condition along the four edges
for the SLGS. Undamped nonlocal natural frequencies are

λij =

√
D

m

β2
ij√

1 + β2
ij (e0a)2

where βij =

√
(iπ/L)

2
+ (jπ/W )

2
, i, j = 1, 2, · ·

(93)

D is the bending rigidity and m is the mass per unit area of the SLGS.

For the finite element analysis the DWCNT is divided into 20 × 15
elements. The dimension of each of the system matrices become

868 × 868, that is n = 868.
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Numerical illustrations Transverse vibration of a single-layer graphene sheet

Nonlocal natural frequencies of SLGS
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Numerical illustrations Transverse vibration of a single-layer graphene sheet

Nonlocal bending mode shapes of SLGS
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Figure: Four selected mode shapes for the transverse vibration of SLGS for

e0a = 2nm. Exact finite element results (solid line)are compared with the approximate

analysis based on local eigensolutions (dashed line).
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Numerical illustrations Transverse vibration of a single-layer graphene sheet

Nonlocal frequency response of SLGS
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(b) e0a = 1.0nm
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(c) e0a = 1.5nm
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Figure: Amplitude of the normalised frequency response Hij(ω) for i = 475, j = 342 of

the SLGS for different values of e0a. Exact finite element results are compared with

the approximate analysis based on local eigensolutions.
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Conclusions

Conclusions

Nonlocal elasticity is a promising theory for the modelling of nanoscale

dynamical systems such as carbon nantotubes and graphene sheets.

Equation of motion for axial vibration of nonlocal rods, bending vibration

of nonlocal beams and transverse vibration of thin nonlocal plates have
been described and corresponding natural frequencies are given.

The mass matrix can be decomposed into two parts, namely the classical

local mass matrix M0 and a nonlocal part denoted by Mµ. The nonlocal
part of the mass matrix is scale-dependent and vanishes for systems with

large length-scale.

An undamped nonlocal system will have classical normal modes

provided the nonlocal part of the mass matrix satisfy the condition

KM−1
0 Mµ = MµM−1

0 K where K is the stiffness matrix.

A viscously damped nonlocal system with damping matrix C will have

classical normal modes provided CM−1
0 K = KM−1

0 C and

CM−1
0 Mµ = MµM−1

0 C in addition to the previous condition.
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Conclusions

Conclusions

Natural frequency of a general nonlocal system can be expressed as

λj ≈ ωj
√

1+M′

µjj

, ∀j = 1, 2, · · · where ωj are the corresponding local

frequencies and M ′
µjj

are the elements of nonlocal part of the mass matrix

in the modal coordinate.

Every nonlocal normal mode can be expressed as a sum of two principal

components as uj ≈ xj + (
∑n

k 6=j

λ2
j

(λ2
k
−λ2

j )

M′

µkj
(

1+M′

µkk

)xk ), ∀j = 1, 2, · · · . One of

them is parallel to the corresponding local mode xj and the other is

orthogonal to it.
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