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Introduction

Piezoelectric vibration energy harvesting

The harvesting of ambient vibration energy for use in powering

low energy electronic devices has formed the focus of much

recent research.

Of the published results that focus on the piezoelectric effect as

the transduction method, most have focused on harvesting using

cantilever beams and on single frequency ambient energy, i.e.,

resonance based energy harvesting.

Several authors have proposed methods to optimise the

parameters of the system to maximise the harvested energy.

Some authors have considered energy harvesting under wide

band excitation.

This is crucial to expand the zone of efficiency of the vibration

energy harvesters.
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Introduction The role of uncertainty

Why uncertainty is important for energy harvesting?

In the context of energy harvesting from ambient vibration, the

input excitation may not be always known exactly.

There may be uncertainties associated with the numerical values

considered for various parameters of the harvester. This might

arise, for example, due to the difference between the true values

and the assumed values.

If there are several nominally identical energy harvesters to be

manufactured, there may be genuine parametric variability within

the ensemble.

Any deviations from the assumed excitation may result an

optimally designed harvester to become sub-optimal.
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Introduction The role of uncertainty

Types of uncertainty

Suppose the set of coupled equations for energy harvesting:

L{u(t)} = f(t) (1)

Uncertainty in the input excitations

For this case in general f(t) is a random function of time. Such

functions are called random processes.

f(t) can be Gaussian/non-Gaussian stationary or non-stationary

random processes

Uncertainty in the system

The operator L{•} is in general a function of parameters

θ1, θ2, · · · , θn ∈ R.

The uncertainty in the system can be characterised by the joint

probability density function pΘ1,Θ2,··· ,Θn (θ1, θ2, · · · , θn).
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Introduction The role of uncertainty

Possible physically realistic cases

Depending on the system and the excitation, several cases are

possible:

Linear system excited by harmonic excitation

Linear system excited by stochastic excitation

Linear stochastic system excited by harmonic/stochastic excitation

Nonlinear system excited by harmonic excitation

Nonlinear system excited by stochastic excitation

Nonlinear stochastic system excited by harmonic/stochastic

excitation

Multiple degree of freedom vibration energy harvesters

This talk is focused on the application of random vibration theory and

random systems theory to various energy harvesting problems.

S. Adhikari (Swansea) GIAN 171003L27 Oct-Nov 17 — IIT-M 6 / 52



The single-degree-of-freedom coupled model

Energy harvesting circuits - cantilever based
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(a) Harvesting circuit without an inductor
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(b) Harvesting circuit with an inductor

Figure: Schematic diagrams of piezoelectric energy harvesters with two

different harvesting circuits.
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The single-degree-of-freedom coupled model

Energy harvesting circuits - stack piezo based
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Schematic diagrams of stack piezoelectric energy harvesters with two

different harvesting circuits. (a) Harvesting circuit without an inductor,

(b) Harvesting circuit with an inductor.
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The single-degree-of-freedom coupled model Energy harvesters without an inductor

The equation of motion

The coupled electromechanical behaviour of the energy harvester

can be expressed by linear ordinary differential equations as

mẍ(t) + cẋ(t) + kx(t)− θv(t) = −mẍb(t) (2)

Cpv̇(t) +
1

Rl

v(t) + θẋ(t) = 0 (3)

x(t): displacement of the mass

m: equivalent mass of the harvester

k: equivalent stiffness of the harvester

c: damping of the harvester

xb(t): base excitation to the harvester

θ: electromechanical coupling

v(t): voltage

Rl: load resistance

Cp: capacitance of the piezoelectric layer

t: time
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The single-degree-of-freedom coupled model Energy harvesters without an inductor

Frequency domain: non-dimensional form

Transforming equations (2) and (3) into the frequency domain we

obtain and dividing the first equation by m and the second

equation by Cp we obtain

(
−ω2 + 2iωζωn + ω2

n

)
X(ω)−

θ

m
V (ω) = ω2Xb(ω) (4)

iω
θ

Cp

X(ω) +

(
iω +

1

CpRl

)
V (ω) = 0 (5)

Here X(ω), V (ω) and Xb(ω) are respectively the Fourier

transforms of x(t), v(t) and xb(t).

The natural frequency of the harvester, ωn, and the damping

factor, ζ, are defined as

ωn =

√
k

m
and ζ =

c

2mωn

(6)
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The single-degree-of-freedom coupled model Energy harvesters without an inductor

Frequency domain: non-dimensional form

Dividing the preceding equations by ωn and writing in matrix form

one has
[(

1− Ω2
)
+ 2iΩζ − θ

k

iΩαθ
Cp

(iΩα+ 1)

]{
X
V

}
=

{
Ω2Xb

0

}
(7)

Here the dimensionless frequency and dimensionless time

constant are defined as

Ω =
ω

ωn

and α = ωnCpRl (8)

The constant α is the time constant of the first order electrical

system, non-dimensionalized using the natural frequency of the

mechanical system.
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The single-degree-of-freedom coupled model Energy harvesters without an inductor

Frequency domain: non-dimensional form

Inverting the coefficient matrix, the displacement and voltage in

the frequency domain can be obtained as

{
X
V

}
=

1

∆1

[
(iΩα+ 1) θ

k

−iΩαθ
Cp

(
1− Ω2

)
+ 2iΩζ

]{
Ω2Xb

0

}

=

{
(iΩα+ 1)Ω2Xb/∆1

−iΩ3 αθ
Cp

Xb/∆1

}
(9)

The determinant of the coefficient matrix is

∆1(iΩ) = (iΩ)3α+(2 ζ α+ 1) (iΩ)2+
(
α+ κ2α+ 2 ζ

)
(iΩ)+1 (10)

This is a cubic equation in iΩ leading to to three roots.

The non-dimensional electromechanical coupling coefficient is

κ2 =
θ2

kCp

(11)
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The single-degree-of-freedom coupled model Energy harvesters with an inductor

The equation of motion

The coupled electromechanical behaviour of the energy harvester

can be expressed by linear ordinary differential equations as

mẍ(t) + cẋ(t) + kx(t)− θv(t) = fb(t) (12)

Cpv̈(t) +
1

Rl

v̇(t) +
1

L
v(t) + θẍ(t) = 0 (13)

Here L is the inductance of the circuit. Note that the mechanical

equation is the same as given in equation (2).

Unlike the previous case, these equations represent two coupled

second-order equations and opposed one coupled second-order

and one first-order equations.
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The single-degree-of-freedom coupled model Energy harvesters with an inductor

Frequency domain: non-dimensional form

Transforming equation (13) into the frequency domain and dividing

by Cpω
2
n one has

−Ω2 θ

Cp

X +

(
−Ω2 + iΩ

1

α
+

1

β

)
V = 0 (14)

The second dimensionless constant is defined as

β = ω2
nLCp (15)

This is the ratio of the mechanical to electrical natural frequencies.

Similar to Equation (7), this equation can be written in matrix form

with the equation of motion of the mechanical system (4) as
[(

1− Ω2
)
+ 2iΩζ − θ

k

−Ω2 αβθ
Cp

α
(
1− βΩ2

)
+ iΩβ

]{
X
V

}
=

{
Ω2Xb

0

}
(16)
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The single-degree-of-freedom coupled model Energy harvesters with an inductor

Frequency domain: non-dimensional form

Inverting the coefficient matrix, the displacement and voltage in

the frequency domain can be obtained as

{
X
V

}
=

1

∆2

[
α
(
1− βΩ2

)
+ iΩβ θ

k

Ω2 αβθ
Cp

(
1− Ω2

)
+ 2iΩζ

]{
Ω2Xb

0

}

=

{(
α
(
1− βΩ2

)
+ iΩβ

)
Ω2Xb/∆2

Ω4 αβθ
Cp

Xb/∆2

}
(17)

The determinant of the coefficient matrix is

∆2(iΩ) = (iΩ)4β α+ (2 ζ β α+ β) (iΩ)3

+
(
β α+ α+ 2 ζ β + κ2β α

)
(iΩ)2 + (β + 2 ζ α) (iΩ) + α (18)

This is a quartic equation in iΩ leading to to four roots.
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Optimal Energy Harvester Under Gaussian Excitation Stationary random vibration

Stationary random vibration

We consider that the base excitation xb(t) is a random process.

It is assumed that xb(t) is a weakly stationary, Gaussian,

broadband random process.

Mechanical systems driven by this type of excitation have been

discussed by Lin [1], Nigam [2], Bolotin [3], Roberts and Spanos

[4] and Newland [5] within the scope of random vibration theory.

To obtain the samples of the random response quantities such as

the displacement of the mass x(t) and the voltage v(t), one needs

to solve the coupled stochastic differential equations (2) and (3) or

(2) and (13).
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Optimal Energy Harvester Under Gaussian Excitation Stationary random vibration

Stationary random vibration

0 50 100 150 200 250
Time (s)

-20

-10

0

10

20

R
es

po
ns

e 
(m

m
)

0 50 100 150 200 250
Time (s)

-5

0

5

Fo
rc

e 
/ E

xc
ita

tio
n 

(N
)

Input force and output response of a linear harvester with an inductor.
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Optimal Energy Harvester Under Gaussian Excitation Stationary random vibration

Stationary random vibration

Analytical results developed within the theory of random vibration

allows us to bypass numerical solutions because we are

interested in the average values of the output random processes.

Here we extend the available results to the energy harvester.

Since xb(t) is a weakly stationary random process, its

autocorrelation function depends only on the difference in the time

instants, and thus

E [xb(τ1)xb(τ2)] = Rxbxb
(τ1 − τ2) (19)

This autocorrelation function can be expressed as the inverse

Fourier transform of the spectral density Φxbxb
(ω) as

Rxbxb
(τ1 − τ2) =

∫
∞

−∞

Φxbxb
(ω) exp[iω(τ1 − τ2)]dω (20)
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Optimal Energy Harvester Under Gaussian Excitation Stationary random vibration

Stationary random vibration

We are interested in the average harvested power given by

E [P (t)] = E

[
v2(t)

Rl

]
=

E
[
v2(t)

]

Rl

(21)

For a damped linear system of the form V (ω) = H(ω)Xb(ω), it can

be shown that [1, 2] the spectral density of V is related to the

spectral density of Xb by

ΦV V (ω) = |H(ω)|2Φxbxb
(ω) (22)

Thus, for large t, we obtain

E
[
v2(t)

]
= Rvv(0) =

∫
∞

−∞

|H(ω)|2Φxbxb
(ω) dω (23)

This expression will be used to obtain the average power for the

two cases considered. We assume that the base acceleration

ẍb(t) is Gaussian white noise so that its spectral density is

constant with respect to the frequency.
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Optimal Energy Harvester Under Gaussian Excitation Stationary random vibration

Stationary random vibration

The calculation of the integral on the right-hand side of

Equation (23) in general requires the calculation of integrals of the

following form

In =

∫
∞

−∞

Ξn(ω) dω

Λn(ω)Λ∗

n(ω)
(24)

The polynomials have the form

Ξn(ω) = bn−1ω
2n−2 + bn−2ω

2n−4 + · · · + b0 (25)

Λn(ω) = an(iω)
n + an−1(iω)

n−1 + · · · + a0 (26)

Following Roberts and Spanos [4] this integral can be evaluated

as

In =
π

an

det [Dn]

det [Nn]
(27)

S. Adhikari (Swansea) GIAN 171003L27 Oct-Nov 17 — IIT-M 20 / 52



Optimal Energy Harvester Under Gaussian Excitation Stationary random vibration

Stationary random vibration

Here the m×m matrices are defined as

Dn =




bn−1 bn−2 · · · b0
−an an−2 −an−4 an−6 · · · 0 · · ·
0 −an−1 an−3 −an−5 · · · 0 · · ·
0 an −an−2 an−4 · · · 0 · · ·
0 · · · · · · 0 · · ·
0 0 · · · −a2 a0




(28)

and

Nn =




an−1 −an−3 an−5 −an−7

−an an−2 −an−4 an−6 · · · 0 · · ·
0 −an−1 an−3 −an−5 · · · 0 · · ·
0 an −an−2 an−4 · · · 0 · · ·
0 · · · · · · 0 · · ·
0 0 · · · −a2 a0




(29)
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Optimal Energy Harvester Under Gaussian Excitation Circuit without an inductor

Circuit without an inductor

Mean power

The average harvested power due to the white-noise base

acceleration with a circuit without an inductor can be obtained as

E
[
P̃
]
= E

[
|V |2

(Rlω4Φxbxb
)

]

=
πmακ2

(2 ζ α2 + α) κ2 + 4 ζ2α+ (2α2 + 2) ζ

From Equation (9) we obtain the voltage in the frequency domain

as

V =
−iΩ3 αθ

Cp

∆1(iΩ)
Xb (30)

We are interested in the mean of the normalized harvested power

when the base acceleration is Gaussian white noise, that is

|V |2/(Rlω
4Φxbxb

).
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Optimal Energy Harvester Under Gaussian Excitation Circuit without an inductor

Mean power

The spectral density of the acceleration ω4Φxbxb
and is assumed

to be constant. After some algebra, from Equation (30), the

normalized power is

P̃ =
|V |2

(Rlω4Φxbxb
)
=

kακ2

ω3
n

Ω2

∆1(iΩ)∆
∗

1(iΩ)
(31)

Using linear stationary random vibration theory, the average

normalized power can be obtained as

E
[
P̃
]
= E

[
|V |2

(Rlω4Φxbxb
)

]
=

kακ2

ω3
n

∫
∞

−∞

Ω2

∆1(iΩ)∆∗

1(iΩ)
dω (32)

From Equation (10) observe that ∆1(iΩ) is a third order polynomial

in (iΩ). Noting that dω = ωndΩ and from Equation (10), the

average harvested power can be obtained from Equation (32) as

E
[
P̃
]
= E

[
|V |2

(Rlω4Φxbxb
)

]
= mακ2I(1) (33)
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Optimal Energy Harvester Under Gaussian Excitation Circuit without an inductor

Mean power

I(1) =

∫
∞

−∞

Ω2

∆1(iΩ)∆∗

1(iΩ)
dΩ (34)

After some algebra, this integral can be evaluated as

I(1) =
π

α

det




0 1 0

−α α+ κ2α+ 2 ζ 0

0 −2 ζ α− 1 1




det




2 ζ α+ 1 −1 0

−α α+ κ2α+ 2 ζ 0

0 −2 ζ α− 1 1




(35)

Combining this with Equation (33) we obtain the average

harvested power due to white-noise base acceleration.
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Optimal Energy Harvester Under Gaussian Excitation Circuit without an inductor

Optimal mean power

Since α and κ2 are positive the average harvested power is

monotonically decreasing with damping ratio ζ. Thus the

mechanical damping in the harvester should be minimised.

For fixed α and ζ the average harvested power is monotonically

increasing with the coupling coefficient κ2, and hence the

electromechanical coupling should be as large as possible.

Maximizing the average power with respect to α gives the

condition

α2
(
1 + κ2

)
= 1 (36)

or in terms of physical quantities

R2
lCp

(
kCp + θ2

)
= m (37)
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Optimal Energy Harvester Under Gaussian Excitation Circuit without an inductor

Normalised mean power: numerical illustration
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The normalised mean power of a harvester without an inductor as a function

of α and ζ, with κ = 0.6.
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Optimal Energy Harvester Under Gaussian Excitation Circuit with an inductor

Circuit with an inductor

Mean power

The average harvested power due to the white-noise base

acceleration with a circuit with an inductor can be obtained as

E
[
P̃
]
=

mαβκ2π (β + 2αζ)

β (β + 2αζ) (1 + 2αζ) (ακ2 + 2ζ) + 2α2ζ (β − 1)2
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Optimal Energy Harvester Under Gaussian Excitation Circuit with an inductor

Mean power

Here

I(2) =

∫
∞

−∞

Ω4

∆2(iΩ)∆
∗

2(iΩ)
dΩ. (38)

Using the expression of ∆2(iΩ) in Equation (18) and comparing

I(2) with the general integral in Equation (24) we have

n = 4, b3 = 0, b2 = 1, b1 = 0, b0 = 0, a4 = βα, a3 = (2 ζ β α+ β)

a2 =
(
β α+ α+ 2 ζ β + κ2β α

)
, a1 = (β + 2 ζ α) , a0 = α

(39)
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Optimal Energy Harvester Under Gaussian Excitation Circuit with an inductor

Mean power

Using Equation (27), the integral can be evaluated as

I
(2)

=
π

βα

det

















0 1 0 0

−β α β α + α + 2 ζ β + κ2β α −α 0

0 −2 ζ β α − β β + 2 ζ α 0

0 −β α β α + α + 2 ζ β + κ2β α α

















det

















2 ζ β α + β −β − 2 ζ α 0 0

−β α β α + α + 2 ζ β + κ2β α −α 0

0 −2 ζ β α − β β + 2 ζ α 0

0 −β α β α + α + 2 ζ β + κ2β α α

















(40)
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Optimal Energy Harvester Under Gaussian Excitation Circuit with an inductor

Mean power

Combining this with Equation (33) we finally obtain the average

normalized harvested power as

E
[
P̃
]
= E

[
|V |2

(Rlω4Φxbxb
)

]

= mαβκ2π (β + 2αζ)/
[(
4βα3ζ2 + 2βα2 (β + 1) ζ + β2α

)
κ2

+8βα2ζ3 + 4βα (β + 1) ζ2 + 2
(
β2α2 + β2 − 2βα2 + α2

)
ζ
]

=
mαβκ2π (β + 2αζ)

β (β + 2αζ) (1 + 2αζ) (ακ2 + 2ζ) + 2α2ζ (β − 1)2
(41)

This is the complete closed-form expression of the normalised

harvested power under Gaussian white noise base acceleration.

Since α, β and κ2 are positive the average harvested power is

monotonically decreasing with damping ratio ζ.

The mechanical damping in the harvester should be minimised.
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Optimal Energy Harvester Under Gaussian Excitation Circuit with an inductor

Mean power

For fixed α, β and ζ the average harvested power is monotonically

increasing with the coupling coefficient κ2, and hence the

electromechanical coupling should be as large as possible.

We can also determine optimum values for α and β. Dividing both

the numerator and denominator of the last expression in

Equation (41) by β (β + 2αζ) shows that the optimum value of β
for all values of the other parameters is β = 1.

This value of β implies that ω2
nLCp = 1, and thus the mechanical

and electrical natural frequencies are equal. With β = 1 the

average normalised harvested power is

E
[
P̃
]
=

mακ2π

(1 + 2αζ) (ακ2 + 2ζ)
. (42)

If κ and ζ are fixed then the maximum power with respect to α is

obtained when α = 1/κ.
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Optimal Energy Harvester Under Gaussian Excitation Circuit with an inductor

Normalised mean power: numerical illustration
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The normalized mean power of a harvester with an inductor as a function of α
and β, with ζ = 0.1 and κ = 0.6.
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Optimal Energy Harvester Under Gaussian Excitation Circuit with an inductor

Optimal parameter selection
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The normalized mean power of a harvester with an inductor as a function of β
for α = 0.6, ζ = 0.1 and κ = 0.6. The * corresponds to the optimal value of

β(= 1) for the maximum mean harvested power.
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Optimal Energy Harvester Under Gaussian Excitation Circuit with an inductor

Optimal parameter selection
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The normalized mean power of a harvester with an inductor as a function of α
for β = 1, ζ = 0.1 and κ = 0.6. The * corresponds to the optimal value of

α(= 1.667) for the maximum mean harvested power.
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Stochastic System Parameters

Stochastic system parameters

Energy harvesting devices are expected to be produced in bulk

quantities

It is expected to have some parametric variability across the

‘samples’

How can we take this into account and optimally design the

parameters?

The natural frequency of the harvester, ωn, and the damping factor, ζn,

are assumed to be random in nature and are defined as

ωn = ω̄nΨω (43)

ζ = ζ̄Ψζ (44)

where Ψω and Ψζ are the random parts of the natural frequency and

damping coefficient. ω̄n and ζ̄ are the mean values of the natural

frequency and damping coefficient.
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Stochastic System Parameters

Mean harvested power: Harmonic excitation

The average (mean) normalized power can be obtained as

E [P ] = E

[
|V |2

(Rlω4X2
b )

]

=
k̄ακ2Ω2

ω̄3
n

∫
∞

−∞

∫
∞

−∞

fΨω(x1)fΨζ
(x2)

∆1(iΩ, x1, x2)∆
∗

1(iΩ, x1, x2)
dx1dx2 (45)

where

∆1(iΩ,Ψω,Ψζ) = (iΩ)3α+
(
2ζ̄αΨωΨζ + 1

)
(iΩ)2+

(
αΨ2

ω + κ2α+ 2ζ̄ΨωΨζ

)
(iΩ) + Ψ2

ω (46)

The probability density functions (pdf) of Ψω and Ψζ are denoted by

fΨω(x) and fΨζ
(x) respectively.
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Stochastic System Parameters Estimating the mean harvested power by Monte Carlo simulation

Parameter values used in the simulation

Table: Parameter values used in the simulation

Parameter Value Unit

m 9.12 × 10−3 kg

k̄ 4.1× 103 N/m

c̄ 0.218 Ns/m

α 0.8649 –

Rl 3× 104 Ohm

κ2 0.1185 –

Cp 4.3 × 10−8 F

θ −4.57 × 10−3 N/V
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Stochastic System Parameters Estimating the mean harvested power by Monte Carlo simulation

The mean power
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The mean power for various values of standard deviation in natural

frequency with ω̄n = 670.5 rad/s,Ψζ = 1, α = 0.8649, κ2 = 0.1185.
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Stochastic System Parameters Estimating the mean harvested power by Monte Carlo simulation

The mean power
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The mean harvested power for various values of standard deviation of

the natural frequency, normalised by the deterministic power

(ω̄n = 670.5 rad/s,Ψζ = 1, α = 0.8649, κ2 = 0.1185).
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Stochastic System Parameters Estimating the mean harvested power by Monte Carlo simulation

The mean harvested power
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The mean harvested power for various values of standard deviation of the
natural frequency (σω) and damping coefficient (σζ), normalised by the

deterministic power (ω̄n = 670.5 rad/s, ζ̄ = 0.0178, α = 0.8649, κ2 = 0.1185).
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Stochastic System Parameters Estimating the mean harvested power by Monte Carlo simulation

The mean harvested power

0 0.05 0.1 0.15 0.2 0
0.05

0.1
0.15

0.220

30

40

50

60

70

80

90

100

Standard deviation (σκ
)

Standard deviation (σ
ω)

M
ax

(E
[P

])
/M

ax
(P

de
t) 

(%
)

The mean harvested power for various values of standard deviation of the

natural frequency (σω) and non-dimensional coupling coefficient (σκ),
normalised by the deterministic power with

ω̄n = 670.5 rad/s, κ̄ = 0.3342,Ψζ = 1, α = 0.8649.
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Stochastic System Parameters Estimating the mean harvested power by Monte Carlo simulation

Standard deviation of harvested power
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The standard deviation of harvested power for various values of standard

deviation of the natural frequency (σω) and non-dimensional coupling
coefficient (σκ), normalised by the deterministic power with

ω̄n = 670.5 rad/s, κ̄ = 0.3342,Ψζ = 1, α = 0.8649.
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Stochastic System Parameters Optimal parameters: Semi analytical approach

Optimal parameter selection

The optimal value of α:

α2
opt ≈

(c1 + c2σ
2 + 3c3σ

4)

(c4 + c5σ2 + 3c6σ4)
(47)

where

c1 =1 +
(
4ζ̄2 − 2

)
Ω2 +Ω4, c2 = 6 +

(
4ζ̄2 − 2

)
Ω2, c3 = 1, (48)

c4 =
(
1 + 2κ2 + κ4

)
Ω2 +

(
4ζ̄2 − 2− 2κ2

)
Ω4 +Ω6, (49)

c5 =
(
2κ2 + 6

)
Ω2 +

(
4ζ̄2 − 2

)
Ω4, c6 = Ω2, (50)

and σ is the standard deviation in natural frequency.
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Stochastic System Parameters Optimal parameters: Semi analytical approach

Optimal non-dimensional time constant
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The optimal non-dimensional time constant αopt for various standard

deviations of the natural frequency under a broad band excitation
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Stochastic System Parameters Optimal parameters: Semi analytical approach

Optimal parameter selection

The optimal value of κ:

κ2opt ≈
1

(α Ω)

√
(d1 + d2σ2 + d3σ4) (51)

where

d1 =1 +
(
4ζ̄2 + α2 − 2

)
Ω2 +

(
4ζ̄2α2 − 2α2 + 1

)
Ω4 + α2Ω6 (52)

d2 =6 +
(
4ζ̄2 + 6α2 − 2

)
Ω2 +

(
4ζ̄2α2 − 2α2

)
Ω4 (53)

d3 =3 + 3α2Ω2 (54)
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Stochastic System Parameters Optimal parameters: Semi analytical approach

Optimal non-dimensional coupling coefficient
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The optimal non-dimensional coupling coefficient κopt for various standard

deviations of the natural frequency under a broad band excitation
(ω̄n = 670.5 rad/s, α = 0.8649).
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Stochastic System Parameters Optimal parameters by Monte-Carlo simulations

Monte-Carlo simulations

The simulation is performed using 5000 sample realisations, with

the standard deviation of natural frequency between 0 and 20% at

an interval of 1%.

The non-dimensional time constant α is varied from 0 to 5 with an

interval of 0.1.

For the non-dimensional coupling coefficient, the simulation range

considered is from 0 to 1 at an interval of 0.05. The optimal values

of the parameters lie well within conventional ranges. For the

various simulations, any constant parameters used are given in

Table 1.
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Stochastic System Parameters Optimal parameters by Monte-Carlo simulations

The optimal non-dimensional frequency
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The optimal non-dimensional frequency (Ωopt) obtained using MCS

(ω̄n = 670.5 rad/s, κ2 = 0.1185).
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Stochastic System Parameters Optimal parameters by Monte-Carlo simulations

The maximum of the mean non-dimensional power
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The maximum of the mean non-dimensional power (max(E [P ])) obtained

using MCS (ω̄n = 670.5 rad/s, κ2 = 0.1185).
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Stochastic System Parameters Optimal parameters by Monte-Carlo simulations

The mean non-dimensional power
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The mean non-dimensional power (max(E [P ])) obtained using MCS

(ω̄n = 670.5 rad/s, α = 0.8649).
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Stochastic System Parameters Optimal parameters by Monte-Carlo simulations

Main observations

The mean harvested power decreases abruptly with uncertainty in

the natural frequency, as shown by the approximate analytical

results and the Monte-Carlo simulation studies

The harvested power varies only slightly due to uncertainty in the

damping (up to a standard deviation of 20%)
The sharp peak in the optimal non-dimensional time constant

gradually vanishes with increasing standard deviation of the

natural frequency

The harvested power decreases with increase in uncertainty in

coupling coefficient at low uncertainty in natural frequency. As the

uncertainty in natural frequency increases the effect of uncertainty

in coupling coefficient decreases

The value of the non-dimensional coupling coefficient at which the

mean harvested power is maximum increases with increasing

standard deviation of the natural frequency

The optimal value for the non-dimensional frequency decreases

with increasing standard deviation of the natural frequency.
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Summary

Summary

Vibration energy based piezoelectric energy harvesters are

expected to operate under a wide range of ambient environments.

This talk considers energy harvesting of such systems under

broadband random excitations.

Specifically, analytical expressions of the normalised mean

harvested power due to stationary Gaussian white noise base

excitation has been derived.

Two cases, namely the harvesting circuit with and without an

inductor, have been considered.

It was observed that in order to maximise the mean of the

harvested power (a) the mechanical damping in the harvester

should be minimised, and (b) the electromechanical coupling

should be as large as possible.
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Summary

Further reading
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