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Introduction

Nonlinear energy harvester

The harvesting of ambient vibration energy for use in powering

low energy electronic devices has formed the focus of much

recent research.

Of the published results that focus on the piezoelectric effect as

the transduction method, most have focused on harvesting using

cantilever beams and on single frequency ambient energy, i.e.,

resonance based energy harvesting.

Several authors have proposed methods to optimise the

parameters of the system to maximise the harvested energy.

Some authors have considered energy harvesting under wide

band excitation.

A key challenge is to broadening the frequency band-width over

which energy can be harvested efficiently.

Nonlinear energy harvesters are proposed specifically to address

this issue.
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Introduction

Types of nonlinear energy harvester

Unlike a linear energy harvester, which essentially as the same

design, nonlinear energy harvesters can come in various forms.

Indeed many concepts have been proposed.

The key distinguishable feature of a nonlinear energy harvester is

that can be multiple stable points in their dynamics.

This effectively makes them a collection of different linearised

harvesters at different excitation regimes within one physical

device.

It is this fact which makes them attractive from a practical stand

point.

However, this advantage comes with many challenges such as

difficulties in understanding, analysing, computing, simulating and

manufacturing nonlinear energy harvesters.

We will study a particular system in details to gain fundamental

insights into nonlinear energy harvesters.
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Introduction

Piezomagnetoelastic energy hrvestor

Schematic of the piezomagnetoelastic device. The beam system is

also referred to as the ‘Moon Beam’.
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Introduction

Governing equations

The nondimensional equations of motion for this system are

ẍ + 2ζ ẋ −
1

2
x(1 − x2)− χv = f (t), (1)

v̇ + λv + κẋ = 0, (2)

Here x is the dimensionless transverse displacement of the beam

tip, v is the dimensionless voltage across the load resistor, χ is the

dimensionless piezoelectric coupling term in the mechanical

equation, κ is the dimensionless piezoelectric coupling term in the

electrical equation, λ ∝ 1/RlCp is the reciprocal of the

dimensionless time constant of the electrical circuit, Rl is the load

resistance, and Cp is the capacitance of the piezoelectric material.

The force f (t) is proportional to the base acceleration on the

device.

If we consider the inductor, then the second equation will be

v̈ + λv̇ + βv + κẍ = 0.
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The inverted beam with a tip mass

Inverted beam harvester

L

x

y

ρA

Schematic diagram of inverted beam harvester. Piezoelectric patches

are placed along the beam but are not shown here.
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The inverted beam with a tip mass

The inverted beam-mass system

For nonlinear energy harvesting, an inverted elastic beam is

considered with a tip mass and the base is harmonically excited in

the transverse direction.

Mt denotes the tip mass attached to the elastic beam, while v and

u denote the horizontal and vertical displacements of the mass.

Point P denotes an arbitrary point on the beam whosse position is

described by the coordinates s, vp, and up.

The displacement-curvature relation of the beam is nonlinear due

to the large transverse displacement of the beam.

We assume that the thickness of the beam is small compared with

the length so that the effects of shear deformation and rotatory

inertia of the beam can be neglected.

The beam is such that the first torsional resonance frequency is

much higher than the excitation frequency and the lumped mass is

kept symmetric with respect to the centre line.
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The inverted beam with a tip mass

The inverted beam-mass system

Hence the vibration is purely planar and we neglect the torsional

modes of the beam in the analysis.

These assumptions are consistent with observations in the

laboratory.

Consider an arbitrary point on the beam, P, at a distance s from

the base. This point undergoes a rigid body translation due to the

base excitation, and a further displacement due to the elastic

beam deformation, given by (vp(s, t),−up(s, t)).

Hence the point P has undergone a total horizontal displacement

of z + vp, and a vertical displacement of −up.

Let φp(s, t) denote the rotation of the beam at s, and hence the

rotation at the tip mass is φ(t) = φp(Lt , t), measured at the mass

centre.

The beam has a uniform cross sectional area A, mass density ρ,

equivalent Young’s modulus E , and second moment of area I.
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The inverted beam with a tip mass Nonlinear equation of motion

Nonlinear equation of motion

The kinetic energy of the beam-mass system is given by

T =
1

2
ρA

∫ L

0

[

(v̇p(s, t) + ż)2 + (u̇p(s, t))
2
]

ds

+
1

2
Mt

[

(v̇ + ż)2 + u̇2
]

+
1

2
It φ̇

2 (3)

where the translation of the tip mass is v(t) = vp(Lt , t) and

u(t) = up(Lt , t) and the dot denotes differentiation with respect to

time. (3) is obtained by neglecting the effect of rotary inertia of the

beam mass.

The potential energy of the system is

Π =
1

2
EI

∫ L

0

(κ(s, t))2
ds − ρAg

∫ L

0

up(s, t)ds − Mtgu (4)
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The inverted beam with a tip mass Nonlinear equation of motion

Nonlinear equation of motion

The curvature is given by

κ(s, t) =
∂φp

∂s
= φ′p (5)

the prime denotes differentiation with respect to s, and g is the

gravitational constant.

The slope of the beam, φp, may be written in terms of the beam

elastic displacement as

cosφp = 1 − u′

p or sinφp = v ′

p (6)

Hence

u′

p = 1 −

√

1 − v ′2
p ≈

1

2
v ′2

p or up(s, t) =
1

2

∫ s

0

(v ′

p(ξ, t))
2
dξ

(7)
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The inverted beam with a tip mass Nonlinear equation of motion

Nonlinear equation of motion

The second of (6) gives

φp(s, t) = sin−1 v ′

p ≈ v ′

p +
1

6
v ′3

p (8)

Differentiating this equation gives

κ(s, t) = φ′p =
v ′′

p

cosφp
=

v ′′

p
√

1 − v ′2
p

≈ v ′′

p

(

1 +
1

2
v ′2

p

)

(9)

Equations (7) - (9) have been expanded as Taylor series and the

terms in O(v4
p ) and higher orders neglected.
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The inverted beam with a tip mass Nonlinear equation of motion

Nonlinear equation of motion

To enforce nonlinearity, we assume that the tip mass is

significantly larger than the beam mass and hence a single mode

approximation of the beam deformation is sufficient.

The displacement at any point in the beam is represented as a

function of the tip mass displacement through a function for the

beam deformation, ψ(s), as

vp(s, t) = vp(L, t)ψ(s) = v(t)ψ(s) (10)

The displacement may be approximated by any function satisfying

the boundary conditions at s = 0

ψ(s) = λt

(

1 − cos
(πs

2L

))

(11)

where λt is a constant such that ψ(Lt) = 1, i.e.

λt = 1/

(

1 − cos

(

πLt

2L

))

(12)
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The inverted beam with a tip mass Nonlinear equation of motion

Nonlinear equation of motion

Using this single mode approximation, the kinetic energy of the

system in terms of the transverse displacement of the tip mass, v

is

T =
1

2
ρA

∫ L

0

[

(v̇ψ(s) + ż)2 +

(

vv̇

∫ s

0

(ψ′(ξ))2
dξ

)2
]

ds

+
1

2
Mt



(v̇ + ż)2 +

(

vv̇

∫ Lt

0

(ψ′(s))2
ds

)2


 (13)

+
1

2
It

[

v̇ψ′(Lt) +
1

2
v2v̇(ψ′(Lt))

3

]2

=
1

2
ρA
[

N1v̇2 + 2N2v̇ ż + ż2L + N3 (vv̇)2
]

+
1

2
Mt

[

(v̇ + ż)2 + N2
4 (vv̇)2

]

+
1

2
It

[

N5v̇ +
1

2
N3

5 v2v̇

]2
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The inverted beam with a tip mass Nonlinear equation of motion

Nonlinear equation of motion

Using this single mode approximation, the potential energy of the

system in terms of the transverse displacement of the tip mass, v

is

Π =
1

2
EI

∫ L

0

[

vψ(s)′′ +
1

2
v3(ψ′(s))2ψ′′(s)

]2

ds

−
1

2
ρAgv2

∫ L

0

[
∫ s

0

(ψ′(ξ))2
dξ

]

ds −
1

2
Mtgv2

∫ Lt

0

(ψ′(s))2
ds

(15)

=
1

2
EI

[

N6v2 + N7v4 +
1

4
N8v6

]

−
1

2
N9ρAgv2

−
1

2
N4Mtgv2

(16)
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The inverted beam with a tip mass Nonlinear equation of motion

Nonlinear equation of motion

Using the displacement model in (11), the constants N1 to N9 are:

N1 =

∫

L

0
(ψ(s))

2
ds = λ

2
t

(

3π − 8

2π

)

L,

N2 =

∫

L

0
ψ(s)ds = λt

(

π − 2

π

)

L,

N3 =

∫

L

0

(∫

s

0
(ψ

′
(ξ))

2
dξ

)2

ds = λ
2
t

(

π2(2π2
− 9)

384

)

1

L
,

N4 =

∫

Lt

0
(ψ

′
(s))

2
ds = λ

2
t

(

π2

8

)

1

Lt

,

N5 = ψ
′
(Lt ) = λt

(

π

2

)

1

Lt

, (17)

N6 =

∫

L

0
(ψ

′′
(s))

2
ds = λ

2
t

(

π4

32

)

1

L3

N7 =

∫

L

0
(ψ

′
(s)ψ

′′
(s))

2
ds = λ

4
t

(

π6

29

)

1

L5

N8 =

∫

L

0
(ψ

′
(s))

4
(ψ

′′
(s))

2
ds = λ

6
t

(

π8

4096

)

1

L7

N9 =

∫

L

0

[∫

s

0
(ψ

′
(ξ))

2
dξ

]

ds = λ
2
t

(

−

1

4
+

1

16
π

2
)
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The inverted beam with a tip mass Nonlinear equation of motion

Nonlinear equation of motion

The equation of motion of the beam-mass system is derived in

terms of the displacement of the tip mass using Lagrange’s

equations as

The equation of motion:

[

N2
5 It + Mt + ρAN1 +

(

ρAN3 + MtN
2
4 + N4

5 It

)

v2
]

v̈

+
[

ρAN3 + MtN
2
4 + N4

5 It

]

vv̇2

+
[

EIN6 − N9ρAg − N4Mtg + 2EIN7v2
]

v =

− [ρAN2 + Mt ] z̈ (18)

Damping may also be added to these equations of motion, for

example viscous, material or aerodynamic damping. This will

introduce additional terms involving v̇ .
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The inverted beam with a tip mass Equilibrium positions

Equilibrium points

The equilibrium positions with no forcing are obtained by setting

the velocity and acceleration terms to zero in (18) to give,

[

EIN6 − N9ρAg − N4Mtg + 2EIN7v2
]

v = 0 (19)

This equation has either one or three solutions, and v = 0 is

always a solution. Since N4 > 0, there are three solutions if

Mt >
EIN6 − N9ρAg

N4g
= Mtb (20)

where Mtb is the tip mass so that the beam is about to buckle.

If the beam mass is neglected this gives the Euler buckling load as

Mtbg =
EIN6

N4
=

EIπ2

4L2
(21)
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The inverted beam with a tip mass Equilibrium positions

Equilibrium points

If (20) is satisfied then the non-zero equilibrium positions are

given by

v0b = ±

√

N9ρAg + N4Mtg − EIN6

2EIN7
(22)

For perturbations about the equilibrium solution at v = 0 the

linearized equation of motion for the free response is
[

N2
5 It + Mt + ρAN1

]

v̈ + [EIN6 − N9ρAg − N4Mtg] v = 0 (23)

showing that the v = 0 equilibrium position is unstable after

buckling (Mt > Mtb).
Before buckling (Mt < Mtb) the natural frequency for small

vibrations is given by

ωn

ω2
n =

EIN6 − N9ρAg − N4Mtg

N2
5 It + Mt + ρAN1

(24)
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The inverted beam with a tip mass Equilibrium positions

Equilibrium points

After bucking the linearized equation of motion about the

equilibrium position v0b becomes, using (22),

[

N2
5 It + Mt + ρAN1 +

(

ρAN3 + MtN
2
4 + N4

5 It

)

v2
0b

]

η̈

+ 4EIN7v2
0bη = 0 (25)

where v = v0b + η.

Hence the natural frequencies about both buckled equilibrium

position are

ωnb

ω2
nb =

4EIN7v2
0

N2
5 It + Mt + ρAN1 +

(

ρAN3 + MtN
2
4 + N4

5 It
)

v2
0b

(26)
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Coupled electromechanical model

Coupled electromechanical model

There has been a significant modeling effort of piezoelectric

materials as distributed transducers and many review papers have

been published.

Suppose that piezoelectric layers added to a beam in either a

unimorph or a bimorph configuration. Then the moment about the

beam neutral axis produced by a voltage V across the

piezoelectric layers may be written as

M(x , t) = γcV (t) (27)

The constant γc depends on the geometry, configuration and

piezoelectric device and V (t) is the time-dependent voltage.

For a bimorph with piezoelectric layers in the 31 configuration,

with thickness hc, width bc and connected in parallel

γc = Ed31bc (h + hc) (28)

where h is the thickness of the beam and d31 is the piezoelectric

constant.
S. Adhikari (Swansea) GIAN 171003L27 Oct-Nov 17 — IIT-M 21 / 48



Coupled electromechanical model

Coupled electromechanical model

For a unimorph, the constant is

γc = Ed31bc

(

h +
hc

2
− z̄

)

(29)

where z̄ is the effective neutral axis

These expressions assume a monolithic piezoceramic actuator

perfectly bonded to the beam.

The work done by the piezoelectric patches in mov- ing or

extracting the electrical charge is

W =

∫ Lc

0

M(x , t)κ(x)dx (30)

where Lc is the active length of the piezoelectric mate-rial, which

is assumed to be attached at the clamped end of the beam.
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Coupled electromechanical model

Coupled electromechanical model

The quantity κ(x) is the curvature of the beam and this is

approximately expressed in

Using the approximation for κ in (8), and the displacement model

in (10), we have

W ≈

(

Θ1v +
1

3
Θ2v3

)

V (31)

where

Θ1 = γc

∫ Lc

0

ψ′′(s)ds = γcψ
′(Lc) (32)

and

Θ2 = 3γc

∫ Lc

0

1

2
ψ′′(s)(ψ′(s))2

ds =
1

2
γc(ψ

′(Lc))
3. (33)
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Coupled electromechanical model

Coupled electromechanical model

Equation (31) results in additional terms in the mechanical

equations of motion, which becomes

[

N2
5 It + Mt + ρAN1 +

(

ρAN3 + MtN
2
4 + N4

5 It

)

v2
]

v̈

+
[

ρAN3 + MtN
2
4 + N4

5 It

]

vv̇2

+
[

EIN6 − N9ρAg − N4Mtg + 2EIN7v2
]

v

−Θ1V −Θ2v2V = − [ρAN2 + Mt ] z̈. (34)

On the electrical side the piezoelectric patches may be considered

as a capacitor, and the charge they produce is given by

Θ1v +Θ2v3 where Θ1 and Θ2 are given by (32) and (33),

respectively.
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Coupled electromechanical model

Coupled electromechanical model

The electrical circuit considered is represented by a resistive

shunt connected across the piezoelectric patch. The electrical

equation then becomes

CpV̇ +
V

Rl
+Θ1v̇ +Θ2v2v̇ = 0 (35)

where Rl is the load resistor and Cp is the capacitance of the

piezoelectric patch.

The average power scavenged between times T1 and T2 is

calculated as

Pave =
1

T2 − T1

∫ T2

T1

V (t)2

Rl
dt . (36)

S. Adhikari (Swansea) GIAN 171003L27 Oct-Nov 17 — IIT-M 25 / 48



Numerical simulations

Parameter values

Table: Parameter values used in the simulation

Beam and Tip Mass Energy Harvester

ρ 7850 kg/m3 Lc 28 mm

E 210 GN/m2 bc 14 mm

b 16 mm hc 300 µm

h 0.254 mm γc −4.00 × 10−5 Nm/V

L = Lt 300 mm Cp 51.4 nF

It/Mt 40.87 mm2 Rl 105
− 108 Ω

The beam-mass system is excited at the base with harmonic

excitation.

When the tip mass is changed the ratio of Mt/It is maintained; this

is equivalent to increasing the tip mass width to increase the tip

mass.
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Numerical simulations

Numerical simulation results
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Figure: The effect of the tip mass on the equilibrium position and the

corresponding natural frequencies for the stable equilibrium positions. The
dashed line denotes unstable equilibrium positions.
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Numerical simulations

Numerical simulation results

Figure 1(a) shows the equilibrium position of the tip mass, using

the analysis described in Section 2, and shows that the post

buckled response has two equilibrium positions.

Figure 1(b) shows the corresponding natural frequency of the

linearized system with the change in the tip mass; both the

pre-buckled and post-buckled natural frequencies are given.

Linearization about both equilibrium positions provides the same

natural frequencies as the system is assumed to be symmetric.

Figure 1(b) shows that the natural frequency of the inverted elastic

pendulum decreases with increasing tip mass and is zero at the

Euler buckling load corresponding to an estimated tip mass of

10.0g.
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Numerical simulations

Numerical simulation results

Further increases in tip mass cause the beam to buckle and the

natural frequencies about the stable equilibrium positions increase

with the tip mass. Thus the inverted elastic beam-mass system is

able to resonate at a low frequencies close to the buckling

condition.

The post-buckled equilibrium positions are quite sensitive to the

tip mass and in the simulation study a tip mass of 10.5g was used,

unless stated otherwise.
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Numerical simulations

Numerical simulation results
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(b) Phase portrait for the tip mass

Figure: Harvester nonperiodic response for the parameters given in Table 1
and an harmonic excitation with z0 = 16mm at frequency 0.5Hz. The dashed

horizontal lines in (a) show the equilibrium positions of the tip mass. The dots
in (b) represent the Poincaré points. The response was obtained using zero

initial conditions for the tip mass displacement and velocity.
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Numerical simulations

Numerical simulation results
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Figure: Time history of the voltage across the piezoelectric layers with the
parameters given in Table 1 and corresponding to the response given in

Figure 2.
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Numerical simulations

Numerical simulation results
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Figure: The effect of the variation of the tip mass for a base excitation of

z0 = 16mm at frequency 0.5Hz, and for a load resistance Rl = 100kΩ. The
results were obtained using zero initial conditions for the tip mass

displacement and velocity.
S. Adhikari (Swansea) GIAN 171003L27 Oct-Nov 17 — IIT-M 32 / 48



Numerical simulations

Numerical simulation results
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(b) Mt = 10.39g, Pave = 16.3µW
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(c) Mt = 10.5g, Pave = 2.40µW
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(d) Mt = 10.61g, Pave = 17.8µW
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(e) Mt = 18.6g, Pave = 0.056µW
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(f) Mt = 18.65g, Pave = 10.2µW

Figure: Phase portraits of the tip mass response for a base excitation of z0 = 16mm at frequency 0.5Hz, and for a load
resistance Rl = 100kΩ.
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Figure: The effect of the resistance across the piezoelectric layer, for a tip

mass of Mt = 10.5g, and a base excitation of amplitude z0 = 16mm at

frequency ω = 0.5Hz. The results were obtained using zero initial conditions
for the tip mass displacement and velocity.
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Figure: The effect of the amplitude of the base excitation at an excitation

frequency of 0.5Hz, a tip mass of Mt = 10.5g and a load resistance

Rl = 100kΩ. The results were obtained using zero initial conditions for the tip
mass displacement and velocity.
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Figure: The effect of the frequency of the base excitation for an excitation

amplitude of z0 = 16mm, a tip mass of Mt = 10.5g and a load resistance

Rl = 100kΩ. The results were obtained using zero initial conditions for the tip
mass displacement and velocity.
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Experimental testing

Experimental set up

Drive 

Motor
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Figure: Picture of the experimental setup. a) Linear slider and the inverted

cantilever beam with 14.0 g tip mass. b) Base of the beam showing the MFC

device. c) Tip mass of 10.5 g shown nearly vertical at the stable equilibrium.
d) Tip mass of 14.0 g showing approximately 45◦ end slope in a stable

equilibrium.
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Experimental testing

Experimental set up

Table: Resistor values used in the experiment.

Nominal resistance Measured resistance

at piezo output

10kΩ 9.91kΩ
100kΩ 99.3kΩ
150kΩ 146.9kΩ
330kΩ 318.3kΩ
450kΩ 450.6kΩ
1MΩ 910kΩ

1.5MΩ 1.658MΩ
2.2MΩ 2.272MΩ
3.3MΩ 3.344MΩ
Open 9.944MΩ
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Figure: The experimental results for a tip mass of Mt = 0, and a base
excitation with amplitudes of z0 = 5 (solid), 10 (dashed), 15 (dash-dot) and

20 mm (dotted) at a range of frequencies. Rl = 1.658 MΩ for all

measurements.S. Adhikari (Swansea) GIAN 171003L27 Oct-Nov 17 — IIT-M 39 / 48
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Figure: The experimental results for a tip mass of Mt = 10.5g, and a base

excitation with amplitudes of z0 = 5 (solid), 10 (dashed), 15 (dash-dot) and
20 mm (dotted) at a range of frequencies. Rl = 9.944 MΩ for z0 = 5 and

10 mm, and Rl = 3.344 MΩ for z0 = 15 and 20 mm.
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Figure: The experimental maximum power for a tip mass of Mt = 10.5g, and

a base excitation with amplitudes of z0 = 5 (solid), 10 (dashed), 15 (dash-dot)
and 20 mm (dotted), for a range of load resistance.
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Figure: The experimental results for a tip mass of Mt = 14g, and a base

excitation with amplitudes of z0 = 5 (solid), 10 (dashed), 15 (dash-dot) and

25 mm (dotted) at a range of frequencies. Rl = 9.944 MΩ.
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Experimental testing Simulated Results

Experimental system simulation

The experimental system was modeled using the equations of

motion of the inverted cantilever beam developed earlier in order

to validate the model.

There are two linked issues with simulating the tested system: the

parameters of the model may only be obtained approximately from

the geometry of the structure and the material properties; and the

response is highly sensitive to the some parameters in the model.

In addition, damping is very difficult to model and in reality will

mainly consist of viscoelastic material damping and air damping.

In the model a linear viscous damper has been included, where

the coefficient varies with the response amplitude.

The single piezoelectric patch adds significant stiffness to the

beam and will also cause a shift in the neutral axis of the beam.

This will also change the mode shapes of the beam and therefore

the displacement function if taken as the first mode.
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Figure: The simulated results for a tip mass of Mt = 0, and a base excitation

with amplitudes of z0 = 5 (solid), 10 (dashed), 15 (dash-dot) and 20 mm
(dotted) at a range of frequencies. Rl = 1.658 MΩ for all cases.
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Figure: The simulated results for a tip mass of Mt = 10.5g, and a base

excitation with amplitudes of z0 = 5 (solid), 10 (dashed), 15 (dash-dot) and

20 mm (dotted) at a range of frequencies. Rl = 9.944 MΩ for z0 = 5 and
10 mm, and Rl = 3.344 MΩ for z0 = 15 and 20 mm.
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Figure: The simulated results for a tip mass of Mt = 14g, and a base

excitation with amplitudes of z0 = 5 (solid), 10 (dashed), 15 (dash-dot) and

20 mm (dotted) at a range of frequencies. Rl = 9.944 MΩ for all cases.
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Summary

Summary

The proposed energy harvesting system addresses a very difficult

problem where energy is required from a structure with low

excitation frequency and high displacement, such as a highway

bridge.

A resonant linear harvester based on a cantilever beam is difficult

to implement because the low natural frequency requires a very

large or a very flexible beam.

A low frequency piezoelectric energy harvester is proposed using

an inverted elastic beam-mass system.

The equations of motion for the proposed system were developed,

the response was simulated, and this model was validated

experimentally.
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Summary

Summary

The results show that the harvester has the potential to scavenge

power depending on the proper choice of the tip mass and other

parameters. In particular, choosing a tip mass so that the beam is

almost buckled gives a relative bandwidth (defined using the half

power points) up to twice that of the linear harvester.

The maximum power harvested is also significantly greater, once

the lower excitation frequencies are accounted for.

If the beam is buckled then the system exhibits common nonlinear

system characteristics such as co-existing solution, including

chaotic responses.

In the buckled configuration, significant power is only harvested if

the excitation is sufficient for the system to hop between the

potential wells and hence give a large displacement response.
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