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Introduction

Energy Harvesting systems

Vibration energy harvesting for micro-scale systems in normally

realised using a cantilever beam with a piezoelectric patch.

The excitation is usually provided through a base excitation.

A proof mass is often added at the end of the cantilever to adjust

the frequency so that the first natural frequency of the overall

beam is close to the primary excitation frequency.

The analysis is therefore focused on a piezoelectric beam with a

tip mass driven by a harmonic base excitation.

A single mode approximation is often employed to simplify the

analysis. This is generally suitable as most of the energy of the

system is confined around the first mode of vibration.

This in turn can be achieved by an equivalent single degree of

freedom model approximation.
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Euler-Bernoulli theory for vibrating cantilevers

Euler-Bernoulli beam theory

x tb( )
PZT Layers

v t( )Rl

x t x tb( )+ ( )Tip Mass

(a) Harvesting circuit without an inductor

x tb( )
PZT Layers

L v t( )Rl

x t x tb( )+ ( )Tip Mass

(b) Harvesting circuit with an inductor

Figure: Schematic diagrams of piezoelectric energy harvesters with two

different harvesting circuits.
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Euler-Bernoulli theory for vibrating cantilevers

Euler-Bernoulli beam theory

Due to the small thickness to length ratio, Euler-Bernoulli beam

theory can be used to model bending vibration of energy

harvesting cantilevers.

The equation of motion of a damped cantilever modelled (see for

example [1]) using Euler-Bernoulli beam theory can be expressed

as

EI
∂4U(x , t)

∂x4
+ ĉ1

∂5U(x , t)

∂x4∂t
+ ρA

∂2U(x , t)

∂t2

+ ĉ2
∂U(x , t)

∂t
= F (x , t) (1)

In the above equation x is the coordinate along the length of the

beam, t is the time, E is the Youngs modulus, I is the

second-moment of the cross-section, A is the cross-section area,

ρ is the density of the material, F (x , t) is the applied spatial

dynamic forcing and U(x , t) is the transverse displacement.
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Euler-Bernoulli theory for vibrating cantilevers

Euler-Bernoulli beam theory

The length of the beam is assumed to be L.

This equation is fourth-order partial differential equation with

constant coefficients.

The constant ĉ1 is the strain-rate-dependent viscous damping

coefficient, ĉ2 is the velocity-dependent viscous damping

coefficient.

The strain-rate-dependent viscous damping can be used to model

inherent damping property of the material of the cantilever beam.

The velocity-dependent viscous damping can be used to model

damping due to external factors such as a cantilever immersed in

an fluidic environment.
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Euler-Bernoulli theory for vibrating cantilevers

Euler-Bernoulli beam theory

Schematic diagrams of piezoelectric energy harvesters with two

different harvesting circuits are shown in 1.

We first consider the free vibration of the beam without the tip

mass.

The boundary conditions for cantilevered Euler-Bernoulli dictates

that the deflections and rotation an the supported end is zero and

the bending moment and shear force at the free end are zero.

At x = 0

U(x , t) = 0,
∂U(x , t)

∂x
= 0 (2)

At x = L
∂2U(x , t)

∂x2
= 0,

∂3U(x , t)

∂x3
= 0 (3)
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Euler-Bernoulli theory for vibrating cantilevers

Undamped free vibration solution

Dynamics of the beam is characterised by the undamped free

vibration solution. This in turn can be expressed by undamped

natural frequency and vibrationmode shapes.

We assume the separation of variables as

U(x , t) = u(t)φ(x) (4)

The spatial function is further expressed as

φ(x) = eλx (5)

Substituting this in the original partial differential equation (1) and

applying the boundary conditions [2], one obtains the undamped

natural frequencies (rad/s) of a cantilever beam as

ωj = λ2
j

√
EI

ρAL4
, j = 1,2,3, · · · (6)
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Euler-Bernoulli theory for vibrating cantilevers

Undamped free vibration solution

The constants λj needs to be obtained by solving the following

transcendental equation

cosλ cosh λ+ 1 = 0 (7)

Solving this equation [3], the values of λj can be obtained as

1.8751, 4.69409, 7.8539 and 10.99557. For larger values of j , in

general we have λj = (2j − 1)/2π.

The vibration mode shape corresponding to the j-th natural

frequency can be expressed as

φj(ξ) =
(
cosh λjξ − cosλjξ

)

−
(

sinhλj − sinλj

coshλj + cos λj

)(
sinhλjξ − sinλjξ

)
(8)

where ξ = x
L is the normalised coordinate along the length of the

cantilever.
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Dynamics of beams with a tip mass

Cantilever beam with a tip mass

The effect of the tip mass is incorporated using the boundary

condition at the free edge.

The new boundary condition is therefore:

At x = L

∂2U(x , t)

∂x2
= 0, EI

∂3U(x , t)

∂x3
− M

∂2U(x , t)

∂t2
= 0 (9)

It can be shown that (see for example [4]) the resonance

frequencies are still obtained from Eq. (6) but λj should be

obtained by solving

(cosλ sinhλ− sinλ cosh λ)∆M λ+ (cos λ cosh λ+ 1) = 0 (10)
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Dynamics of beams with a tip mass

Here

∆M =
M

ρAL
(11)

is the ratio of the added mass and the mass of the cantilever.

If the added mass is zero, then one can see that Eq. (11) reduces

to Eq. (7). For this general case, the eigenvalues λj as well as the

mode shapes φj(ξ) become a function of ∆M.

Unlike the classical mass-free case, closed-from expressions are

not available. However, very accurate approximation can be

developed for this case [4].

An energy based method is developed to consider the first mode

of vibration, leading to a reduced order model.
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Finite element approach

Finite element method

We consider an element of length ℓe with bending stiffness EI and

mass per unit length m.

1 2
l
e

Figure: A nonlocal element for the bending vibration of a beam. It has
two nodes and four degrees of freedom. The displacement field within

the element is expressed by cubic shape functions.

This element has four degrees of freedom and there are four

shape functions.
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Finite element approach

Element stiffness matrix

The shape function matrix for the bending deformation [5] can be

given by

N(x) = [N1(x),N2(x),N3(x),N4(x)]
T (12)

where

N1(x) = 1 − 3
x2

ℓ2
e

+ 2
x3

ℓ3
e

, N2(x) = x − 2
x2

ℓe
+

x3

ℓ2
e

,

N3(x) = 3
x2

ℓ2
e

− 2
x3

ℓ3
e

, N4(x) = −
x2

ℓe
+

x3

ℓ2
e

(13)

Using this, the stiffness matrix can be obtained using the

conventional variational formulation [6] as

Ke = EI

∫ ℓe

0

d2N(x)

dx2

d2NT (x)

dx2
dx =

EI

ℓ3
e




12 6ℓe −12 6ℓe

6ℓe 4ℓ2
e −6ℓe 2ℓ2

e

−12 −6ℓe 12 −6ℓ2
e

6ℓe 2ℓ2
e −6ℓe 4ℓ2

e
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Finite element approach

Element mass matrix

The mass matrix for the nonlocal element can be obtained as

Me = m

∫ ℓe

0

N(x)NT (x)dx

=
mℓe

420




156 22ℓe 54 −13ℓe

22ℓe 4ℓ2
e 13ℓe −3ℓ2

e

54 13ℓe 156 −22ℓe

−13ℓe −3ℓ2
e −22ℓe 4ℓ2

e




(15)

The element damping matrix can be obtained using the linear

combination of the mass and stiffness matrices as

Ce = αMe + βKe (16)

The element matrices should be assembled to form the global

matrices
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Finite element approach

Comparison of natural frequencies
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Figure: Comparison of natural frequencies between the exact analytical

result and the finite element result.
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Finite element approach

Comparison of mode shapes
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Figure: Comparison of a mode shape between the exact analytical result

and the finite element result.
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Reduced order modelling Derivation of a single-degree-of-freedom model

Reduced order model for a cantilever with a tip mass

The equation of motion of the beam in (1) is a partial differential

equation. This equation represents infinite number of degrees of

freedom.

The mathematical theory of linear partial differential equations is

very well developed and the nature of solutions of the bending

vibration is well understood.

Considering the steady-state harmonic motion with frequency ω
we have

U(x , t) = u(x) exp [iωt] (17)

and F (x , t) = f (x) exp [iωt] (18)

where i =
√
−1.
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Reduced order modelling Derivation of a single-degree-of-freedom model

Reduced order model for a cantilever with a tip mass

Substituting this in the beam equation (1) we have

EI
d4u(x)

dx4
+ iωĉ1

d4u(x)

dx4
− ρAω2u(x) + iωĉ2u(x) = f (x) (19)

Following the damping convention in dynamic analysis as in [7],

we consider stiffness and mass proportional damping.

Therefore, we express the damping constants as

ĉ1 = α(EI) and ĉ2 = β(ρA) (20)

where α and β are stiffness and mass proportional damping

factors.
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Reduced order modelling Derivation of a single-degree-of-freedom model

Reduced order model for a cantilever with a tip mass

Substituting these, from Eq. (19) we have

EI
d4u(x)

dx4
+ iω

(
αEI

d4u(x)

dx4
+ βρAu(x)

)

︸ ︷︷ ︸
damping

− ρAω2u(x) = f (x) (21)

The first part of the damping expression is proportional to the

stiffness term while the second part of the damping expression is

proportional the mass term.

The general solution of Eq. (21) can be expressed as a linear

superposition of all the vibration mode shapes (see for example

[7]).
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Reduced order modelling Derivation of a single-degree-of-freedom model

Reduced order model for a cantilever with a tip mass

Piezoelectric vibration energy harvestors are often designed to

operate within a frequency range which is close to fist few natural

frequencies only.

Therefore, without any loss of accuracy, simplified lumped

parameter models can be used to corresponding correct resonant

behaviour.

This can be achieved using energy methods or more generally

using Galerkin approach.

Galerkin approach can be employed in the time domain or in the

frequency domain. We adopt a time domain approach. The

necessary changes to apply this in the frequency domain is

straightforward for linear problems and therefore not elaborated

here.
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Reduced order modelling Derivation of a single-degree-of-freedom model

Reduced order model for a cantilever with a tip mass

Assuming a unimodal solution, the dynamic response of the beam

can be expressed as

U(x , t) = uj(t)φj (x), j = 1,2,3, · · · (22)

Substituting this assumed motion into the equation of motion (1),

multiplying by φj(x) and integrating by parts over the length one

has

EIuj(t)

∫ L

0

φ
′′2

j (x)dx + αEIu̇j(t)

∫ L

0

φ
′′2

j (x)dx

+ βρAu̇j(t)

∫ L

0

φ2
j (x)dx + ρAüj(t)

∫ L

0

φ2
j (x)dx

=

∫ L

0

F (x , t)φj (x)dx (23)
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Reduced order modelling Derivation of a single-degree-of-freedom model

Reduced order model for a cantilever with a tip mass

Using the equivalent mass, damping and stiffness, this equation

can be rewritten as

meqj
üj(t) + ceqj

u̇j(t) + keqj
uj(t) = fj(t) (24)

where the equivalent mass and stiffness terms are given by

meqj
= ρA

∫ L

0

φ2
j (x)dx = ρAL

∫ 1

0

φ2
j (ξ)dξ

︸ ︷︷ ︸
I1j

(25)

keqj
= EI

∫ L

0

φ
′′2

j (x)dx =
EI

L3

∫ 1

0

φ
′′2

j (ξ)dξ

︸ ︷︷ ︸
I2j

(26)
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Reduced order modelling Derivation of a single-degree-of-freedom model

Reduced order model for a cantilever with a tip mass

The equivalent damping and the equivalent forcing are expressed

as

ceqj
= αkeqj

+ βmeqj
(27)

fj(t) =

∫ L

0

F (x , t)φj (x)dx (28)

Using the expression of the mode-shape in Eq. (8), the integrals

I1j
and I2j

can be evaluated in closed-form for any general mode as

I1j
= (− cos λj sinhλj − cos2 λj cosh λj sinhλj

+ λj cos
2 λj − cosh λj sinλj − cos λj cosh

2 λj sinλj

+ 2 cosλj cosh λjλj + λj cosh
2 λj)/

(
Dλj

)
(29)
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Reduced order modelling Derivation of a single-degree-of-freedom model

Reduced order model for a cantilever with a tip mass

I2j
= λj

3(3 cosλj sinhλj + 3 cos2 λj cosh λj sinhλj

+ λj cos
2 λj + 3 coshλj sinλj + λj cosh

2 λj

+ 3 cosλj cosh
2 λj sinλj + 2 cos λj cosh λjλj)/D (30)

The denominator D is given by

D = cosh2 λj + 2 cos λj cosh λj + cos2 λj (31)

For the first mode of vibration (j = 1), substituting λ1 = 1.8751, it

can be shown that

I11
= 1

and

I12
= 12.3624.
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Reduced order modelling Derivation of a single-degree-of-freedom model

Reduced order model for a cantilever with a tip mass

If there is a point mass of M at the tip of the cantilever, then the

effective mass becomes

meqj
= ρALI1j

+ M φ2
j (1)︸ ︷︷ ︸
I3j

= ρAL
(

I1j
+∆MI3j

)
(32)

Using the expression of the mode-shape we have

I3j
=

4 sinh2 λj sin
2 λj

D
(33)

For the first mode of vibration it can be shown that I31
= 4.

The equivalent single degree of freedom model given by Eq. (24)

will be used in the rest of the talk.

However, the expression derived here are general and can be

used if higher modes of vibration were to be employed in energy

harvesting.
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Reduced order modelling Dynamics of SDOF systems

Dynamics of damped SDOF system

The equation of motion of the equivalent single degree of freedom

cantilever harvester is expressed as

mü(t) + cu̇(t) + ku(t) = f (t) (34)

where

c = αk + βm (35)

We call the oscillator given by Eq. (34) as the reference oscillator.

Diving by m, the equation of motion can be expressed as

ü(t) + 2ζωnu̇(t) + ω2
nu(t) =

f (t)

m
(36)
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Reduced order modelling Dynamics of SDOF systems

Dynamics of damped SDOF system

Here the undamped natural frequency (ω) and the damping factor

(ζ) are expressed as

ωn =

√
k

m
(37)

and
c

m
= 2ζωn or ζ =

c

2
√

km
(38)

In view of the expression of c in (35), the damping factor can also

be expressed in terms of the stiffness and mass proportional

damping constants as

ζ =
1

2

(
αωn +

β

ωn

)
(39)
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Reduced order modelling Dynamics of SDOF systems

Dynamics of damped SDOF system

Taking the Laplace transform of Eq. (36) we have

s2U(s) + s2ζωnU(s) + ω2
nU(s) =

F (s)

m
(40)

where U(s) and F (s) are the Laplace transforms of u(t) and f (t)
respectively.

Solving the equation associated with coefficient of U(s) in Eq.

(36) without the forcing term, the complex natural frequencies of

the system are given by

s1,2 = −ζωn ± iωn

√
1 − ζ2 = −ζωn ± iωd (41)

Here the imaginary number i =
√
−1 and the damped natural

frequency is expressed as

ωd = ωn

√
1 − ζ2 (42)
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Reduced order modelling Dynamics of SDOF systems

Dynamics of damped SDOF system

For a damped oscillator, at resonance, the frequency of oscillation

is given by ωd < ωn. Therefore, for positive damping, the

resonance frequency of a damped system is always lower than

the corresponding underlying undamped system.

The Quality factor (Q-factor) of an oscillator is the ratio between

the energy stored and energy lost during one cycle when the

oscillator vibrates at the resonance frequency.

It can be shown thatthe Q-factor

Q =
mωd

c
=

√
1 − ζ2

2ζ
(43)

Alternatively, the damping factor can be related to the Q-factor as

ζ =
1√

1 + 4Q2
(44)

We will use both factors as appropriate.
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Reduced order modelling Dynamics of SDOF systems

Dynamics of damped SDOF system

Assuming the amplitude of the harmonic excitation as F , from the

Laplace transform expression in Eq. (40), the response in the

frequency domain can be expressed by substituting s = iω as

(
−ω2 + iω2ζωn + ω2

n

)
U(iω) =

F

m
(45)

Dividing this by ω2, the frequency response function of the

mass-absorbed oscillator can be expressed as

U(iΩ) =
Ust

−Ω2 + 2iΩζ + 1
(46)

where the normalised frequency and the static response are given

by

Ω =
ω

ωn
and Ust =

F

k
(47)
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Reduced order modelling Dynamics of SDOF systems

Frequency response function
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Figure: Normalised amplitude of the frequency response function for various

values of the damping factor ζ
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Reduced order modelling Dynamics of SDOF systems

Impulse response function
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Figure: Normalised impulse response function for various values of the

damping factor ζ
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Electromechanical coupling

Coupled electromechanical model

So far we have not used any piezoelectric effect. Here we will take

this into account.

Suppose that piezoelectric layers added to a beam in either a

unimorph or a bimorph configuration. Then the moment about the

beam neutral axis produced by a voltage V across the

piezoelectric layers may be written as

M(x , t) = γcV (t) (48)

The constant γc depends on the geometry, configuration and

piezoelectric device and V (t) is the time-dependent voltage.

For a bimorph with piezoelectric layers in the 31 configuration,

with thickness hc, width bc and connected in parallel

γc = Ed31bc (h + hc) (49)

where h is the thickness of the beam and d31 is the piezoelectric

constant.
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Electromechanical coupling

Coupled electromechanical model

For a unimorph, the constant is

γc = Ed31bc

(
h +

hc

2
− z̄

)
(50)

where z̄ is the effective neutral axis

These expressions assume a monolithic piezoceramic actuator

perfectly bonded to the beam.

The work done by the piezoelectric patches in mov- ing or

extracting the electrical charge is

W =

∫ Lc

0

M(x , t)κ(x)dx (51)

where Lc is the active length of the piezoelectric material, which is

assumed to be attached at the clamped end of the beam.
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Electromechanical coupling

Coupled electromechanical model

The quantity κ(x) is the curvature of the beam and this is

approximately expressed by the second-derivative of the

displacement

Using the approximation for κ we have

W = θV (52)

where the coupling coefficient

θ = γc

∫ Lc

0

∂2φ(x)

∂x2
dx = γcφ

′(Lc) (53)

Using the first mode shape, for Lc = L, this can be evaluated as

φ′(1) = 2L
λ (cos (λ) sinh (λ) + cosh (λ) sin (λ))

cosh (λ) + cos (λ)
(54)
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Equivalent single-degree-of-freedom coupled model

Coupled electromechanical oscilator

For the harvesting circuit without an inductor, the coupled

electromechanical behaviour can be expressed by the linear

ordinary differential equations

mü(t) + cu̇(t) + ku(t)− θv(t) = fb(t) (55)

Cpv̇(t) +
1

Rl
v(t) + θẋ(t) = 0 (56)

For the harvesting circuit with an inductor, the electrical equation

becomes

θü(t) + Cpv̈(t) +
1

Rl
v̇(t) +

1

Ll
v(t) = 0 (57)

Here

m = ρAL (I1 +∆M I3) , k =
EI

L3
I2, θ = γcLI4 (58)
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Equivalent single-degree-of-freedom coupled model

Coupled electromechanical oscillator

The integrals

I1 =

∫ 1

0

φ2(ξ)dξ, I2 =

∫ 1

0

φ
′′2

(ξ)dξ, I3 = φ2(1), I4 = φ′(ξc) (59)

Equation (55) is simply Newton’s equation of motion for a single

degree of freedom system, where t is the time, x(t) is the

displacement of the mass, m, c and k are respectively the modal

mass, modal damping and modal stiffness of the harvester and

xb(t) is the base excitation.

The electrical load resistance is Rl , Ll is the inductance, θ is the

electromechanical coupling, and the mechanical force is modelled

as proportional to the voltage across the piezoceramic, v(t).
Equation (56) is obtained from the electrical circuit, where the

voltage across the load resistance arises from the mechanical

strain through the electromechanical coupling, θ, and the

capacitance of the piezoceramic, Cp.

S. Adhikari (Swansea) GIAN 171003L27 Oct-Nov 17 — IIT-M 41 / 43



Equivalent single-degree-of-freedom coupled model

Coupled electromechanical oscillator

The first cantilever mode is given by

φ(ξ) = (cosh λ1ξ − cos λ1ξ)− σ1 (sinhλ1ξ − sinλ1ξ) (60)

where

σ1 =
sinhλ1 − sinλ1

cosh λ1 + cos λ1
(61)

Using the λ1 = 1.8751 for the first mode, the quantities can be

evaluated numerically as

σ1 = 0.7341, I1 = 1, I2 = 12.3624, I3 = 4, I4 = 2.7530 (ξc = 1)
(62)

Here, the force due to base excitation is given by

fb(t) = −mẍb(t) (63)

The book by Erturk and Inman [8] gives further details on this

model.
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Summary

Summary

Euler-Bernoulli theory for vibrating cantilever beams has been

introduced.

Dynamic analysis of beams with a tip mass is discussed in details.

Finite element approach for Euler-Bernoulli beams has been

briefly covered.

Reduced order modelling by expressing the solution in terms of

the undamped eigenmodes of the beam has been explained. It

was shown that by retaining the first mode, the reduced equation

can be expressed by a single-degree-of-freedom (SDOF) model.

The idea of electromechanical coupling has been explained and

mathematical derivation in terms of the assumed mode has been

developed.

It was shown that the dynamics of a piezoelectric beam with a tip

mass can be expressed in terms of coupled a SDOF

electromechanical model.

All necessary coefficients are derived in closed-form.
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Summary
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