Programmable Logic Devices
Aims & Objectives

• To give an introduction into Programmable Logic Devices in use commercially today
 – And how they are constructed internally
• Specifically, we’ll talk about Field Programmable Gate Arrays (FPGA’s)
• We’ll derive a fine-grained FPGA to illustrate this
• Then look at other commercial devices and a little into the future
Programmable Logic Devices

- Programmable logic devices are a class of ‘chips’ that can be programmed to perform some system function.
Programmable Logic Devices

- Programmable logic devices are a class of ‘chips’ that can be programmed to perform some system function
- Example- Altera EP910
Problems with Simple PLD’s

• Size
 – Simple PLD’s typically have a small gate count (<1000 gates)
 – Simple combinatorial logic and registers
 – Complex devices available- suitable for some applications

• Functionality
 – Circuit typically only involves sum of products representation

• Programming
 – Often cumbersome

• For these reasons, we need something a bit better
 – Ideally a chip which can implement any given digital system
Anatomy of a Digital Logic Circuit

- Digital Logic Circuit (however complex) is just a bunch of primitive gates, FF’s, etc. connected together
 - Connections are termed *nets*
Anatomy of a Programmable Device

• Basically, our programmable devices look as follows:

- CLB
- Interconnects
- Physical Pins
Terminology - I

- CLB = Configurable Logic Block
 - Degree of ‘complexity’ is called the granularity
 - Can implement a single logic function (fine grained)
 - Or a block of logic functions (course grained)
 - Also, may incorporate registers (‘D’ Type FF’s)
Terminology- II

• Interconnects
 – Used to connect the CLB’s together
 – May be one (or more) interconnects between 2 cells
 – Also, different levels of interconnect (e.g. global for clock distribution)

• Physical Pins
 – Used for inputs to programmable device (drives CLB’s)
 – Used for outputs from programmable device (driven by CLB’s)
 – May incorporate additional features (e.g. Tri-State etc.)
Designing a Device- Introduction

• Our goal is to design a *fine-grained* programmable logic device
• We’ll consider gate-level connections
 – Not really interested in fabrication details
• Mainly concentrating on architecture and implementation details
 – How do we do the routing and how do we build the CLB?
• Multiplexers
 – Used as data selector (4 ->1)

<table>
<thead>
<tr>
<th>S1 S0</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>A</td>
</tr>
<tr>
<td>0 1</td>
<td>B</td>
</tr>
<tr>
<td>1 0</td>
<td>C</td>
</tr>
<tr>
<td>1 1</td>
<td>D</td>
</tr>
</tbody>
</table>
Background Topics- II

• Universal Logic Module (ULM)
 – Based on 2->1 multiplexer
 – Permits many different logic functions of 2 variables by selection of X0, X1 & SEL
 – Choice of connection assignment dictates logic function

From truth-table,
\[F = \overline{SEL} \cdot X0 + SEL \cdot X1 \]
Background Topics - III

- ULM Examples

Implement, $F = A \cdot B$

\[
\begin{align*}
\text{SEL} &= A \\
X_0 &= A \\
X_1 &= B
\end{align*}
\]

\[
F = \overline{SEL} \cdot X_0 + SEL \cdot X_1
= \overline{A} \cdot A + A \cdot B
= 0 + A \cdot B
= A \cdot B
\]

Implement $F = A \oplus B$

\[
\begin{align*}
\text{SEL} &= A \\
X_0 &= B \\
X_1 &= \text{not}(B)
\end{align*}
\]

\[
F = \overline{SEL} \cdot X_0 + SEL \cdot X_1
= \overline{A} \cdot B + A \cdot \overline{B}
= A \oplus B
\]
Design of Config’ble Logic Block (CLB)

• We will use a universal logic module as the basis of our CLB
 – Add a small amount of peripheral logic around the ULM to provide inverts etc.
 – e.g. in XOR example above, needed \overline{B}
Final Configurable Logic Block (CLB)

- Also, require provision for registers in the system
 - C/S controls either combinational or synchronous output
Routing - Introduction

• Our basic device will offer only local routing
 – So can input and output from adjacent cells only

• Example
Routing Requirements

• Require routing resources to permit routing between non-adjacent cells

• Example- want to route from cell ‘A’ to cell ‘C’
 - This is achieved by routing through cell ‘B’
Routing Detail- I

• So, each cell has inputs and outputs in each of the N, S, E, W directions
Routing Detail- II

• Require routing to be able to route from any adjacent cell to any other locally adjacent cell
 – This permits routing between non-adjacent cells
Routing Detail- III

- Also, drive any combination of the N, S, E, W outputs from the output of the ULM (F)
Routing Implementation

- Implementation is fairly trivial using multiplexers
 - 4->1 mux on each of the N, E, S, W outputs
Routing to ULM

• So, how are the inputs to the ULM controlled?
 – Again with multiplexers
 – X0, X1, SEL driven by individual mux selecting N, S, E, W
Final CLB Configuration
Configuring the Device - I

- How is the device configured?
- Each of the multiplexers are controlled by SRAM configuration bits
- Example, ULM cell:
 - Here 2 bits are used to control the mux’s for X0, X1 in ULM
Configuring the Device- II

• For each CLB, there are 17 programming (configuration) bits
 • 2 for each of the CLB output multiplexers (8)
 • 1 each for X0,X1 selection multiplexers (2)
 • 2 for each of the ULM input multiplexers (6)
 • 1 for combinatorial/ sequential multiplexer (1)

• So, entire device can be configured simply by programming the desired bitstream (generated automatically by software) in ‘The Field’
 – Field Programmable Gate Array
Summary of Device

• We have developed a simple fine-grained device
• Note the regular structure
 – We can have any number of CLB’s on a physical device- simply add more cells onto the mask
• So, does it work ?
• The above is really a derivation of a commercial device called a Xilinx XC6200
 – This device has a number of additional features (e.g. more routing resources etc.)
 – But the CLB structure and local routing etc. is very similar
Commercial Devices- I

• So, why are there fine and coarse grained devices?
• Depends on the target application
• Our fine-grained device has a high overhead in terms of routing
 – CLB’s only have 1 logic function and require lots of routing between CLB’s
• Often common to include lots of combinational logic within a single CLB
 – Use RAM based look-up-tables (LUT’s) to implement logic
Commercial Devices- II

- Course grained device example- Xilinx 4000 series
Conclusion

• Provided introduction to advanced programmable logic devices
• Derived a fine-grained device from first principles
• Touched on some commercial devices
• The future
 – Devices already in design/production offering > 1 Million equivalent gates
 – Reconfigurable computing- custom processor using FPGA connected to normal CPU to accelerate computationally intensive tasks