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Rayleigh-type surface waves propagating in an incompressible isotropic half-space of
nonconducting magnetoelastic material are studied for a half-space subjected to a finite
pure homogeneous strain and a uniform magnetic field. First, the equations and boundary
conditions governing linearized incremental motions superimposed on an initial motion
and underlying electromagnetic field are derived and then specialized to the quasimag-
netostatic approximation. The magnetoelastic material properties are characterized in
terms of a “total” isotropic energy density function that depends on both the deforma-
tion and a Lagrangian measure of the magnetic induction. The problem of surface wave
propagation is then analyzed for different directions of the initial magnetic field and for
a simple constitutive model of a magnetoelastic material in order to evaluate the com-
bined effect of the finite deformation and magnetic field on the surface wave speed. It is
found that a magnetic field in the considered (sagittal) plane in general destabilizes the
material compared with the situation in the absence of a magnetic field, and a magnetic
field applied in the direction of wave propagation is more destabilizing than that applied
perpendicular to it.

Keywords: Nonlinear magnetoelasticity; magnetoacoustics; surface waves; finite
deformation.

1. Introduction

Coupling of electromagnetic and mechanical phenomena in continuous media has
received considerable attention in the recent literature due to the development of
electro- and magneto-sensitive elastomers and other polymers for use as “smart
materials”; see, for example, Jolly et al. [1996], Ginder et al. [2002], Lokander and
Stenberg [2003], Yalcintas and Dai [2004], Varga et al. [2006], Boczkowska and Awi-
etjan [2009]. The problem of wave propagation under a state of finite deformation in
the presence of an electromagnetic field is, in particular, very important for various
applications, such as nondestructive evaluation through electromagnetic acoustic
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transducers [Shapoorabadi et al., 2005]. The effect of initial stress on the propa-
gation of magnetoelastic waves was addressed as early as 1966 by Yu and Tang
[1966], who considered the propagation of plane harmonic waves for some special
cases of initial stress relevant to seismic wave propagation. Two papers by De and
Sengupta [1971, 1972] used the equations from Yu and Tang [1966] in order to dis-
cuss surface and interfacial waves in magnetoelastic conducting solids. However, it
has been noted elsewhere [Destrade and Ogden, 2011a] that the formulation of the
equations of a material with initial stress, discussed in more detail in the paper by
Tang [1967], is incorrect.

A paper by Maugin [1981] reviewed the major developments in deformable mag-
netoelastic materials up to that date with special emphasis on wave propagation in
magnetizable conducting materials. This was followed by a series of works, notably
those by Maugin and Hakmi [1985] on magnetoelastic surface waves with a bias
magnetic field orthogonal to the sagittal plane, Abd-Alla and Maugin [1987] on
the general form of the magnetoacoustic equations, Abd-Alla and Maugin [1988] on
magnetoelastic waves in anisotropic materials, Lee and Its [1992] on Rayleigh waves
in an undeformed magnetoelastic conductor and Hefni et al. [1995a, 1995b, 1995c]
on surface and bulk magnetoelastic waves in electrical conductors. Most of the work
in this field is based on the study of electromagnetic phenomena in continua by Pao
[1978], Maugin [1988] and Eringen and Maugin [1990a, 1990b]. Although our main
concern in the present paper is with magnetoelastic waves, the parallel development
of the theory for waves in electroelastic materials should also be mentioned. Rele-
vant references include Baumhauer and Tiersten [1973], Nelson [1979], Sinha and
Tiersten [1979], Pouget and Maugin [1981], Maugin et al. [1992], Tiersten [1995],
Chai and Wu [1996], Yang [2001], Simionescu-Panait [2002], Liu et al. [2003], Yang
and Hu [2004], Hu et al. [2004] and Dorfmann and Ogden [2010].

Recently, a new constitutive formulation based on a “total” energy density func-
tion was developed by Dorfmann and Ogden [2004], wherein the solutions of some
basic boundary-value problems were obtained using two alternative forms of the
energy density with different independent magnetic vectors; see also Dorfmann and
Ogden [2005] for the discussion of further boundary-value problems. In the paper by
Otténio et al. [2008], which was based on the formulation of Dorfmann and Ogden
[2004], the equations governing time-independent linearized incremental deforma-
tions and magnetic fields superimposed on a static finite deformation and magnetic
field were derived. These were then applied to analyze the effect of the presence of
a magnetic field normal to the half-space boundary on the stability of a deformed
magnetoelastic half-space.

In the present paper, we build upon the work of Otténio et al. [2008] by ana-
lyzing surface waves on a half-space of an incompressible isotropic magnetoelastic
material subjected to a homogeneous finite deformation and a uniform magnetic
field. In Sec. 2, we first summarize the basic continuum kinematics and the gov-
erning equations and boundary conditions of continuum electromagnetodynamics
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in both Eulerian and Lagrangian forms, and the notations to be used in this paper.
Section 3 follows the formulation of the incremental equations of electrodynamics
superimposed on a finite motion in the presence of an electromagnetic field sum-
marized in Ogden [2009], and the equations are then specialized to the case of the
quasimagnetostatic approximation.

In Sec. 4, the constitutive equations for both compressible and incompressible
isotropic magnetoelastic solids are introduced based on a “total” energy density
that is expressed in terms of (six and five, respectively) independent invariants that
combine the deformation and a Lagrangian form of the magnetic induction vector.
This is then used to derive the magnetoelastic “moduli” tensors and the governing
equations explicitly. The Cartesian components of these tensors, referred to the
principal axes of the underlying deformation, are summarized in Appendix B for
ease of reference. The focus of the remainder of the paper is then on incompressible
materials. Following Destrade and Ogden [2011b], a brief account of homogeneous
plane waves propagating in an infinite space subject to a homogeneous deformation
and a uniform magnetic field is provided in Sec. 5 in order to derive a generalized
form of the strong ellipticity condition appropriate for magnetoelastic materials that
is used subsequently.

In Sec. 6, the general equations from Sec. 3 are specialized to two dimensions in
order to consider plane motions in a principal plane of an underlying pure homoge-
neous strain with the magnetic field lying parallel to the considered (sagittal) plane.
Then, in Sec. 7, these equations, along with appropriate boundary conditions, are
applied in consideration of surface waves propagating parallel to the boundary of
a deformed half-space, with the displacement and incremental magnetic field com-
ponents restricted to the sagittal plane. Two special cases of the magnetic field
direction are examined in detail by the way of illustration — a magnetic field par-
allel to the direction of propagation and the one normal to the direction within the
sagittal plane. We then show that on taking the magnetic field to be zero the equa-
tions reduce to those obtained for a purely elastic material [Dowaikh and Ogden,
1990].

For each magnetic field direction numerical results are obtained based on a
simple, so-called Mooney–Rivlin magnetoelastic material model in order to illus-
trate the dependence of the surface wave speed on the magnitude of the magnetic
induction (as well as the underlying deformation). It is found that in general the
magnetic field compromises the mechanical stability of the half-space, although for
some values of the magnetoelastic coupling parameters small values of the mag-
netic induction stabilize the half-space, but this effect is reversed as the magnitude
of the magnetic induction increases further. This applies to a magnetic induction
perpendicular to or in the direction of propagation within the sagittal plane, but a
magnetic induction parallel to the direction of propagation has a stronger influence
than that is perpendicular to it.

It is also shown, in Sec. 8, that if the magnetic field is perpendicular to the
sagittal plane then, for the considered material model, it has no influence on the
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surface wave speed, although for other possible models this will not in general be
the case. Finally, Sec. 9 contains some brief concluding remarks.

2. Basic Equations

2.1. Kinematics

The undeformed stress-free reference configuration of a continuous body is denoted
by Br and its boundary by ∂Br. Let Bt, the current configuration, be the region
occupied by the body at time t and ∂Bt its boundary. The material points in Br are
identified by the position vector X which becomes the position vector x in Bt. The
time-dependent deformation (or motion) of the body is described by the invertible
mapping χ, with x = χ(X, t), and χ and its inverse are assumed to be sufficiently
regular in space and time. The velocity v and acceleration a of a material particle
X are defined by

v(x, t) = x,t =
∂

∂t
χ(X, t), a(x, t) = v,t = x,tt =

∂2

∂t2
χ(X, t), (2.1)

where the subscript t following a comma denotes the material time derivative.
Throughout this paper, grad, div, curl denote the standard differential operators

with respect to x, and Grad, Div, Curl denote the corresponding operators with
respect to X.

The deformation gradient tensor is defined as F = Gradχ(X, t) and its deter-
minant is denoted by J = detF, with J > 0. For an incompressible material the
constraint

J ≡ detF = 1 (2.2)

has to be satisfied. Associated with F are the left and right Cauchy–Green tensors,
defined by

b = FFT, c = FTF, (2.3)

respectively.
Let Γ = gradv denote the velocity gradient, tr and T the trace and transpose of

a second-order tensor, respectively, 0 the zero vector and O the second-order zero
tensor. Then the following standard kinematic identities are noted:

F,t = ΓF, (2.4a)

(F−1),t = −F−1Γ, (2.4b)

J,t = J trΓ = J divv, (2.4c)

Div(JF−1) = 0, (2.4d)

div(J−1F) = 0, (2.4e)
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Curl(FT) = O, (2.4f)

curl(F−T) = O. (2.4g)

For an incompressible material divv = 0.

2.2. Equations of electromagnetism

Let E,D,B,H,J,K, ρe and σe be the electric field, electric displacement, magnetic
induction, magnetic field, volume current density, surface current density, volume
charge density and surface charge density, respectively. It should be noted that
the volume current density J is different from J = detF defined in the above
subsection. We work within the nonrelativistic framework, with Maxwell’s equations
of electromagnetism given in Eulerian form by

curlE = −∂B
∂t
, curlH =

∂D
∂t

+ J, divD = ρe, divB = 0, (2.5)

with the boundary conditions

n× �E + v × B� = 0, (2.6a)

n · �D� = σe, (2.6b)

n × �H− v × D� = K− σevs, (2.6c)

n · �B� = 0 (2.6d)

on ∂Bt, where n is the unit outward normal to ∂Bt and vs is the value of v on
∂Bt. Here �a� represents the jump in vector a across the boundary in the sense
�a� = ao − ai, where the superscripts “o” and “i” signify “outside” and “inside”,
respectively, and surface polarization is not included.

Lagrangian forms of the physical quantities in (2.5) are defined by (see, e.g.,
Maugin [1988] and Ogden [2009])

Dl = JF−1D, El = FTE, Hl = FTH, Bl = JF−1B,

JE = JF−1(J − ρev), ρE = Jρe.
(2.7)

Using these relations and following the analysis in Ogden [2009], we can rewrite
Maxwell’s equations in Lagrangian form as

Curl(El + V × Bl) = −Bl,t, DivDl = ρE, (2.8)

Curl(Hl − V × Dl) = Dl,t + JE, DivBl = 0, (2.9)

where V = F−1v, along with the boundary conditions

N× �El + V × Bl� = 0, N · �Dl� = σE, (2.10)

N× �Hl − V × Dl� = Kl − σEVs, N · �Bl� = 0 (2.11)
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on ∂Br. The transformation from (2.6a)–(2.6d) to (2.10) and (2.11) requires use of
Nanson’s formula nda = JF−TNdA connecting reference and current area elements
dA and da, where N is the unit outward normal to ∂Br. Here each term is evaluated
on ∂Br, Vs is the value of V on the boundary, Kl is the surface current density
per unit area of ∂Br given by Kl = F−1Kda/dA and σE = σeda/dA is the surface
charge density per unit area of ∂Br.

2.3. Continuum electromagnetodynamic equations

In Eulerian form, the linear momentum balance equation may be written as

divτ + ρf = ρa, (2.12)

where ρ is the mass density, f is the mechanical body force density per unit mass and
τ is the so-called total Cauchy stress tensor, which incorporates the electromagnetic
body forces. In Lagrangian form, the equation of motion is

DivT + ρrf = ρra, (2.13)

where T is the total nominal stress tensor and ρr is the reference mass density, and
we note the connections

τ = J−1FT, ρr = ρJ. (2.14)

The transformation from (2.12) to (2.13) is effected by use of (2.4e).
If there are no intrinsic mechanical couples, which is assumed to be the case,

then, by virtue of the definition of the total stress, the electric and magnetic couples
are absorbed in such a way that τ is symmetric. The angular momentum balance
equation is then expressed in either of the equivalent forms

τT = τ , (FT)T = FT. (2.15)

On any part of the boundary ∂Br where the traction is prescribed the boundary
condition may be given as

TTN = tA + tM, (2.16)

where tA and tM are the Lagrangian representations of the mechanical and magnetic
contributions to the traction per unit area on the boundary ∂Br.

3. Incremental Equations

On the initial motion x = χ(X, t), we superimpose an incremental motion given by

ẋ = χ̇(X, t), (3.1)

where here and henceforth incremented quantities are denoted by a superimposed
dot. The Eulerian counterpart of ẋ is the displacement u(x, t) = ẋ(X, t). Then, an
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increment in the velocity v is given by

v̇ = ẋ,t = u,t. (3.2)

We define L = gradu and then obtain the useful relations

Ḟ = LF, (3.3a)

Ḟ,t = (gradv̇)F, (3.3b)

which supplement those in (2.4a)–(2.4g).
For an incompressible material, the constraint J = 1 leads to

divv = 0, (3.4a)

divu = 0, (3.4b)

div v̇ = 0, (3.4c)

the first of which is exact while the second and third are linear approximations.
On taking increments of the Maxwell equations (2.8) and (2.9), we obtain

Curl(Ėl + V × Ḃl + V̇ × Bl) = −Ḃl,t, DivḊl = ρ̇E, (3.5)

Curl(Ḣl − V × Ḋl − V̇ × Dl) = Ḋl,t + J̇E, DivḂl = 0, (3.6)

and from the mechanical balance equations (2.13) and (2.15), we have

DivṪ + ρr ḟ = ρru,tt, LFT + FṪ = TTFTLT + ṪTFT, (3.7)

wherein use has been made of (3.3a).
Analogously to Eq. (2.7), we define updated (i.e., pushed-forward) forms of the

increments Ṫ, Ḃl, Ḋl, Ėl, Ḣl as

Ṫ0 = J−1FṪ, Ḃl0 = J−1FḂl, Ḋl0 = J−1FḊl,

Ėl0 = F−TĖl, Ḣl0 = F−TḢl,
(3.8)

where the subscript 0 is used to indicate the push-forward operation. We use these
push-forward forms to update the incremented governing equations to obtain

curl(Ėl0 + v × Ḃl0 + v̇ × B) = −Ḃl,t0, divḊl0 = ρ̇E0, (3.9)

curl(Ḣl0 − v × Ḋl0 − v̇ × D) = Ḋl,t0 + J̇E0, divḂl0 = 0 (3.10)

and

divṪ0 + ρr ḟ = ρru,tt, Lτ + Ṫ0 = τLT + ṪT
0 . (3.11)

It should be noted that the push-forward and material time derivative operations
do not in general commute. However, in the special case of v = 0, they do and then
Ḃl0,t = Ḃl,t0 and Ḋl0,t = Ḋl,t0.
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3.1. The quasimagnetostatic approximation

We now consider the initial configuration to be purely static and subject only to
magnetic and mechanical effects, with E = 0, D = 0, v = 0 and no mechanical
body forces (f = 0). We assume that there are no volume or surface charges or
currents, so that ρe = σe = 0 and J = 0, while H and B are independent of time.
Additionally, we consider a nonconducting material so that J̇l0 = 0. The updated
incremented governing equations then specialize to

curl(Ėl0 + v̇ × B) = −Ḃl0,t, divḊl0 = 0, (3.12)

curlḢl0 = Ḋl,t0, divḂl0 = 0 (3.13)

and

divṪ0 = ρru,tt. (3.14)

We now focus on the magnetoacoustic (or quasimagnetostatic) approximation
of the equations, which allows the incremental electric field and displacement to be
neglected. It can be shown that they are of order v/c (� 1) times the retained terms
in the equations, where c is the speed of electromagnetic waves in vacuum and v is
a typical magnitude of the acoustic wave speed. After the approximation is applied,
the remaining equations, coupling magnetic and mechanical effects, are

curlḢl0 = 0, divḂl0 = 0, divṪ0 = ρru,tt. (3.15)

These are the equations we use in the rest of the paper for the interior of the
material.

Outside the material, which may be vacuum or a nonmagnetizable (and
nonpolarizable) material we use a superscript ∗ to indicate field quantities. Thus,
H∗ and B∗, respectively, are the magnetic field and magnetic induction, which are
in the simple relation B∗ = µ0H∗, where µ0 is the vacuum permeability. Then the
magnetostatic equations are

divB∗ = 0, curlH∗ = 0, (3.16)

and in the quasimagnetostatic approximation their incremental counterparts are

divḂ∗ = 0, curlḢ∗ = 0, (3.17)

with Ḃ∗ = µ0Ḣ∗.
Henceforth, we use the notations B and ∂B for the (time-independent) initial

configuration upon which the infinitesimal motion is superimposed.

3.2. Incremental boundary conditions

The boundary condition (2.6d) for the magnetic induction is written (B−B∗)·n = 0
on ∂B. Since there is no deformation outside the material (in the case that it is a
vacuum, which we assume henceforth) there is no physical meaning attached to
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a Lagrangian form of the magnetic induction, so when the boundary condition is
expressed in Lagrangian form it becomes

(Bl − JF−1B∗) ·N = 0 on ∂Br. (3.18)

On taking an increment of the above equation, and then updating and using the
incompressibility condition (3.4b) we obtain the incremental boundary condition

(Ḃl0 − Ḃ∗ + LB∗) · n = 0 on ∂B. (3.19)

The corresponding incremental form of the boundary condition (2.6c) for the
magnetic field, with K = 0, now becomes

(Ḣl0 − LTH∗ − Ḣ∗) × n = 0 on ∂B. (3.20)

In order to arrive at the corresponding incremental traction boundary condition
we need to define the Maxwell stress outside the material, denoted by τ ∗. This is
symmetric and given by

τ ∗ = µ−1
0

[
B∗ ⊗ B∗ − 1

2
(B∗ · B∗)I

]
, (3.21)

where I is the identity tensor. The incremental Maxwell stress is then obtained as

τ̇ ∗ = µ−1
0 [Ḃ∗ ⊗ B∗ + B∗ ⊗ Ḃ∗ − (Ḃ∗ · B∗)I]. (3.22)

The Lagrangian form of the Maxwell stress is JF−1τ∗, which is defined only on
the boundary Br, and the magnetic contribution tM to the traction on Br in (2.16)
is given by

tM = Jτ∗F−TN on ∂Br. (3.23)

On taking an increment of this equation, we obtain

ṫM = J τ̇ ∗F−TN− Jτ∗F−TḞTF−TN + J(divu)τ∗F−TN, (3.24)

which on pushing forward and using the incompressibility condition (3.4b), gives

ṫM0 = τ̇ ∗n− τ ∗LTn on ∂B. (3.25)

When there is also a mechanical traction tA, with increment ṫA, the traction
boundary condition is written as

ṪT
0 n = ṫA0 + ṫM0 (3.26)

at any point of ∂B where the traction is prescribed.
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4. Constitutive Relations

Following Dorfmann and Ogden [2004, 2005], we consider a magnetoelastic material
for which the constitutive law is given in terms of a total potential energy function,
Ω = Ω(F,Bl), defined per unit reference volume. This yields the simple formulas

T =
∂Ω
∂F

, Hl =
∂Ω
∂Bl

(4.1)

for the total nominal stress and the Lagrangian magnetic field. Their Eulerian
counterparts are

τ = J−1F
∂Ω
∂F

, H = F−T ∂Ω
∂Bl

. (4.2)

In the case of an incompressible material, we have the constraint J = 1 and the
above equations for the stresses are modified to

T =
∂Ω
∂F

− pF−1, τ = F
∂Ω
∂F

− pI, (4.3)

where p is a Lagrange multiplier associated with the constraint and I is again the
identity tensor.

For an isotropic magnetoelastic material, Ω can be expressed in terms of six inde-
pendent scalar invariants of c = FTF and Bl ⊗Bl. One possible set of invariants, is

I1 = trc, I2 =
1
2
[(trc)2 − tr(c2)], I3 = det c = J2, (4.4)

I4 = Bl · Bl, I5 = (cBl) ·Bl, I6 = (c2Bl) ·Bl. (4.5)

We adopt these here and confine our attention to isotropic magnetoelastic materials.
The total nominal stress and the Lagrangian magnetic field can then be

expanded in the forms

T =
∑
i∈I

Ωi
∂Ii
∂F

, Hl =
∑
i∈J

Ωi
∂Ii
∂Bl

, (4.6)

where Ωi = ∂Ω/∂Ii, i = 1, . . . , 6, I is the set {1, 2, 3, 5, 6}, or {1, 2, 5, 6} for an
incompressible material, and J the set {4, 5, 6}. The derivatives of the Ii with
respect to F and Bl are given in Appendix A in component form. Explicitly we
calculate the expressions for τ for an incompressible material and H as

τ = −pI+2Ω1b+2Ω2(I1b−b2)+2Ω5B⊗B+2Ω6(B⊗bB+bB⊗B), (4.7)

and

H = 2(Ω4b−1B + Ω5B + Ω6bB), (4.8)

where I3 ≡ 1 and we recall that b = FFT is the left Cauchy–Green tensor.
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4.1. Magnetoelastic moduli tensors

By taking the increments of (4.1) we obtain the linearized equations

Ṫ = AḞ + CḂl, (4.9a)

Ḣl = CTḞ + KḂl, (4.9b)

where the magnetoelastic “moduli” tensors are defined by

A =
∂2Ω
∂F∂F

, C =
∂2Ω
∂F∂Bl

, CT =
∂2Ω
∂Bl∂F

, K =
∂2Ω

∂Bl∂Bl
, (4.10)

the products in (4.9a) and (4.9b) are defined by

(AḞ)αi = Aαiβj Ḟjβ , (CḂl)αi = Cαi|βḂlβ ,

(CTḞ)β = Cβ|αiḞiα, (KḂl)α = KαβḂlβ ,
(4.11)

and we note the symmetries

Aαiβj = Aβjαi, Cαi|β = Cβ|αi, Kαβ = Kβα, (4.12)

which reflect the commutativity of the partial derivatives. The vertical bar between
the indices on C is a separator used to distinguish the single subscript from the pair
of subscripts that always go together. Here and henceforth we use only Cartesian
components.

For an incompressible material, (4.9a) is replaced by

Ṫ = AḞ + CḂl − ṗF−1 + pF−1ḞF−1, (4.13)

and subject to detF = 1, (4.9b) is unchanged.
On updating (pushing forward in Eulerian form) the incremented constitutive

equations (4.9a), (4.9b) and (4.13), we obtain

Ṫ0 = A0L + C0Ḃl0, (4.14a)

Ḣl0 = CT
0 L + K0Ḃl0. (4.14b)

and

Ṫ0 = A0L + C0Ḃl0 − ṗI + pL, (4.15)

respectively, where A0,C0 and K0 are defined in component form by

A0piqj = A0qjpi = J−1FpαFqβAαiβj = J−1FpαFqβAβjαi, (4.16)

C0ij|k = C0k|ij = FiαF
−1
βk Cαj|β = FiαF

−1
βk Cβ|αj , (4.17)

K0ij = K0ji = JF−1
αi F

−1
βj Kαβ, (4.18)

which apply for an incompressible material with J = 1. Explicit formulas for these
components for an isotropic magnetoelastic material referred to the principal axes
of the left Cauchy–Green tensor b are given in Appendix B.
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On substituting (4.14a) and (4.15) into (3.11) in turn, we obtain

A0L + Lτ = (A0L)T + τLT, C0Ḃl0 = (C0Ḃl0)T (4.19)

and

A0L + pL + Lτ = (A0L)T + pLT + τLT, C0Ḃl0 = (C0Ḃl0)T, (4.20)

respectively, from which we deduce the symmetries

A0ipqj + δij(τpq + pδpq) = A0piqj + δpj(τqi + pδqi), C0ij|k = C0ji|k, (4.21)

which are additional to (4.12), with p = 0 in the case of an unconstrained material.
Henceforth we restrict our attention to incompressible materials. We now use the

constitutive Eqs. (4.15) and (4.14b) together with (3.15) to arrive at the governing
equations

curl(CT
0 L + K0Ḃl0) = 0, (4.22a)

divḂl0 = 0, (4.22b)

divu = 0, (4.22c)

div(A0L + C0Ḃl0) − grad ṗ+ LTgradp = ρu,tt. (4.23)

Let us now assume that the underlying configuration is homogeneous, so that p, A0,
C0 and K0 are uniform. Then, in component form, Eqs. (4.22a)–(4.22c) and (4.23)
become

εijk(C0pq|kup,qj + K0kpḂl0p,j) = 0, (4.24a)

Ḃl0i,i = 0, (4.24b)

ui,i = 0, (4.24c)

A0piqjuj,pq + C0pi|qḂl0q,p − ṗ,i = ρui,tt. (4.25)

5. Homogeneous Plane Waves

We now consider infinitesimal homogenous plane waves propagating with speed v

in the direction of unit vector n in the form of

u = mf (n · x− vt) , Ḃl0 = qg (n · x − vt) , ṗ = P (n · x− vt) , (5.1)

where m and q are constant (polarization) unit vectors in the directions of the
incremental displacement and magnetic induction, respectively, and f , g and P

are appropriately regular functions of the argument n · x − vt. Substituting these
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expressions into Eqs. (4.24a)–(4.24c) and (4.25), we obtain

n × {R(n)Tmf ′′ + K0qg′} = 0, (5.2a)

q · n = 0, (5.2b)

m · n = 0, (5.2c)

Q(n)mf ′′ + R(n)qg′ − P ′n = ρv2mf ′′, (5.3)

where Q(n), the acoustic tensor, and R(n), the magnetoacoustic tensor, are given by

[Q(n)]ij = A0piqjnpnq, [R(n)]ij = C0ip|jnp, (5.4)

and a prime signifies differentiation with respect to the argument n · x − vt. Note
that Q(n) is symmetric but in general R(n) is not.

Let Î(n) = I−n⊗n denote the symmetric projection tensor onto the plane with
normal n. Then, following Destrade and Ogden [2011b], we define the notations

Q̂(n) = Î(n)Q(n)̂I(n), R̂(n) = Î(n)R(n)̂I(n), K̂0(n) = Î(n)K0(n)̂I(n), (5.5)

which are the projections of Q(n),R(n) and K0(n), respectively, onto the plane
normal to n.

Using (5.2c) we obtain from (5.3)

P ′ = [Q(n)m] · nf ′′ + [R(n)q] · ng′, (5.6)

and substitution of this back into (5.3) enables the latter to be written as

Q̂(n)mf ′′ + R̂(n)qg′ = ρv2mf ′′. (5.7)

Similarly, from (5.2a) we deduce that

R(n)Tmf ′′ + K0qg′ = {[R(n)Tm] · nf ′′ + [K0q] · ng′}n, (5.8)

which can be written more compactly as

R̂(n)Tmf ′′ + K̂0qg′ = 0. (5.9)

As in Destrade and Ogden [2011b], we assume that K̂0 is nonsingular as an
operator restricted to the plane normal to n and also positive definite in view of its
interpretation as the inverse of the incremental permeability tensor. We then obtain
qg′ = −K̂−1

0 R̂(n)Tmf ′′, and substitution into (5.7) and elimination of f ′′ �= 0 yields
the propagation condition for acoustic waves under the influence of a magnetic field,
explicitly

P̂(n)m ≡ Q̂(n)m − R̂(n)K̂−1
0 R̂(n)Tm = ρv2m, (5.10)

wherein the generalized acoustic (or Christoffel) tensor P̂ is defined as Q̂(n) −
R̂(n)K̂−1

0 R̂(n)T, which is symmetric. Equation (5.10) is a generalization of the
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propagation condition for homogeneous plane waves in an incompressible elastic
solid in the absence of a magnetic field. This prompts a corresponding generalization
of the strong ellipticity condition in the form

m · [P̂(n)m] > 0, (5.11)

for all unit vectors m and n such that m · n = 0, as given in Destrade and Ogden
[2011b]. This guarantees that homogeneous plane waves have real wave speeds.
In component form, which will be useful later, the generalized strong ellipticity
inequality (5.11) can be written as

(A0piqj − C0ip|kK̂−1
0klC0jq|l)mimjnpnq > 0. (5.12)

6. Two-Dimensional Specialization

Let the initial deformation of the material be given by the pure homogeneous strain

x1 = λ1X1, x2 = λ2X2, x3 = λ3X3, (6.1)

where the principal stretches λ1, λ2, λ3 are uniform. The component matrix [F] of
the deformation gradient is then [F] = diag(λ1, λ2, λ3). We also assume that the
initial (uniform) magnetic induction has components (B1, B2, 0) in the material and
(B∗

1 , B
∗
2 , 0) outside.

We now study two-dimensional (2D) motions in the (1, 2) plane and seek solu-
tions depending only on the in-plane variables x1 and x2 such that u3 = Ḃl03 =
Ḃ∗

l03 = 0. The third component of the equation of motion (4.25) and the first two
components of (4.24a) are then satisfied trivially, and the remaining equations are

A01111u1,11 + 2A01121u1,12 + A02121u1,22 + A01112u2,11

+ (A01122 + A01221)u2,12 + A02122u2,22 + C011|1Ḃl01,1

+ C021|1Ḃl01,2 + C011|2Ḃl02,1 + C021|2Ḃl02,2 − ṗ,1 = ρu1,tt, (6.2)

A01211u1,11 + (A01221 + A01122)u1,12 + A02221u1,22

+A01212u2,11 + 2A01222u2,12 + A02222u2,22 + C012|1Ḃl01,1

+ C022|1Ḃl01,2 + C012|2Ḃl02,1 + C022|2Ḃl02,2 − ṗ,2 = ρu2,tt, (6.3)

C011|2u1,11 + (C021|2 − C011|1)u1,12 − C021|1u1,22

+ C012|2u2,11 + (C022|2 − C012|1)u2,12 − C022|1u2,22

+ K012Ḃl01,1 − K011Ḃl01,2 + K022Ḃl02,1 − K012Ḃl02,2 = 0. (6.4)

Elimination of ṗ from (6.2) and (6.3) by cross differentiation and subtraction
yields

A01211u1,111 + (A01221 + A01122 −A01111)u1,112 + (A02221 − 2A01121)u1,122

−A02121u1,222 + A01212u2,111 + (2A01222 −A01112)u2,112
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− (A01122 + A01221 −A02222)u2,122 −A02122u2,222 + C012|1Ḃl01,11

+ (C022|1 − C011|1)Ḃl01,12 − C021|1Ḃl01,22 + C012|2Ḃl02,11

+ (C022|2 − C011|2)Ḃl02,12 − C021|2Ḃl02,22 = ρ(u2,1 − u1,2),tt. (6.5)

The corresponding equations in (3.17) outside the material may be written as

Ḃ∗
1,1 + Ḃ∗

2,2 = 0, (6.6a)

Ḃ∗
2,1 − Ḃ∗

1,2 = 0. (6.6b)

Since Ḃl0 and u satisfy the Eqs. (4.22b) and (4.22c) and Ḃ∗ satisfies Eq. (6.6a),
we can define potentials ψ, φ and ψ∗ such that

Ḃl01 = ψ,2, Ḃl02 = −ψ,1, u1 = φ,2, u2 = −φ,1, Ḃ∗
1 = ψ∗

,2, Ḃ
∗
2 = −ψ∗

,1. (6.7)

Substituting these expressions into the governing Eqs. (6.5), (6.4) and (6.6b), we
obtain the two coupled equations

αφ,1111 + 2δφ,1112 + 2βφ,1122 + 2εφ,1222 + γφ,2222 + aψ,111 + bψ,112

+ cψ,122 + dψ,222 = ρ(φ,11 + φ,22),tt, (6.8)

aφ,111 + bφ,112 + cφ,122 + dφ,222 + K011ψ,22 + K022ψ,11 − 2K012ψ,12 = 0, (6.9)

for φ and ψ in the material, where, for compactness of representation, we have
introduced the notations

α = A01212, 2β = A01111 + A02222 − 2A01122 − 2A01221, γ = A02121, (6.10)

δ = A01222 −A01211, ε = A01121 −A02221, a = C012|2, (6.11)

b = C022|2 − C011|2 − C012|1, c = C011|1 − C022|1 − C021|2, d = C021|1. (6.12)

Outside the material we have the single equation

ψ∗
,11 + ψ∗

,22 = 0. (6.13)

When there is no time dependence and B1 = 0, Eqs. (6.8) and (6.9) reduce to
equations given in Sec. 5.2 of Otténio et al. [2008], but partly in different notation.

7. Surface Waves

In this section, we consider two separate cases: first, B1 = 0 with B2 �= 0; and
second, B1 �= 0 with B2 = 0. The material forms a half-space X2 < 0 in the
reference configuration, with unit outward normal N to its boundary X2 = 0 having
components (0, 1, 0). Under the deformation (6.1), the material occupies the half-
space x2 < 0 in the deformed configuration and the unit outward normal n to its
boundary x2 = 0 has components (0, 1, 0).
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7.1. Magnetic induction components (0, B2, 0)

In this first example, we take the initial magnetic induction to be perpendicular
to the surface of the half-space so that the components of B are (0, B2, 0). The
boundary condition B · n = B∗ · n applied to x2 = 0 then gives B∗

2 = B2. It
follows from (3.21) and (3.22) that the matrix representations of τ ∗ and τ̇ ∗ are,
respectively,

[τ ∗] =
B.

2

2µ0



−1 0 0
0 1 0
0 0 −1


, [τ̇ ∗] =

B2

µ0



−Ḃ∗

2 Ḃ∗
1 0

Ḃ∗
1 Ḃ∗

2 0
0 0 −Ḃ∗

2


. (7.1)

7.1.1. Incremental equations and boundary conditions

For the given values of F and B, many of the components of the moduli listed in
Appendix B vanish, and Eqs. (6.8) and (6.9) simplify to

αφ,1111 + 2βφ,1122 + γφ,2222 + bψ,112 + dψ,222 = ρ(φ,11 + φ,22),tt, (7.2)

bφ,112 + dφ,222 + K011ψ,22 + K022ψ,11 = 0. (7.3)

Using the values of τ∗ and τ̇∗ from (7.1) and assuming there is no incremental
mechanical traction on x2 = 0 the components of the incremental traction are
obtained from (3.25) with ṪT

0 N = ṫM0 as

Ṫ021 − B2

µ0
Ḃ∗

1 − B2
2

2µ0
u2,1 = 0, Ṫ022 − B2

µ0
Ḃ∗

2 +
B2

2

2µ0
u2,2 = 0 on x2 = 0, (7.4)

with Ṫ023 = 0 satisfied identically. From (3.19) and (3.20) we obtain

Ḃl02 − Ḃ∗
2 +B2u2,2 = 0, (7.5a)

Ḣl01 − B2

µ0
u2,1 − Ḣ∗

1 = 0 on x2 = 0. (7.5b)

By substituting the updated incremented constitutive equations (4.15)
and (4.14b), appropriately specialized, into the incremental boundary condi-
tions (7.4) and (7.5a) and making use of the connection

A01221 + τ22 + p = A02121, (7.6)

which comes from (4.21), we obtain(
A02121 − τ22 − B2

2

2µ0

)
u2,1 + A02121u1,2 + C021|1Ḃl01 − B2

µ0
Ḃ∗

1 = 0, (7.7)

A01122u1,1 +
(
A02222 + p+

B2
2

2µ0

)
u2,2 + C022|2Ḃl02 − ṗ− B2

µ0
Ḃ∗

2 = 0, (7.8)

C012|1u2,1 + C021|1u1,2 + K011Ḃl01 − B2

µ0
u2,1 − 1

µ0
Ḃ∗

1 = 0, (7.9)

each holding on x2 = 0.
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Next, we differentiate (7.8) with respect to x1 and make use of (6.2) to eliminate
ṗ,1. We then introduce the potentials φ, ψ and ψ∗ into the resulting equation and
Eqs. (7.5a), (7.5b), (7.7) and (7.9) and use the notations (6.10)–(6.12). We also
note that if there is no mechanical traction applied on the boundary x2 = 0 in the
underlying configuration then the normal stress τ22 in the material must balance
the Maxwell stress τ∗22 on x2 = 0, which gives

τ22 = τ∗22 =
B2

2

2µ0
. (7.10)

The boundary conditions can then be written as

(γ − 2τ∗22)φ,11 − γφ,22 − dψ,2 +
B2

µ0
ψ∗

,2 = 0, (7.11)

(2β + γ)φ,112 + γφ,222 + (b + d)ψ,11 + dψ,22 − B2

µ0
ψ∗

,11 − ρφ,2tt = 0, (7.12)

B2φ,12 + ψ,1 − ψ∗
,1 = 0, (7.13)

d(φ,11 − φ,22) − K011ψ,2 − B2

µ0
φ,11 +

1
µ0
ψ∗

,2 = 0, (7.14)

which apply on x2 = 0.
Hence, the problem is reduced to solving the governing Eqs. (7.2) and (7.3) in

x2 < 0 and (6.13) in x2 > 0 and applying the boundary conditions (7.11)–(7.14) on
x2 = 0 and appropriate decay behavior as x2 → ±∞.

7.1.2. Surface wave propagation

We now study 2D surface waves propagating in the x1 direction with the increments
having nonzero components lying in the (1, 2) plane. We consider harmonic solutions
of the form

φ = P exp(skx2 + ikx1 − iωt),

ψ = kQ exp(skx2 + ikx1 − iωt) in x2 < 0,
(7.15)

ψ∗ = kR exp(s∗kx2 + ikx1 − iωt) in x2 > 0, (7.16)

where P,Q,R are constants, k is the wave number and ω the angular frequency,
and s and s∗ are to be determined subject to the requirements Re(s) > 0 and
Re(s∗) < 0 needed for decay of the surface wave amplitude away from the boundary.
Substituting these solutions into the governing equations (7.2), (7.3) and (6.13), we
obtain

[α− 2βs2 + γs4 + ρv2(s2 − 1)]P + (ds2 − b)sQ = 0, (7.17)

(ds2 − b)sP + (K011s
2 − K022)Q = 0, (7.18)

and s∗2 = 1, where the wave speed is v = ω/k. For the solution ψ∗ to decay as
x2 → ∞, we necessarily take s∗ = −1. For nontrivial solutions for P and Q from
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(7.17) and (7.18), we set the determinant of coefficients to be zero and obtain a
cubic equation for s2, namely

(γK011 − d2)s6 + [K011(ρv2 − 2β) − γK022 + 2bd]s4

+ [K022(2β − ρv2) + K011(α− ρv2) − b2]s2 + (ρv2 − α)K022 = 0. (7.19)

We denote by s1, s2, s3 the three solutions satisfying the requirement Re(s) > 0.
The general solutions of the equations that satisfy the decay conditions are now
given by

φ = (P1es1kx2 + P2es2kx2 + P3es3kx2)ei(kx1−ωt), (7.20)

ψ = k(Q1es1kx2 +Q2es2kx2 +Q3es3kx2)ei(kx1−ωt), (7.21)

ψ∗ = kRe−kx2+i(kx1−ωt). (7.22)

For each i, Qi is related to Pi by Eq. (7.18), which we rewrite here as

Qi =
(b − ds2i )si

K011s2i − K022
Pi, i = 1, 2, 3. (7.23)

Next, we substitute the general solutions (7.20)–(7.22) into the boundary
conditions (7.11)–(7.14) to obtain

(γ − 2τ∗22)
∑

j

Pj + γ
∑

j

s2jPj + d
∑

j

sjQj +
B2

µ0
R = 0, (7.24)

(2β + γ − ρv2)
∑

j

sjPj − γ
∑

j

s3jPj + (b + d)
∑

j

Qj − d
∑

j

s2jQj − B2

µ0
R = 0,

(7.25)

B2

∑
j

sjPj +
∑

j

Qj −R = 0, (7.26)

d
∑

j

(s2j + 1)Pj + K011

∑
j

sjQj − B2

µ0

∑
j

Pj +
1
µ0
R = 0, (7.27)

where
∑

j indicates summation over j from 1 to 3.
We now have seven linear equations in P1, P2, P3, Q1, Q2, Q3 and R, and for a

nontrivial solution the determinant of coefficients must vanish. The result is the
secular equation relating the wave speed v to the initial deformation, the material
properties and the initial magnetic induction B2, and we note that, by (7.10), the
stress τ∗22 depends on B2.

7.1.3. Pure elastic case

Here we take the magnetic field to vanish in order to reduce our results to known
results in the purely elastic case. For this purpose we set C = 0, Qi = 0, i = 1, 2, 3
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and R = 0. Equation (7.19) reduces to a quadratic for s2, namely

γs4 − (2β − ρv2)s2 + α− ρv2 = 0, (7.28)

from which we deduce that the solutions s21 and s22 satisfy

γ(s21 + s22) = 2β − ρv2, γs21s
2
2 = α− ρv2. (7.29)

For a surface wave we take s1 and s2 to be the solutions satisfying Re(s) > 0, and,
as discussed in Dowaikh and Ogden [1990], we require γ > 0 and ρv2 ≤ α.

The boundary conditions (7.11)–(7.14) reduce to the two equations

(γ − τ22)φ,11 − γφ,22 = 0, (2β + γ − τ22)φ,112 + γφ,222 − ρφ,2tt = 0, (7.30)

which hold on x2 = 0, where, for comparison with the results of Dowaikh and Ogden
[1990], we have assumed that there is a normal mechanical traction τ22 on x2 = 0
in the underlying configuration. The general solution for φ can be rewritten as

φ = (P1es1kx2 + P2es2kx2)ei(kx1−ωt). (7.31)

Substitution into the boundary conditions then yields

(γ − τ22 + γs21)P1 + (γ − τ22 + γs22)P2 = 0, (7.32)

(2β + γ − τ22 − ρv2 − γs21)s1P1 + (2β + γ − τ22 − ρv2 − γs22)s2P2 = 0, (7.33)

from which, on use of (7.29), the explicit secular equation is obtained as

γ(α− ρv2) + (2β + 2γ − 2τ22 − ρv2)
√
γ(α− ρv2) = (γ − τ22)2. (7.34)

Apart from some minor differences of notation, this agrees with the formula (5.17)
obtained by Dowaikh and Ogden [1990].

7.1.4. Application to a Mooney–Rivlin magnetoelastic material

For purposes of illustration we now consider the energy function of a Mooney–Rivlin
magnetoelastic material as used by Otténio et al. [2008]. This has the form

Ω =
1
4
µ(0)[(1 + n)(I1 − 3) + (1 − n)(I2 − 3)] + lI4 +mI5, (7.35)

where µ(0) is the shear modulus of the material in the absence of magnetic fields
and, to avoid a conflict of notation, we use l,m, n, respectively, in place of the α/µ0,
β/µ0, γ used in Otténio et al. [2008]. Note that lµ0, mµ0 and n are dimensionless,
with n restricted to the range −1 ≤ n ≤ 1, as for the classical Mooney–Rivlin
model. For the reasons discussed in Otténio et al. [2008] we take l and m to be
non-negative parameters.
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The relevant nonzero components of the magnetoelastic tensors are easily cal-
culated from the formulas in Appendix B as

A01111 =
1
2
µ(0)λ2

1[1 + n+ (1 − n)(λ2
2 + λ2

3)], (7.36)

A02222 =
1
2
µ(0)λ2

2[1 + n+ (1 − n)(λ2
1 + λ2

3)] + 2mB2
2 , (7.37)

A01212 =
1
2
µ(0)λ2

1[1 + n+ (1 − n)λ2
3], A02121 = λ2

2λ
−2
1 A01212 + 2mB2

2 , (7.38)

A01122 = −2A01221 = µ(0)(1 − n)λ2
1λ

2
2, (7.39)

C022|2 = 2C012|1 = 4mB2, (7.40)

K011 = 2(m+ λ−2
1 l), K022 = 2(m+ λ−2

2 l), (7.41)

from which we deduce, using the notation defined in (6.10)–(6.12), that

2β = α+ γ, b = d. (7.42)

With these values, Eq. (7.19) factorizes in the form

(s2 − 1){(γK011 − d2)s4 − [γK022 + (α− ρv2)K011 − d2]s2 + (α− ρv2)K022} = 0.
(7.43)

Let the solutions with positive real part be denoted s1 (= 1), s2 and s3. Then,

s22 + s23 =
γK022 + (α− ρv2)K011 − d2

γK011 − d2
, (7.44a)

s22s
2
3 =

(α− ρv2)K022

γK011 − d2
. (7.44b)

Note that when v = 0 the bi-quadratic in (7.43) factorizes easily to give the equation

(s2 − λ4)[(µ0K011 + 4lmB2
2)s

2 − µ0K022] = 0, (7.45)

as shown by Otténio et al. [2008], although there is a slight error in their Eq. (112),
wherein their α and β should be replaced by 2α and 2β, respectively. This has only
minor repercussions for their subsequent results. We also note in passing that for
v �= 0, in the special case λ = 1, the bi-quadratic factorizes as (s2 − 1)[(γK011 −
d2)s2 − K011(α − ρv2)].

Now, by specializing the generalized strong ellipticity condition (5.12) to the
present constitutive model and setting n1 = 1, n2 = 0,m1 = 0,m2 = 1 we obtain
γK011 − d2 > 0. Then, following the same argument as used in the purely elastic
case, we require s22s23 ≥ 0 and we therefore conclude from (7.44b) that

ρv2 ≤ α. (7.46)

For the considered model, this upper bound is identical to that in the purely elastic
case and hence independent of the magnetic field.
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We now use s1 = 1 and the expressions (7.44a) and (7.44b) in the boundary
conditions (7.24)–(7.27) and set the determinant of coefficients to zero to obtain
the secular equation. The resulting equation is too lengthy to reproduce here, and
we obtain the solutions numerically. For this purpose, we use the standard value
1.257 × 10−6 NA−2 of µ0 together with the value 2.6 × 105 Nm−2 of µ(0) that was
adopted by Otténio et al. [2008] based on data for an elastomer filled with 10% by
volume of iron particles from Jolly et al. [1996]. We also use a series of values of
l and m consistent with the values of the magnetoelastic coupling constants used
in Otténio et al. [2008].

First, we consider the underlying deformation to be one of plane strain in the
(1, 2) plane, and we take λ1 = λ, λ2 = λ−1, λ3 = 1. In this case, the results
are independent of the parameter n in the Mooney–Rivlin model and the upper
bound (7.46) is µ(0)λ2. Let ζ = ρv2/µ(0). Then we plot the variation of ζ with λ

for a selection of values of l and m and a range of values of B2 in Figs. 1 and 2.
We also consider a deformation for which λ1 = 1, λ2 = λ, λ3 = λ−1 and we use
the value n = 0.3 in the Mooney–Rivlin model. Then, the upper bound (7.46) is
µ(0)(0.65 +0.35λ−2). Results for this case are plotted in Fig. 3 for two representative
pairs of values of l and m and a range of values of B2.

Figures 1 and 2 relate to a plane strain deformation in which the half-space is
subject to compression or extension parallel to its boundary. The result for B2 = 0
corresponds to the purely elastic case and provides a point of reference. The B2 = 0
curve cuts the λ axis at λ = λc 	 0.5437, which agrees with the classical result for
the critical value of λ corresponding to loss of stability of the half-space under com-
pression for the neo-Hookean model (for which n = 1); see Biot [1965] and Dowaikh
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Fig. 1. Plot of ζ = ρv2/µ(0) versus λ1 = λ with λ3 = 1 for B2 = 0, 2, 4, 6, 8, 10T (curves reading
from left to right): (a) µ0l = 2, µ0m = 1; (b) µ0l = 0.1, µ0m = 1.
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Fig. 2. Plot of ζ = ρv2/µ(0) versus λ1 = λ with λ3 = 1: (a) µ0l = 2, µ0m = 0.2 with B2 =
1, 0, 2, 3, 4, 5T; (b) µ0l = 0.2, µ0m = 0.2 with B2 = 0, 1, 2, 3, 4, 5T (curves reading from left to right
in each case).

and Ogden [1990] for details. By referring to the ζ = 0 axis in Figs. 1 and 2(b) it can
be seen that the magnetic field destabilizes the material, i.e., instability occurs at a
compression closer to the undeformed configuration where λ = 1. For each value of
B2 there is a critical value of λ beyond which a surface wave exists, and the wave
speed increases with λ consistently with the upper bound (7.46). Note, in particu-
lar, that the undeformed configuration λ = 1 becomes unstable as B2 increases. In
Fig. 2(a) the situation is slightly different since for small values of B2 the half-space
is initially stabilized as B2 increases (i.e., the critical value of λ decreases below
the classical value λc), but then as B2 is increased further stability is lost again.
Note that the B2 = 0 and B2 = 1 curves cross over in this case. These results are
consistent with the stability analysis of Otténio et al. [2008].

When there is no compression or extension parallel to x2 = 0 in the sagittal plane
but there is extension (or compression) normal to the boundary and a corresponding
compression (or extension) normal to the sagittal plane the effect of the magnetic
field is different. Figure 3 illustrates this case. Now there is instability for λ > 1, at
λ 	 3.4 for B2 = 0, and the critical value of λ decreases with increasing B2, i.e.,
the magnetic field again has a destabilizing effect. The wave speed increases as λ
decreases, again consistently with the upper bound (7.46).

Figure 4 shows plots of the dimensionless squared wave speed as a function of
B2 for the undeformed configuration λ = 1 for (a) a fixed value of m and a series
of values of l, and (b) a fixed value of l and a series of values of m. For B2 = 0 the
curves cut the ζ axis at the classical Rayleigh value (	0.9126). As B2 increases then,
depending on the values of the parameters l and m, the wave speed either increases
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Fig. 3. Plot of ζ = ρv2/µ(0) versus λ2 = λ with λ1 = 1 for B2 = 0, 1, 2, 3, 4, 5T (curves reading
from right to left): (a) µ0l = 2, µ0m = 1; (b) µ0l = 0.2, µ0m = 0.2.
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Fig. 4. Plot of ζ = ρv2/µ(0) versus B2 with λ1 = λ2 = λ3 = 1: (a) µ0l = 0.4, 0.8, 1.2, 1.6, 2 and
µ0m = 1 (curves reading from left to right); (b) µ0l = 1 and µ0m = 0.9, 1.1, 1.3, 1.5, 1.7 (curves
reading from right to left).

or decreases initially but in each case subsequently decreases to zero with further
increase in B2. This emphasizes that the undeformed configuration is destabilized
at a critical value of B2 dependent on the material parameters. From Fig. 4(a), for
the selected value of m, it can be seen that increasing the value of l has a stabilizing
effect, while from Fig. 4(b) the reverse is true for increasing m at a fixed value of l.
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7.2. Magnetic induction components (B1, 0, 0)

The initial deformed configuration is considered to be the same as in Sec. 7.1,
but now we take the magnetic induction B to have components (B1, 0, 0). The
corresponding magnetic field H is given by (4.8) and has components (H1, 0, 0),
with

H1 = 2(Ω4λ
−2
1 + Ω5 + Ω6λ

2
1)B1, (7.47)

which, for the model (7.35), reduces to H1 = 2(lλ−2
1 +m)B1. The magnetic

boundary conditions on x2 = 0 require that H∗
1 = H1, so that B∗

1 = µ0H
∗
1 =

2µ0(lλ−2
1 +m)B1.

From (3.21) and (3.22), the Maxwell stress and its increment in x2 > 0 are
given by

[τ∗] =
B∗2

1

2µ0



1 0 0

0 −1 0

0 0 −1


, [τ̇ ∗] =

B∗
1

µ0



Ḃ∗

1 Ḃ∗
2 0

Ḃ∗
2 −Ḃ∗

1 0

0 0 −Ḃ∗
1


. (7.48)

7.2.1. Incremental equations and boundary conditions

For the present situation, Eqs. (6.8) and (6.9) reduce to

αφ,1111 + 2βφ,1122 + γφ,2222 + aψ,111 + cψ,122 = ρ(φ,11 + φ,22),tt, (7.49)

aφ,111 + cφ,122 + K022ψ,11 + K011ψ,22 = 0 (7.50)

for x2 < 0, while again (6.13) holds for x2 > 0.
Using the values of τ∗ and τ̇∗ from (7.48) and assuming there is no incremental

mechanical traction on x2 = 0 the components of the incremental traction are
obtained from (3.25) with ṪT

0 N = ṫM0 as

Ṫ021 − B∗
1

µ0
Ḃ∗

2 +
B∗2

1

2µ0
u2,1 = 0, Ṫ022 +

B∗
1

µ0
Ḃ∗

1 − B∗2
1

2µ0
u2,2 = 0 on x2 = 0, (7.51)

with Ṫ023 = 0 satisfied identically. From (3.19) and (3.20) we obtain

Ḃl02 − Ḃ∗
2 +B∗

1u2,1 = 0, Ḣl01 −H∗
1u1,1 − Ḣ∗

1 = 0 on x2 = 0. (7.52)

Next, we substitute the updated incremented constitutive Eqs. (4.14) and (4.15)
into Eqs. (7.51) and (7.52) and use (7.6) and the boundary condition τ22 = τ∗22,
where τ∗22 = −B∗

1
2/2µ0, and follow the same procedure as in the previous section

to eliminate ṗ. This yields

(γ − 2τ∗22)φ,11 − γφ,22 + aψ,1 − B∗
1

µ0
ψ∗

,1 = 0, (7.53)

(2β + γ)φ,112 + γφ,222 − ρφ,2tt + cψ,12 − B∗
1

µ0
ψ∗

,12 = 0, (7.54)
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B∗
1φ,11 + ψ,1 − ψ∗

,1 = 0, (7.55)
(
c+ a− B∗

1

µ0

)
φ,12 − 1

µ0
ψ∗

,2 = 0, (7.56)

each of which holds on x2 = 0.

7.2.2. Surface waves in a Mooney–Rivlin magnetoelastic half-space

We again study surface waves as in Sec. 7.1, with solutions of the form (7.15)
and (7.16). Substituting these solutions into Eqs. (7.49), (7.50) and (6.13), we obtain

[γs4 − (2β − ρv2)s2 + α− ρv2]P + i(cs2 − a)Q = 0, (7.57)

i(cs2 − a)P + (K011s
2 − K022)Q = 0, (7.58)

and s∗2 = 1, where the wave speed is again given by v = ω/k.
For the solution ψ∗ to decay as x2 → ∞, we take s∗ = −1. For nontrivial

solutions for P and Q, we set the determinant of coefficients to zero and obtain a
cubic equation in s2:

γK011s
6 − [K011(2β − ρv2) + γK022 − c2]s4

+ [K011(α − ρv2) + K022(2β − ρv2) − 2ac]s2

−K022(α− ρv2) + a2 = 0. (7.59)

For the Mooney–Rivlin magnetoelastic material given by (7.35), the nonzero
components of the magnetoelastic tensors are obtained from the general formulas
in Appendix B as

A01111 =
1
2
µ(0)λ2

1[1 + n+ (1 − n)(λ2
2 + λ2

3)] + 2mB2
1 , (7.60)

A02222 =
1
2
µ(0)λ2

2[1 + n+ (1 − n)(λ2
1 + λ2

3)], (7.61)

A02121 =
1
2
µ(0)λ2

2[1 + n+ (1 − n)λ2
3], A01212 = λ2

1λ
−2
2 A02121 + 2mB2

1 , (7.62)

A01122 = −2A01221 = µ(0)(1 − n)λ2
1λ

2
2, (7.63)

C011|1 = 2C012|2 = 4mB1, (7.64)

K011 = 2(m+ λ−2
1 l), K022 = 2(m+ λ−2

2 l), (7.65)

from which, using the notation defined in (6.10)–(6.12), we obtain

2β = α+ γ, c = a. (7.66)
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Substitution of these values in (7.59) yields the factorization

(s2−1){γK011s
4−[γK022+(α−ρv2)K011−a2]s2+(α−ρv2)K022−a2} = 0. (7.67)

We note in passing that the second factor in the above can be factorized in simple
form in two cases: for v = 0, we obtain (s2 −λ4)(γK011s

2 − γK022 − 4lmλ−2B2
1); for

λ = 1, the result is (s2 − 1)[γK011s
2 + a2 − K011(α− ρv2)].

Let s1 = 1, and let s2 and s3 be the solutions of the second factor with positive
real part. As in the previous section we require s22s

2
3 ≥ 0, which, after noting that

γ > 0, K011 > 0 and K022 > 0 and specializing the generalized strong ellipticity
condition as in Sec. 7.1, gives

ρv2 ≤ α− a2/K022, (7.68)

the right-hand side of which is positive. As distinct from (7.46) the upper bound in
(7.68) does in general depend on the magnetic field.

We again take the solutions for φ, ψ and ψ∗ as (7.15) and (7.16). Substituting
these into the boundary conditions (7.53)–(7.56), we obtain

(γ − 2τ∗22)
∑

j

Pj + γ
∑

j

s2jPj − ia
∑

j

Qj + i
B∗

1

µ0
R = 0, (7.69)

(2β + γ − ρv2)
∑

j

sjPj − γ
∑

j

s3jPj − ic
∑

j

sjQj − i
B∗

1

µ0
R = 0, (7.70)

B∗
1

∑
j

Pj − i
∑

j

Qj + iR = 0, (7.71)

(
c+ a− B∗

1

µ0

)∑
j

sjPj − i
1
µ0
R = 0, (7.72)

along with the connection between Qi and Pi from (7.58):

Qi =
i(a− cs2i )

K011s2i − K022
Pi, i = 1, 2, 3. (7.73)

Again,
∑

j signifies summation over j from 1 to 3.
As in the previous section, we have seven linear equations in P1, P2, P3,

Q1, Q2, Q3 and R, and the solution follows the pattern therein. The results for
λ1 = λ, λ2 = λ−1, λ3 = 1 and λ1 = 1, λ2 = λ, λ3 = λ−1 are shown in Figs. 5 and 6,
respectively, and are broadly similar to those shown in Figs. 1 and 3 except that the
effect of B1 is significantly stronger than that for B2. Indeed, much smaller values
of B1 than B2 are required to produce comparable effects. The upper bound (7.68)
depends on the magnitude B1 but the values of ζ shown do not reflect this because
of the relatively small values of B1 used.
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Fig. 5. Plot of ζ = ρv2/µ(0) versus λ1 = λ with λ3 = 1 for B1 = 0, 0.03, 0.06, 0.09, 0.12T (curves
reading from left to right): (a) µ0l = 2, µ0m = 1; (b) µ0l = 1, µ0m = 1.

1.0 1.5 2.0 2.5 3.0 3.5

0.5

1.0

1.5

2.0

1.0 1.5 2.0 2.5 3.0 3.5

0.5

1.0

1.5

2.0

(a) (b)

Fig. 6. Plot of ζ = ρv2/µ(0) versus λ2 = λ with λ1 = 1 for B1 = 0, 0.03, 0.06, 0.09, 0.12T (curves
reading from right to left): (a) µ0l = 2, µ0m = 1; (b) µ0l = 2, µ0m = 0.2.

8. Out-of-Plane Considerations

8.1. Magnetic induction components (0, 0, B3)

The initial and deformed configurations are considered to be the same as in Sec. 7.2
except that the magnetic induction is taken to have components (0, 0, B3). The
incremental quantities are as in the previous sections, i.e., we consider only incre-
mental motions and magnetic induction components within the (1, 2) plane. In fact,
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the full three-dimensional (3D) equations decouple in this case and the out-of-plane
motion can be considered separately, as discussed in Maugin and Hakmi [1995].

From Eqs. (6.8) and (6.9), with the components of the moduli tensors appropri-
ately specialized, we obtain

αφ,1111 + 2βφ,1122 + γφ,2222 = ρ(φ,11 + φ,22),tt, (8.1)

K022ψ,11 + K011ψ,22 = 0, (8.2)

which apply in x2 < 0, and again (6.13) holds in x2 > 0.
The boundary conditions for the underlying configuration require thatH∗

3 = H3.
Thus, B∗

3 = µ0H3 = 2µ0(lλ−2
3 + m)B3. If we assume there are no mechani-

cal tractions, then τ22 = τ∗22. The normal components of the Maxwell stress are
τ∗22(1, 1,−1), where τ∗22 = −B∗

3
2/2µ0. The incremental boundary conditions reduce

to Ṫ021 = −τ∗22u2,1, Ṫ022 = −τ∗22u2,2, Ṫ023 = µ−1
0 B∗

3Ḃ
∗
2 , Ḃl02 = Ḃ∗

2 and Ḣl01 = Ḣ∗
1 .

Note, in particular, the appearance of the out-of-plane shear traction term. After
differentiating the Ṫ022 condition with respect to x1, substituting for ṗ,1 from an
appropriately specialized form of (6.2) and then substituting for the potentials φ,
ψ and ψ∗, we obtain (on dropping the factor γ �= 0 from the first equation)

φ,11 − φ,22 = 0, (2β + γ)φ,112 + γφ,222 − ρφ,2tt = 0 on x2 = 0, (8.3)

mψ,1 = (l +mλ−2
3 )ψ∗

,1, ψ,1 = ψ∗
,1, K011ψ,2 = µ−1

0 ψ∗
,2 on x2 = 0. (8.4)

Except in the very special case for which l = 0 and λ3 = 1 the latter equations
are incompatible unless there is no incremental magnetic field. Thus, the problem
reduces to a purely mechanical problem for the potential φ. For the considered
model none of the moduli components depend on B3, so the magnetic field has no
effect on the propagation of elastic surface waves. More generally, however, for the
considered underlying deformation and magnetic field, Eq. (8.1) and the boundary
conditions (8.3) apply for an arbitrary form of isotropic energy function Ω and
therefore, the coefficients then do involve B3.

9. Concluding Remarks

The analysis in Sec. 7 shows that magnetic fields can have a significant effect on
the speed of surface waves propagating in a half-space of magnetoelastic material
and on the mechanical stability of the half-space. For each of the in-plane directions
of the magnetic field an upper limit on the wave speed is obtained, similar to that
obtained in the purely elastic case but with, in general, dependence on the magnetic
field. In the absence of a magnetic field, the equations reduce to those of the purely
elastic case given by Dowaikh and Ogden [1990], and for the purely static problem
results on the stability of a magnetoelastic half-space due to Otténio et al. [2008]
are recovered.

For a Mooney–Rivlin type magnetoelastic material an initial magnetic induction
in the sagittal plane in general destabilizes the material and surface waves exist
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only for values of the stretch beyond a certain critical value (which depends on
the chosen material parameters). If the magnetic induction is in the direction of
wave propagation, it has a significantly stronger effect than in the case when it is
perpendicular to the direction of wave propagation within the sagittal plane. For
configurations in which the half-space is stable the dependence of the surface wave
speed on both the underlying finite deformation and the magnitude of the magnetic
induction was illustrated graphically.

We have also discussed briefly the equations governing in-plane motion for the
situation in which the initial magnetic induction is normal to the sagittal plane.
For the Mooney–Rivlin model it was found that the magnetic field has no effect
on the surface wave speed. As is well known, the fully 3D equations decouple into
planar and out-of-plane modes. We have not considered the out-of-plane (SH or
Bleustein–Gulyaev wave) motion here but the combined effect of deformation and
the magnetic field on such motions will be examined in a forthcoming paper.
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Appendix

A. Derivatives of the Invariants

The first and second derivatives of the invariants (4.4) and (4.5) with respect to F
and Bl were given in Otténio et al. [2008]. We repeat the nonzero ones here for ease
of reference.

∂I1
∂Fiα

= 2Fiα,
∂I2
∂Fiα

= 2(cγγFiα − cαγFiγ),
∂I3
∂Fiα

= 2I3F−1
αi ,

∂I5
∂Fiα

= 2Blα(FiγBlγ),
∂I6
∂Fiα

= 2(FiγBlγcαβBlβ + FiγcγβBlβBlα),

∂I4
∂Blα

= 2Blα,
∂I5
∂Blα

= 2cαβBlβ ,
∂I6
∂Blα

= 2cαγcγβBlβ ,
∂2I1

∂Fiα∂Fjβ
= 2δijδαβ ,

∂2I2
∂Fiα∂Fjβ

= 2(2FiαFjβ − FiβFjα + cγγδijδαβ − bijδαβ − cαβδij),

∂2I3
∂Fiα∂Fjβ

= 4I3F−1
αi F

−1
βj − 2I3F−1

αj F
−1
βi ,

∂2I5
∂Fiα∂Fjβ

= 2δijBlαBlβ ,

∂2I6
∂Fiα∂Fjβ

= 2[δij(cαγBlγBlβ + cβγBlγBlα) + δαβFiγBlγFjδBlδ

+FiγBlγFjαBlβ + FjγBlγFiβBlα + bijBlαBlβ ],
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∂2I5
∂Fiα∂Blβ

= 2δαβFiγBlγ + 2BlαFiβ ,

∂2I6
∂Fiα∂Blβ

= 2FiβcαγBlγ + 2FiγBlγcαβ + 2FiγcγβBlα + 2δαβFiγcγδBlδ,

∂2I4
∂Blα∂Blβ

= 2δαβ,
∂2I5

∂Blα∂Blβ
= 2cαβ ,

∂2I6
∂Blα∂Blβ

= 2cαγcγβ.

B. Magnetoelastic Tensors

For an isotropic material, A0,C0 and K0 can be expanded in terms of the derivatives
of the invariants as follows, with Ωn = ∂Ω/∂In and Ωmn = ∂2Ω/∂Im∂In:

A0piqj = J−1
∑
m∈I

∑
n∈I

ΩmnFpαFqβ
∂In
∂Fiα

∂Im
∂Fjβ

+ J−1
∑
n∈I

ΩnFpαFqβ
∂2In

∂Fiα∂Fjβ
,

C0ji|k =
∑

m∈J

∑
n∈I

ΩmnFjαF
−1
βk

∂Im
∂Blβ

∂In
∂Fiα

+
6∑

n=5

ΩnFjαF
−1
βk

∂2In
∂Fiα∂Blβ

,

K0ij = J
∑

m∈J

∑
n∈J

ΩmnF
−1
αi F

−1
βj

∂Im
∂Blα

∂In
∂Blβ

+ J
∑
n∈J

ΩnF
−1
αi F

−1
βj

∂2In
∂Blα∂Blβ

.

We recall that I = {1, 2, 3, 5, 6} and J = {4, 5, 6}. For an incompressible material
I = {1, 2, 5, 6} and J = 1.

When referred to the principal axes of the left Cauchy–Green tensor b with
principal stretches λ1, λ2, λ3 and components (B1, B2, B3) of the magnetic induction
B the components of A0,C0 and K0 are given explicitly for a compressible material
as, for i �= j �= k �= i,

A0iiii = 2J−1λ2
i [Ω1 + (λ2

j + λ2
k)Ω2 + λ2

jλ
2
kΩ3 + λ2

jλ
2
kB

2
i (Ω5 + 6λ2

i Ω6)]

+ 4J−1λ4
i {Ω11 + 2(λ2

j + λ2
k)Ω12 + (λ2

j + λ2
k)2Ω22

+λ2
jλ

2
k[2Ω13 + 2(λ2

j + λ2
k)Ω23 + λ2

jλ
2
kΩ33] + 2λ2

jλ
2
kB

2
i [Ω15 + 2λ2

i Ω16

+ (λ2
j + λ2

k)Ω25 + 2λ2
i (λ

2
j + λ2

k)Ω26 + λ2
jλ

2
kΩ35 + 2I3Ω36]

+λ4
jλ

4
kB

4
i (Ω55 + 4λ2

i Ω56 + 4λ4
i Ω66)},

A0iiij = 4BiBjJλ
2
i {Ω6 + Ω15 + (λ2

j + λ2
k)Ω25 + λ2

jλ
2
kΩ35

+ (λ2
i + λ2

j )[Ω16 + (λ2
j + λ2

k)Ω26 + λ2
jλ

2
kΩ36]

+λ2
jλ

2
kB

2
i [Ω55 + (3λ2

i + λ2
j )Ω56 + 2λ2

i (λ
2
i + λ2

j )Ω66]},
A0iiji = 2BiBjJ{Ω5 + (λ2

j + 3λ2
i )Ω6 + 2λ2

i [Ω15 + (λ2
j + λ2

k)Ω25 + λ2
jλ

2
kΩ35]

+ 2λ2
i (λ

2
i + λ2

j )[Ω16 + (λ2
j + λ2

k)Ω26 + λ2
jλ

2
kΩ36]

+ 2J2B2
i [Ω55 + (3λ2

i + λ2
j)Ω56 + 2λ2

i (λ
2
i + λ2

j )Ω66]},
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A0iijj = 4J−1λ2
i λ

2
j{Ω2 + λ2

kΩ3 + Ω11 + (I1 + λ2
k)Ω12 + (I2 + λ4

k)Ω22

+λ2
k[(λ2

i + λ2
j)Ω13 + (I2 + λ2

i λ
2
j)Ω23 + I3Ω33]

+λ2
k(λ2

jB
2
i + λ2

iB
2
j )(Ω15 + λ2

kΩ25) + 2I3(λ2
iB

2
i + λ2

jB
2
j )(Ω26 + λ2

kΩ36)

+ I3(B2
i +B2

j )(2Ω16 + Ω25 + 2λ2
kΩ26 + λ2

kΩ35)

+ I3λ
2
kB

2
iB

2
j [Ω55 + 2(λ2

i + λ2
j )Ω56 + 4λ2

iλ
2
jΩ66]},

A0ijij = 2J−1λ2
i {Ω1 + λ2

kΩ2 +B2
i λ

2
jλ

2
kΩ5 + λ2

jλ
2
k(2B2

i λ
2
i +B2

i λ
2
j +B2

jλ
2
i )Ω6

+ 2B2
iB

2
jJ

2λ2
jλ

2
k[Ω55 + 2(λ2

i + λ2
j )Ω56 + (λ2

i + λ2
j )

2Ω66]},
A0ijji = 2J−1λ2

i λ
2
j{−Ω2 − λ2

kΩ3 + λ2
k(λ2

jB
2
i + λ2

iB
2
j )Ω6

+ 2B2
iB

2
jJ

2λ2
k[Ω55 + 2(λ2

i + λ2
j )Ω56 + (λ2

i + λ2
j)

2Ω66]},
A0iijk = 4BjBkJλ

2
i {Ω15 + (λ2

j + λ2
k)(Ω25 + Ω16) + (λ2

j + λ2
k)2Ω26 + λ2

jλ
2
kΩ35

+λ2
jλ

2
k(λ2

j + λ2
k)Ω36 +B2

i λ
2
jλ

2
k[Ω55 + (I1 + λ2

i )Ω56 + 2λ2
i (λ

2
j + λ2

k)Ω66]},
A0ijki = A0ijik = 2BjBkJ{λ2

i Ω6 + 2B2
i J

2[Ω55 + (I1 + λ2
i )Ω56 + (I2 + λ4

i )Ω66]},
A0jiki = 2BjBkJ{Ω5 + I1Ω6 + 2B2

i J
2[Ω55 + (I1 + λ2

i )Ω56 + (I2 + λ4
i )Ω66]},

C0ii|i = 4BiJ{Ω5 + 2λ2
i Ω6 + Ω14 + λ2

i Ω15 + λ4
i Ω16

+ (λ2
j + λ2

k)(Ω24 + λ2
i Ω25 + λ4

i Ω26) + λ2
jλ

2
k(Ω34 + λ2

i Ω35 + λ4
i Ω36)

+B2
i λ

2
jλ

2
k[Ω45 + λ2

i Ω55 + λ4
i Ω56 + 2λ2

i (Ω46 + λ2
i Ω56 + λ4

i Ω66)]},
C0ii|j = 4BjJλ

2
i λ

−2
j {Ω14 + λ2

jΩ15 + λ4
jΩ16 + (λ2

j + λ2
k)(Ω24 + λ2

jΩ25 + λ4
jΩ26)

+λ2
jλ

2
k(Ω34 + λ2

jΩ35 + λ4
jΩ36) +B2

i λ
2
jλ

2
k[Ω45 + λ2

jΩ55 + λ4
jΩ56

+ 2λ2
i (Ω46 + λ2

jΩ56 + λ4
jΩ66)]},

C0ij|i = 2BjJ{Ω5 + (λ2
i + λ2

j)Ω6 + 2B2
i λ

2
jλ

2
k[Ω45 + λ2

i Ω55 + λ4
i Ω56

+ (λ2
i + λ2

j )(Ω46 + λ2
i Ω56 + λ4

i Ω66)]},
C0ij|k = 4BiBjBkJλ

2
i λ

2
j [Ω45 + λ2

kΩ55 + λ4
kΩ56 + (λ2

i + λ2
j )(Ω46 + λ2

kΩ56 + λ4
kΩ66)],

K0ii = 2Jλ−2
i {Ω4 + λ2

i Ω5 + λ4
i Ω6 + 2B2

i λ
2
jλ

2
k[Ω44 + λ2

i Ω45 + λ4
i Ω46

+λ2
i (Ω45 + λ2

i Ω55 + λ4
i Ω56) + λ4

i (Ω46 + λ2
i Ω56 + λ4

i Ω66]},
K0ij = 4BiBjJλ

2
k[Ω44 + λ2

i Ω45 + λ4
i Ω46 + λ2

j(Ω45 + λ2
i Ω55 + λ4

i Ω56)

+λ4
j (Ω46 + λ2

i Ω56 + λ4
i Ω66)].

For an incompressible material the above formulas apply with J = 1, I3 = 1 and
with all terms in Ω carrying a subscript 3 omitted.
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Jolly, M. R., Carlson, J. D. and Muñoz, B. C. [1996] “A model of the behaviour of mag-
netorheological materials,” Smart Materials and Structures 5, 607–614.

Lee, J. S. and Its, E. N. [1992] “Propagation of Rayleigh waves in magneto-elastic media,”
Journal of Applied Mechanics 59, 812–818.

Liu, H., Kuang, Z. B. and Cai, Z. M. [2003] “Propagation of Bleustein–Gulyaev waves in
a prestressed layered piezoelectric structure,” Ultrasonics 41, 397–405.

Lokander, M. and Stenberg, B. [2003] “Performance of isotropic magnetorheological rubber
materials,” Polymer Testing 22, 245–251.

Maugin, G. A. [1981] “Wave motion in magnetizable deformable solids,” International
Journal of Engineering Science 19, 321–388.

Maugin, G. A. [1988] Continuum Mechanics of Electromagnetic Solids (North-Holland,
Amsterdam).

Maugin, G. A. and Hakmi, A. [1985] “Magnetoelastic surface waves in elastic
ferromagnets—I: Orthogonal setting of the bias field,” Journal of the Acoustical Society
of America 77, 1010–1026.

Maugin, G. A., Pouget, J., Drouot, R. and Collet, B. [1992] Nonlinear Electromechanical
Couplings (John Wiley, Chichester).

Nelson, D. F. [1979] Electric, Optic, and Acoustic Interactions in Dielectrics (John Wiley,
New York).

Ogden, R. W. [2009] “Incremental elastic motions superimposed on a finite deforma-
tion in the presence of an electromagnetic field,” International Journal of Non-Linear
Mechanics 44, 570–580.

Otténio, M., Destrade, M. and Ogden, R. W. [2008] “Incremental magnetoelastic defor-
mations, with application to surface instability,” Journal of Elasticity 90, 19–42.

Pao, Y. H. [1978] “Electromagnetic forces in deformable continua,” in Mechanics Today,
Vol. 4, ed. S. Nemat-Nasser (Oxford University Press), pp. 209–305.

Pouget, J. and Maugin, G. A. [1981] “Piezoelectric Rayleigh waves in elastic ferroelectrics,”
Journal of the Acoustical Society of America 69, 1319–1325.

Shapoorabadi, R. J., Konrad, A. and Sinclair, A. N. [2005] “The governing electrodynamic
equations of electromagnetic acoustic transducers,” Journal of Applied Physics 97, 6–8.

Simionescu-Panait, O. [2002] “Wave propagation in cubic crystals subject to initial
mechanical and electric fields,” Zeitschrift für Angewandte Mathematik und Physik
53, 1038–1051.

Sinha, B. K. and Tiersten, H. F. [1979] “On the influence of a flexural biasing state on the
velocity of piezoelectric surface waves,” Wave Motion 1, 37–51.

Tang, S. [1967] “Wave propagation in initially-stressed elastic solids,” Acta Mechanica
4, 92–106.

Tiersten, H. F. [1995] “On the accurate description of piezoelectric resonators subject to
biasing deformations,” International Journal of Engineering Science 33, 2239–2259.

Varga, Z., Filipcsei, G. and Zrnyi, M. [2006] “Magnetic field sensitive functional elastomers
with timeable modulus,” Polymer 47, 227–233.

Yalcintas, M. and Dai, H. [2004] “Vibration suppression capabilities of magnetorheological
materials based adaptive structures,” Smart Materials and Structures 13, 1–11.

Yang, J. S. [2001] “Bleustein–Gulyaev waves in strained piezoelectric ceramics,” Mechanics
Research Communications 28, 679–683.

Yang, J. S. and Hu, Y. [2004] “Mechanics of electroelastic bodies under biasing fields,”
Applied Mechanics Reviews 57, 173–189.

Yu, C. P. and Tang, S. [1966] “Magneto-elastic waves in initially stressed conductors,”
Zeitschrift für Angewandte Mathematik und Physik 17, 766–775.


