Errata

I regret that the following errors have come to my notice. The corrections are listed with the names of those who reported them, to whom I am very grateful. Please send a note to me at jdavies@elec.gla.ac.uk if you find others.

Widespread corrections

1. **Symbols for ‘kilo’**. When I wrote the book I was careful to use a low-case ‘k’ for ‘decimal kilo’, standing for $10^3 = 1000$, and an upper-case ‘K’ for ‘binary Kilo’, $2^{10} = 1024$. This is explained on page 6. Unfortunately the publisher changed all kHz to KHz after I had returned the proofs, destroying the distinction. A sentence on page 313 has become meaningless and should read: “Note the capital K because this is a binary Kilo, meaning $2^{10} = 1024$, rather than the decimal kilo of 1000 as in kHz.” Other occurrences of KHz should be changed to kHz on the following pages, and probably many others that I have not yet noticed: 449, 451, 459, 461, 491, 492, 508, 517, 536, 537, 545, 546, 547 (in the code, which appals me), 550, 556, 557, 558. (2009 February 01)

2. **Sinc function**. The publisher changed the function $\text{sinc}(x)$ to $\text{sinc}(x)$ in numerous places, notably on pages 441–445. (2009 February 01)

3. **Names of bit fields for input/output ports**. IAR has changed the names for the bit fields for input/output ports in version 5.40 of Embedded Workbench (I am not sure when the change occurred). Each bit field had a unique name when I wrote the book. For example, bit 0 of P1IN was called P1IN_0 and bit 0 of P1OUT was P1OUT_0. Thus P1OUT.P1OUT_0 = 1 would set bit 0 of P1OUT. Now the names of the fields have been abbreviated to P0, P1 and so on, which are common to all registers. The new usage
is P1OUT.P0 = 1 to set bit 0 of P1OUT. The complete reference to the field remains
unique and the new names are more concise but the change affects a huge number of
programs throughout the book. Fortunately the bit fields for the TACTL register, which
is used as an example to introduce bit fields on page 49, have not been changed. (Andi
Antonius, 2012 February 02)

Individual corrections

1. Page 12, description of EPROM. I wrote that EPROM stands for electrically program-
mable read-only memory, which is incorrect: It should be erasable programmable
read-only memory. The description that follows is poorly worded as well and would
have been better as ‘it can be programmed electrically but not erased electrically’. (Andrew Beaulieu, 2010 May 24)

2. Page 28, figure 2.4 for the memory map. The third address up should be 0x0010, not
0x0100. (Andrew Bovill, 2010 January 22)

3. Pages 71–73, ledson.c and ledson.s43 programs. In the C program I write to P2DIR
before P2OUT but in the assembly language it is done in the opposite sequence. The
reason is that I used the ‘obvious’ method in the first program, ledson.c, and the
better approach the second time in ledson.s43. This is explained on page 75 but it
would probably have been better to do it correctly from the start. (Ramakrishna, 2008
October 27)

4. Page 80, last sentence but one before section 4.4. This should read: The format of
the header file is different and so is the directive to include it, it does not permit
absolute assembly at all (no ORG directives!) and executable code is introduced with
.text instead of RSEG CODE. The publisher incorrectly moved the period before .text. (2009 March 10)

5. Page 82, figure 4.5(a). The text in the two rectangular boxes on the left should be
interchanged. The top box should contain ‘turn LED on, clear P2OUT.3’ and the
bottom should contain ‘turn LED off, set P2OUT.3’. I should include a reminder in
the caption that the LED is active low; the button is active low as well but that is
typical. (Richard Lyons, 2011 June 13)

6. Page 88, section 4.4.4, bit fields in listing 4.8. IAR have changed the names of bit
fields for input/output ports in EW430 and the listing is no longer correct. See Wide-
spread corrections above. The definitions for the LED and button should be changed
to

```c
#define LED1  P2OUT_bit.P3
#define B1    P2IN_bit.P1
```

and the line to set the direction of P2.3 should be

```
P2DIR_bit.P3 = 1;  // Set pin with LED1 to output
```

Similar changes are required for almost all subsequent programs; I’ve flagged this
one because it is the first to use bit fields rather than masks. (Andi Antonius, 2012
February 02)

7. Page 112, the sentence on the length of the shift register should read ‘Annoyingly it
fails for the convenient values \(N = 8 \) and \(J_6 \) but the simple approach works for \(N = 4, 7 \) and 15.’ The book has 15 instead of 16. (Ferdinand Pienaar, 2013 March 5)

8. Page 131, section 5.3 on Constant Generator and Emulated Instructions. This section
might have been clearer if I had listed all six constants available using SR/CG1, CG2
and the four addressing modes for a source. A table is provided in the section ‘Con-
stant Generator Registers CG1 and CG2’ of the chapter ‘RISC 16-bit CPU’ of the
Family User’s Guides.

9. Page 145, just below the code example at the top of the page. The sentence should
read ‘These are a bit more complicated because the destination is given as an absolute
address...’. The book has the source rather than the destination. (Mohammed Setti,
2018 January 06)

10. Page 151, listing 5.2. The publisher removed a semicolon from the second line of the
CopyLoop, which makes the comments meaningless. It should read as follows.

```
CopyLoop:
; This ought to be sufficient but the assembler complains...
;   mov.b  @R14+,BeginDest-BeginSource-1(R14)  ; -1 allows for @R14+
; ...so I had to handle the wrapping around myself
   mov.b  @R14+,BeginDest-BeginSource+0xFFFF(R14)
         ; 0xFFFF allows for increment in @R14+
```
The point is that the assembler does not accept ‘–1’, which must be represented as ‘+0xFFFF’ instead.

I am horrified that the publisher chose to edit my programs without asking. The book was composed using \LaTeX{}, which read the programs from the source files used by EW430. The printed listings therefore ought to match my code exactly. (2009 March 10)

11. Page 152, just after the first code snippet. The second sentence should read ‘The bit test gives nonzero so Z = 0, C = 1 and a 1 is inserted into the msb of the byte ShiftReg.’ The book has lsb rather than msb. (Mohammed Setti, 2018 January 09)

12. Page 188, section 6.7 on What happens when an interrupt is requested? I should have made it clearer that the actions listed in this section are only those performed by the hardware. A compiler can add further actions to an interrupt service routine in a high-level language. Typically several registers are pushed on to the stack (R12–R15 with EW430, R11–R15 with CCS) so that they can be used as scratch registers by the ISR. This is similar to the entry to a subroutine in a high-level language rather than assembly language. (Lachezar Temelkov, 2014 February 24)

13. Page 191, listing 6.4. This includes the line

\begin{Verbatim}
 mov.w #CCIE,&TACCTL0 ; Enable interrupts on Compare 0
\end{Verbatim}

Note that I use the \texttt{mov} instruction to write to the complete register, rather than \texttt{bis} to set the CCIE flag alone. An important difference is that \texttt{mov} clears all the other bits in the register at the same time, including CCIFG. This action avoids an unintended interrupt that would occur if CCIFG had become set before interrupts were enabled. The issue is mentioned on page 197 in the section Configure interrupts carefully.

More care is needed if the interrupt flag is not in the same register as its enable bit. This applies to modules such as the watchdog and basic timers, whose bits are in the IFGn and IEn registers. I regret that I have not always remembered to clear the flag in IFGn before enabling the interrupt with IEn. (2009 July 21)

14. Page 196, final paragraph of section 6.8.3 on Nonmaskable Interrupts. The first sentence describes the treatment of maskable interrupts to emphasize that nonmaskable interrupts are handled differently. This should be clearer. (Tamas Hornos, 2009 July 21)
15. Page 204, caption to listing 6.8. The caption mentions low-power mode 0 but it should be low-power mode 3. (Tamas Hornos, 2009 July 21)

16. Page 210, description of pull resistors. The warning about the pull resistors should be more comprehensive. Suppose that some pins of a port are used for output and others are used for input with pull resistors. After the port has been configured you must write only to those bits of PnOUT that correspond to output pins when you want to change the output. Usually it doesn’t matter if you write to the bits of PnOUT for input pins as well because it has no effect. However, it can change the pull resistors from pullup to pulldown or vice versa if these are enabled. This is easily forgotten! (Andy Palm, 2010 August 10)

17. Page 212, final paragraph, second sentence. This states ‘Thus there is no direct electrical connection between the source and channel’ but should say ‘Thus there is no direct electrical connection between the gate and channel’. (Lawrence Normie, 2011 July 03)

18. Page 214, before example 7.2. The text says that ‘The output is pulled to V_{SS} by the p-MOSFET’ but it should be V_{DD} rather than V_{SS}. (Ramakrishna, 2008 October 27)

19. Page 272, section 7.9.5. IAR introduced a new calling convention with version 4.x of the C compiler for EW430. This affects the way in which parameters are passed to a function and the value is returned. Fortunately it does not affect the simple function described in this section. However, this is a reminder of the hazards of mixing the assembly and C languages, as I warn you in the text. (2009 January 01)

20. Page 297, listing 8.4. The first three lines of assembly language should read

```
; Set up timer channel 1
mov.w #0x2000,&TACCR1 ; Full range/8 (short flash of LED)
mov.w #CCIE,&TACCTL1 ; Interrupts on TACCR1 compare
```

The ampersands are missing from the book, giving symbolic addressing mode instead of absolute mode. Fortunately this has no effect on a program written for the MSP430 CPU but could cause problems on a MSP430X. (Ferdinand Pienaar, 2013 March 5)

21. Page 308, equation (8.2). The publisher changed the denominator to 32,768 but it should be 32,768. (2009 January 01)
22. Page 308–312, section on How should the program be organised? I give two programs for the reaction timer with contrasting structures: Listing 8.7 has all the action in interrupt service routines, while listing 8.8 has minimal interrupt service routines with most work done in the main routine. The discussion on page 310 between the two listings includes the unfortunate sentence ‘I normally prefer to put the actions in ISRs but here the overall strategy is much easier to follow when it is in the main loop.’ I should have made it clear that the comment about putting the actions in ISRs was meant to apply only to trivial programs, although of course that includes most if not all of the examples in the book. The general rule, which I set out on page 196, is to keep interrupt service routines short. Listing 10.10 on page 565 has a better structure, where the interrupt service routines for the USCI_B wake the main routine and pass a value to show what action is needed. (Ciarán Mac Aonghusa, 2009 January 27)

23. Page 313, sentence beginning ‘Note the capital K…’. This has been rendered meaningless by the publisher. See the ‘widespread correction’ concerning symbols for kilo. (2009 February 01)

24. Page 315, first bullet point after listing 8.9. The sentence should read ‘I have been less lazy than usual and configured the clocks better’. (Scott Roy, 2014 March 25)

25. Pages 319–320, listing 8.10. Note that the registers are increased by the full value of each delay in Continuous mode. This contrasts with Up mode, where the period is TACCR0 + 1 so the register TACCR0 is set to 1 less than the desired delay. (2009 January 01)

26. Page 330, top line. The frequency should be 438.9 Hz rather than 877.7 Hz. I gave the frequency of toggling rather than that of the sound. (2009 January 01)

27. Page 375, equation (9.1). This should appear as follows.

\[R(T) = R_0 \exp \left(\frac{B}{T} - \frac{B}{T_0} \right). \]

(9.1) (2009 February 01)

28. Page 400, figure 9.12(a). The label on the plot says \(f = 330 \) Hz but it should be 310 Hz, consistent with the caption and text. (2011 February 15)

29. Page 443, sentence beginning ‘For a second-order sigma–delta converter’. This could be more clearly set out as ‘the averaging is usually spread over \(3 \times \text{OSR} \) samples’. (2009 February 01)
30. Page 461, listing 9.10. The purpose of the line with the comment ‘To reduce bias when dividing’ is explained on page 422; I should have provided a cross-reference. (Tamas Hornos, 2009 July 21)

31. Page 466, listing 9.11. I forgot to describe the circuit used with this program. Two input voltages are needed because the SD16_A is used in differential mode. One comes from a potential divider incorporating a potentiometer, as in figure 9.17(a) on page 414; the other comes from a fixed potential divider. I used a home-made demonstration board, which is described fully in another document (demoboards.pdf) that can be downloaded from the web site. (Tamas Hornos, 2009 September 15)

32. Page 489, listing 9.13 for dacdma2.c. This has several problems, mostly because IAR have changed some of the definitions in the header file for the device since the book was written.

- The ‘include’ file for utility functions should be LCDutils2.h (and the corresponding code LCDutils2.c should be added to the project); the ‘2’ was missing.
- The added definition for DMA0SZ can be deleted because it is provided by current versions of the IAR header file for the device.
- Some of the constants associated with the DMA0CTL register have gained a ‘0’ in their names in recent versions of the header file, which affects both instructions that write to this register. The revised names are DMA0DSTBYTE, DMA0SRCBYTE and DMA0CTL_bit.DMA0EN.

I have added an updated program dacdma2a.c to the web site and checked it with EW4.21.8 (FET_R522, slac050w). (David M Schwartz, 2010 February 14)

33. Page 504, section 10.3. Another bug (USI5) has been reported for the Universal Serial Interface in SPI mode. See the latest MSP430F20xx Device Erratasheet (slaz026). The USI5 bug affects masters that are configured with USICKPH = 1 (CPHA = 0, typically SPI mode 0). Fortunately my example of the USI as an SPI master in section 10.5 uses mode 3 and is therefore not upset by this bug. (2009 January 01)

34. Page 512, first complete sentence. This says ‘It would be better if there were a delay of about $\frac{1}{2}$ cycle of SCLK as in figure 10.3’ but doesn’t explain why. The delay would allow the slave the same length of time to read the final bit after the rising edge on the clock as for the earlier bits in the transmission. (Ferdinand Pienaar, 2013 March 5)
35. Page 544, paragraph beginning ‘The USCI has two interrupt vectors’. The first sentence should read ‘The USCI_B has two interrupt vectors, both of which are shared with the USCI_A’. (2009 February 01)

36. Page 575, last complete paragraph. The first sentence should read ‘A minimum of one stop bit is needed to separate each frame and provide a high level before the falling edge of the next start bit.’ The book has stop bit instead of start bit. (Ferdinand Pienaar, 2013 March 5)

37. Page 577, last sentence of first paragraph. This should read ‘This edge may have occurred at any time during the preceding cycle of the sampling clock so there is a synchronization error of up to one period of the sampling clock’. The book has $\frac{1}{2}$ instead of 1. (MowSong Ng, 2014 September 29)

Further reading

Here are some useful books that have been published since my book went to press.

[9] Lisa K Simone, *If I only changed the software, why is the phone on fire?*, Burlington, MA: Newnes, 2007. (ISBN 0750682183) This isn’t about the MSP430 in particular but describes methods for debugging embedded systems in general, presented as detective stories. Section 10.14.2 of my book, where I measure the load on the CPU imposed by a software UART, should prepare you to solve one of Simone’s mysteries! I enjoyed this book greatly.